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Abstract: Classifier combining is a popular technique for improving classifica-
tion quality. Common methods for classifier combining can be further improved
by using dynamic classification confidence measures which adapt to the currently
classified pattern. However, in the case of dynamic classifier systems, the clas-
sification confidence measures need to be studied in a broader context – as we
show in this paper, the degree of consensus of the whole classifier team plays a
key role in the process. We discuss the properties which should hold for a good
confidence measure, and we define two methods for predicting the feasibility of a
given classification confidence measure to a given classifier team and given data.
Experimental results on 6 artificial and 20 real-world benchmark datasets show
that for both methods, there is a statistically significant correlation between the
feasibility of the measure, and the actual improvement in classification accuracy
of the whole classifier system; therefore, both feasibility measures can be used in
practical applications to choose an optimal classification confidence measure.
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1. Introduction

In the literature of pattern recognition and machine learning in general, methods
which combine information from multiple “weak learners”, in order to build a
better and more robust learning model, are increasingly more popular. In the field
of classification, such approaches are usually called classifier combining, or classifier
aggregation methods [16,18,19,21,22,25].

Quite often, the aggregation method uses some kind of confidence measure to
estimate the quality of a given classifier, which determines the classifier’s weight in
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the aggregation process. Traditionally, the confidence measures assess the classifier
from a global point of view, i.e., the resulting confidence is a constant of the
classifier [10, 14]. As the computational power of today’s computers grows, more
complex methods, which compute the classifier’s confidence dynamically (i.e., in the
context of the currently classified pattern), are more and more popular [3,5–7,13].
If there are enough validation data, the confidence measure can express the quality
of the classification better, which leads to better approximation properties of the
resulting aggregated classifier system [1,8, 12,17,20,23,29,30].

However, as we will show in this paper, in classifier aggregation, the dynamic
confidence of classification has to be studied in a broader context. An important
novel feature, which needs to be taken into account, is the degree of consensus
among the individual classifiers in the team. For instance, if most of the classifiers
agree on the class prediction for a given pattern, the confidences of the individual
classifiers are not relevant because it is very hard to change the prediction of the
team, anyway. On the other hand, if, for a given pattern, the predictions of the
classifiers in the team are more diverse, the (dynamic) confidences of the individual
classifiers begin to play a key role in the aggregation process.

In this paper, we first discuss the properties which should hold for a “good”
confidence measure, and we also present examples of the performance of two indi-
vidual confidence measures in more detail. This discussion leads to the definition of
two different methods for estimating the feasibility of a given confidence measure to
a given classifier team and given data. The presented methods, called Similarity to
the Oracle confidence measure (SOR), and Area Under ROC curve for OK/NOK
histogram (AUC), both incorporate the concept of restriction of the validation set
to patterns with low degree of consensus of the classifier team.

In the experimental section, we empirically study the correlation between the
feasibility of a given confidence measure, and the actual improvement in classifi-
cation accuracy if this measure is used in a dynamic classifier system (compared
to a confidence-free classifier system). The experiments were performed on 6 ar-
tificial and 20 real-world benchmark datasets, using one static and four dynamic
confidence measures. The results show a statistically significant correlation in most
cases, and thus suggest that the proposed feasibility measures can be used in prac-
tical applications to choose an optimal confidence measure for a given application
setup.

The paper is structured as follows. Section 2. briefly presents the formalism of
dynamic classifier systems, and provides examples of the most common confidence
measures. In Section 3., we formally define the degree of consensus in a classifier
team, and we present the SOR and AUC methods for predicting the feasibility
of a given confidence measure. Section 4. contains the experimental results, and,
finally, Section 5. concludes the paper.

2. Formalism of Dynamic Classifier Systems

In this section, we recall the formalism of dynamic classifier systems, as proposed
in [27]. Let X ⊆ Rn be n-dimensional feature space, let C1, . . . , CN ⊆ X , N ≥ 2 be
disjoint sets called classes. A pattern is a tuple (x, cx), where x ∈ X are features
of the pattern, and cx ∈ {1, ..., N} is the index of the class the pattern belongs to.
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Given an unclassified pattern x, a classifier ϕ : X → [0, 1]N predicts the degree
of classification (d.o.c.) to each class, ϕ(x) = (γ1(x), . . . , γN (x)). The d.o.c. are
then transformed to a crisp class label (with maximal d.o.c.) to provide the final
class prediction.

The reliability of the classifier’s prediction for the current pattern is expressed
by a confidence measure κϕ : X → [0, 1] (the closer to 1, the more confidence is given
to the prediction), which can be either static (i.e., a constant of the classifier) [10,
14], or dynamic (i.e., the confidence measure is adapted to the currently classified
pattern) [7, 12, 17, 23, 27, 29], e.g., the accuracy of the classifier, measured on a set
of k nearest neighbors of the classified pattern x from a validation set.

In classifier combining, instead of using a single classifier, a team of r classifiers
is trained, and the outputs of the team are aggregated into the final prediction.
Given an unclassified pattern x, the outputs of the classifiers are structured to a
matrix Γ(x) ∈ [0, 1]r×N , called decision profile,

Γ(x) =


ϕ1(x)
ϕ2(x)

...
ϕr(x)

 =


γ1,1(x) γ1,2(x) . . . γ1,N (x)
γ2,1(x) γ2,2(x) . . . γ2,N (x)

. . .

γr,1(x) γr,2(x) . . . γr,N (x)

 , (1)

and the confidences to a confidence vector

K(x)T = (κϕ1(x), . . . , κϕr (x))
T
. (2)

We restrict ourselves to the most common class-conscious aggregation [18],
where each column of the decision profile (represeting the d.o.c. to a particu-
lar class given by all the classifiers in the team) is aggregated individually by an
aggregation operator A, and the aggregation operator is usually parametrized by
the confidence vector. An example is the well-known weighted mean aggregation:

γj(x) =

∑
i=1,...,r κϕi(x)γi,j(x)∑

i=1,...,r κϕi(x)
, j = 1, . . . , N. (3)

The resulting classifier system behaves as a single classifier Φ to the outside.
Depending on the confidence measures and the aggregation operator, the classifier
system can be confidence-free (no classification confidence is used), static (only
static classification confidence is used), and dynamic (the aggregation is adapted to
x by utilizing the dynamic classification confidence) [27]. The different approaches
are shown in Fig. 1. Our main interest in this paper lies in studying dynamic
classifier systems (and thus dynamic confidence measures).

2.1 Static Confidence Measures

Static confidence measures estimate the classifier’s predictive power from a global
point of view (the confidence is a constant of the classifier). These methods include
accuracy, precision, sensitivity, resemblance, etc. [10,14]. In this paper, we will use
the (most common) Global Accuracy measure.
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Fig. 1 Schematic comparison of confidence-free, static, and dynamic classifier
systems.

Global Accuracy (GA) of a classifier ϕ is defined as the proportion of correctly
classified patterns from the validation set:

κ
(GA)
ϕ =

∑
(y,cy)∈V

I(ϕ(cr)(y)
?
= cy)

|V|
, (4)

where V ⊆ X×{1, . . . , N} is the validation set and ϕ(cr)(y) is the crisp output
of ϕ on y.

2.2 Dynamic Confidence Measures

Dynamic confidence measures adapt the estimate to the currently classified pattern
x. The most straightforward way is to restrict a global confidence measure to some
neighborhood of x. Let N(x) ⊆ V denote a set of neighboring patterns from the
validation set (e.g., using the Euclidean metric). We define two dynamic confidence
measures based on N(x):

Euclidean Local Accuracy (ELA), used in [29], measures the local accuracy
of ϕ in N(x):

κ
(ELA)
ϕ (x) =

∑
(y,cy)∈N(x)

I(ϕ(cr)(y)
?
= cy)

|N(x)|
, (5)

where ϕ(cr)(y) is the crisp output of ϕ on y.
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Euclidean Local Match (ELM), based on the ideas in [7], measures the pro-
portion of patterns in N(x) from the same class as ϕ is predicting for x:

κ
(ELM)
ϕ (x) =

∑
(y,cy)∈N(x)

I(ϕ(cr)(x)
?
= cy)

|N(x)|
, (6)

where ϕ(cr)(x) is the crisp output of ϕ on x. The difference between (5)
and (6) is that in the latter case, there is ϕ(cr)(x) instead of ϕ(cr)(y) in the
indicator.

In [12], the authors suggest that if the classifier is a member of a team of
classifiers, the set of nearest neighbors N(x) should be restricted to patterns which
are similar to x in the way how often the individual classifiers in the team classify
the patterns into the same class. This is very similar to the approach of Robnik-
Šikonja and Tsymbal et al. [20, 23] for random forests [4]. In this paper, we use
this approach to modify the ELA and ELM confidence measures as follows.

Let {ϕ1, . . . , ϕr} be a set of classifiers, and let x and y be two patterns. The
similarity of the patterns is defined as

S(x,y) =
1

r

r∑
i=1

I(ϕ
(cr)
i (x)

?
= ϕ

(cr)
i (y)), (7)

where ϕ
(cr)
i (x) and ϕ

(cr)
i (y) are crisp outputs of the i-th classifier on x and y. Let

N(x) be a set of k nearest neighbors of x under Euclidean metric. Then we define

a set Ñ(x) of neighboring patterns of x similar to x, as a restriction of N(x) to
patterns with S(x,y) higher than a fixed similarity threshold T ∈ (0, 1]:

Ñ(x) = {y ∈ N(x) | S(x,y) ≥ T}. (8)

This allows us to modify ELA and ELM confidence measures:

Restricted Euclidean Local Accuracy (RELA), same as ELA, but using Ñ(x)
instead of N(x)

Restricted Euclidean Local Match (RELM), same as ELM, but using Ñ(x)
instead of N(x)

The aforementioned confidence measures defined in this section need to com-
pute neighboring patterns of x, which can be time-consuming, and sensitive to the
similarity measure used. There are also dynamic confidence measures which com-
pute the classification confidence directly from the degrees of classification [2, 28],
e.g., the highest degree of classification, the ratio of the highest d.o.c. to the sum
of all d.o.c.s, etc. However, our preliminary experiments with such measures with
quadratic discriminant classifiers and random forests show that such confidence
measures give very poor results [26]. This may be caused by the fact that in these
approaches, the d.o.c.s must be good approximations of the posterior probabili-
ties that the pattern belongs to a given class, which is often hard to accomplish.
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Another reason that these approaches fail to improve the prediction of a classi-
fier system may be that the same information (d.o.c.s) is used both to compute
the confidence, and also in aggregation of the results of the individual classifiers
in the team, which means there is little useful information added to the classifier
aggregation process.

2.3 The Oracle Confidence Measure

For reference purposes, we also define a so-called Oracle confidence measure, which
represents the “best-we-can-do” approach.

Oracle (OR) confidence is equal to 1 iff the pattern is classified correctly, 0
otherwise:

κ
(OR)
ϕ (x) = I(ϕ(cr)(x)

?
= cx) (9)

Of course, in practical applications, we cannot use the Oracle confidence mea-
sure because we do not know the actual class the pattern belongs to (cx). However,
the Oracle confidence measure can give us upper bound for performance of a clas-
sifier system using classification confidence, and it can also be used to assess the
feasibility of a given confidence measure (cf. Sec. 3.2).

3. Assessing Confidence Measures

In [26, 27], we have experimentally shown that dynamic classifier systems of Ran-
dom Forests [4] and Quadratic Discriminant Classifiers [10] using the ELA and
ELM confidence measures can significantly improve the quality of classification,
compared to confidence-free, or static classifier systems.

However, in these experiments, the performance of the dynamic classifier sys-
tems varied from dataset to dataset. For some datasets, the ELM confidence mea-
sure obtained better results, for others the ELA was more successful, and for some
datasets, neither of them improved the classification. In other words, the per-
formance of a dynamic classifier system is heavily influenced by the particular
confidence measure used and by the particular data.

Given a particular dataset to classify, and given a set of classifiers which form
a classifier team, there are several questions which come into one’s mind:

• Will a dynamic classifier system yield improvement in the classification qual-
ity compared to confidence-free or static classifier system?

• Which confidence measure will perform the best for the given classifiers and
the given dataset?

• Are the benefits of a dynamic classifier system worth the higher computa-
tional complexity?

To answer these questions, we could, of course, build the classifier systems
and compare their performance using crossvalidation or other standard machine
learning techniques. However, it would be more convenient if we had some criterion
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of feasibility of a given confidence measure which could answer these questions prior
to building and crossvalidating the aggregation models.

Suppose we have several confidence measures which can be used with given
classifiers on a given data. If we had such a feasibility criterion, we could ex-
perimentally measure the feasibilities of the different confidence measures, and we
could choose the one with the highest feasibility value. Using this approach, we can
build a classifier team in which the confidence measures are well-suited for the given
classifier type and for the given data. The last step is to add a team aggregator
to create a dynamic classifier system. Or, alternatively, if none of the confidence
measures obtains sufficiently high feasibility value, we can decide to create a static,
or confidence-free classifier system instead (in accordance with the Occam’s razor
principle).

In this paper, we introduce two such feasibility criteria. Before that, we summa-
rize the properties which should hold for a “good” confidence measure. Intuitively,
if κϕ(x) estimates the degree of trust we can give to the classifier ϕ when classifying
a pattern x, the following should be satisfied:

• With increasing confidence κϕ(x), the probability of correct classification of
the classifier’s prediction ϕ(cr)(x) should increase as well

• If the errorness of ϕ(cr)(x) increases, the classification confidence κϕ(x) should
decrease to zero

For example, if κϕ(x) is an estimate of the probability of correct classification
of x by ϕ (for example the ELA confidence measure), both these implications are
satisfied, if the estimate is good enough. According to these two properties, the
ideal confidence measure is the Oracle confidence measure.

In this paper, we propose an approach in which the feasibility of a confidence
measure is measured empirically, on a set of validation patterns. Let ϕ be a classi-
fier, κϕ a confidence measure, and V ⊆ X × {1, . . . , N} the validation set. We will
model the feasibility as a number in the unit interval – the more the confidence
measure satisfies the above-mentioned properties, the closer to 1 the feasibility is.
The feasibility of κϕ for classifier ϕ, measured empirically on data (x, cx) ∈ V will
be denoted as F(ϕ, κϕ,V) ∈ [0, 1]. Two particular methods how F(ϕ, κϕ,V) can be
defined will be shown in Sec. 3.2 and 3.3.

However, in classifier combining, we do not have a single classifier and its cor-
responding confidence measure – we have a set of classifiers Γ, and a set of corre-
sponding confidence measures K. Therefore, we define F(Γ,K,V) ∈ [0, 1] as the
average feasibility of κϕ ∈ K for the corresponding classifier ϕ ∈ Γ, measured on V:

F(Γ,K,V) =

∑
ϕ∈Γ

F(ϕ, κϕ,V)

|Γ|
. (10)

3.1 Restricting the Validation Set

There is an important aspect which needs to be taken into account when assessing
the feasibility of a confidence measure in the context of classifier systems. If we
measure F(ϕ, κϕ,V) on the whole validation set V, we have an estimate how κϕ
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predicts the classification confidence for a single classifier. However, if we want to
assess a confidence measure’s performance in the context of dynamic classifier sys-
tems, we need to know something different: can this particular confidence measure
improve the generalization of the classifier system?

What is the difference between these two kinds of information? A typical sit-
uation in classifier aggregation is as follows: for most patterns, the crisp outputs
of the individual classifiers in a classifier system show consensus on a certain class
(i.e., a vast majority of the classifiers predicts one particular class), and the team
aggregator usually does not break this consensus, even when incorporating the clas-
sification confidences (for example, if we have a system of ten classifiers in which
nine of them predict class C1 with confidence 0.1, and one classifier predicts class
C2 with confidence 0.8, then if we use the weighted mean aggregation, the pre-
diction of C2 is discarded). Therefore, the behavior of the confidence measures
on such patterns is irrelevant. On the other hand, for patterns where there is no
such consensus, the behavior of the confidence measure is much more important.
Therefore, we need to identify such patterns, and restrict V to a such subset.

Let 0 ≤ s ≤ r, where r = |Γ| is the number of classifiers. Let U(s) ⊆ V be the
set of patterns (x, cx), for which for all classes Cj , j = 1, . . . , N , we have

|{i; i = 1, . . . , r, ϕ
(cr)
i (x) = j}| ≤ s. (11)

U(s) therefore denotes a set of patterns for which at most s classifiers vote
for any particular class. For lower s, this means that there is no consensus on
a particular class, and so the team aggregator can easily use the classification
confidence to improve the prediction – this suggests that the restricted validation
sets for lower s are more important for the analysis. However, the smaller s,
the smaller |U(s)|, which leads us to the fact that we need s big enough so the
feasibility is measured on enough data, but also small enough to preserve the focus
to the patterns with small consensus. To solve the dilemma, we use the following
heuristic: choose smallest s, for which U(s) covers a given portion (5-10%) of the
validation data, i.e.,

s = min{s̄; |U(s̄)| ≥ α|V|}, where α ∈ (0, 1]. (12)

3.2 Similarity to the Oracle Confidence Measure

The first approach how F(ϕ, κϕ,V) can be measured is to compute the similarity of

values κϕ(x) to the values of the Oracle confidence κ
(OR)
ϕ (x) for patterns (x, cx) ∈

V, where V is the (restricted) validation set. In this paper, we measured the
similarity with Mean Absolute Error (average absolute value of the differences of
the confidences):

F (SOR)(ϕ, κϕ,V) = 1−

∑
(x,cx)∈V

|κϕ(x)− κ
(OR)
ϕ (x)|

|V|
. (13)
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(a) ELA – bad separation (b) ELM – relatively good separation

Fig. 2 The OK (light) and NOK (dark) histograms of the ELA and ELM confidence
measures of a Random Forest ensemble for the Waveform dataset.

3.3 Area Under ROC curve for OK/NOK Histogram

The second approach how F(ϕ, κϕ,V) can be measured is to analyze histograms of
κϕ(x) for patterns classified correctly by ϕ (OK patterns) and for patterns classified
incorrectly by ϕ (NOK patterns). Values of κϕ(x) for the NOK patterns should be
concentrated near 0, while for the OK patterns, κϕ(x) should concentrate near 1.
Moreover, these two distributions should not overlap.

Let V be the (restricted) validation set, and let Vi ⊆ V for i = 1, . . . , N denote
the sets of validation patterns from class Ci. For two arbitrary classes Ck, Cj , we
define the multiset

Hkj = {κϕ(x)|(x, cx) ∈ Vk, ϕ
(cr)(x) = j}, (14)

as a multiset of classification confidence values for all validation patterns from class
Ck which have been classified to class Cj by ϕ. Using this notation, we can define
the OK histogram as the histogram computed from

∪
kHkk, k = 1, . . . , N and the

NOK histogram as the histogram computed from
∪

k ̸=j Hkj , k, j = 1, . . . , N .

As an example, the OK and NOK histograms of the ELA and ELM confidence
measures for a Random Forest ensemble for the Waveform dataset [9] are shown in
Fig. 2 (the figure is computed using all the patterns in the dataset, i.e., the vali-
dation set is not restricted). Figs. 3a and 3b show the evolution of the histograms
for the restricted validation set. The data have been collected from the experi-
ment described in the following section. Observe that for lower s, the histograms
are very different from the histograms for higher values of s. More specifically,
for the ELA confidence measure, the histograms for small values of s are totally
overlapping, which indicates that the performance of the confidence measure in a
dynamic classifier system will be poor (for patterns with no consensus, it does not
predict the degree of trust in the classification, and for patterns with consensus,
the breaking of the consensus is very hard, anyway). On the other hand, for the
ELM confidence measure, the OK and NOK histograms for small values of s are
separated, which means that this confidence measure will perform much better in
a dynamic classifier systems.
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(a) ELA

(b) ELM

Fig. 3 The restricted OK (light) and NOK (dark) histograms of the ELA and ELM
confidence measures of a Random Forest ensemble for the Waveform dataset for

s = 7, . . . , 20.
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Altough the OK/NOK (restricted) histograms give us visual information about
the feasibility of the confidence measure, we would like to evaluate the degree of
overlapping using a single number. This is possible, if we represent the OK/NOK
confidence values by a ROC curve, and then we compute the area under the ROC
curve (for the sake of simplicity, we will use the well-known area under ROC curve
in this paper, regardless of its criticism given in [15]; on the other hand, any
other measure of OK/NOK classifier performance could be used, including the
modification of the AUC measure presented in [15]).

Receiver operating characteristic (ROC) curves [11] are a standard tool in data
mining and machine learning. ROC is basically a plot of the fraction of true
positives vs. the fraction of false positives of a binary classifier, as some parameter
is being varied (e.g., the discrimination threshold of the classifier). If a classifier
assigns patterns to classes entirely at random, its ROC curve is the diagonal. On
the other hand, for an ideal classifier, the ROC curve consists only of one point
(0, 1). The closer we are to the ROC of the ideal classifier (i.e., the farther the
ROC curve is from the diagonal (above the diagonal)), the better discrimination
of the classifier. The strong point of the ROC curve aprroach is that we can
summarize the ROC curve into a single number – area under ROC curve (AUC) –
which can be used as a criterion of the quality of a binary classifier. For a random
classifier, AUC=0.5; for the ideal classifier, AUC=1. The higher the AUC, the
better discrimination of the classifier. Classifiers with AUC below 0.5 are actually
worse than a random classifier.

In the context of classification confidence, we will study the AUC of a so-called
OK/NOK classifier, which assigns a pattern to the class “correctly classified” if
the classification confidence is higher than some threshold T , and to the class
“incorrectly classified” instead. By varying T between 0 and 1, we obtain the
ROC curve of a particular classifier, representing the quality of the separation of
the OK/NOK histograms. The AUC of the OK/NOK classifier measured on a
validation set V (or, on a restricted set U(s)) can be used as an empirical property
expressing the degree of overlapping of the OK and NOK distributions. Now we can
define F (AUC)(ϕ, κϕ,V) as the AUC of the OK/NOK classifier for the confidence
κϕ, measured on V. Figs. 4a and 4b show an example of the ROCs for the ELA
and ELM confidence measures for a Random Forest ensemble for the Waveform
dataset.

4. Experiment: Measuring the Feasibility
of a Confidence Measure

To find out whether the methods for assessing confidence measures described in the
previous sections can really predict the improvement in the classification quality of
a dynamic classifier system, we designed the following experiment.

Suppose we have a classifier team (Γ,K). Given a validation dataset V, we
put apart 20% of the data, denoted as V1, to measure F(Γ,K,V1) using 5-fold
crossvalidation on V1. After that, we use the remaining 80% of the data from
V, denoted as V2, to measure the relative improvement of the error rate of a
dynamic classifier system (aggregated by the weighted mean aggregator with the
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(a) ELA

(b) ELM

Fig. 4 The ROC curves and the AUCs of the OK/NOK classifiers of the ELA and
ELM confidence measures for the Waveform dataset, measured on U(s), s = 7, . . . ,

20, for a Random Forest ensemble.
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particular dynamic confidence measure) compared to the error rate of a confidence-
free classifier system (aggregated by the mean value aggregator), using 10-fold
crossvalidation on V2. The relative improvement in the mean error rate will be
computed as:

I(S1, S2) =
Err(S1)− Err(S2)

Err(S1)
, (15)

where Err(S1) denotes the error rate of the reference classifier system (using the
mean value aggregator), and Err(S2) denotes the error rate of the dynamic classifier
system (using weighted mean aggregator). However, if the dataset V was too small
(consisted of less than 500 patterns), we did not divide V to V1 and V2, i.e.,
V1 = V2 = V, and thus both F and I were measured on the whole dataset V.

Our goal in this experiment is to study the correlation between F and I. We
performed the experiment on 6 artificial and 20 real-world datasets from the Elena
database [24] and from the UCI repository [9] (cf. Tab. II). The classifier teams
were created using the Random Forest method [4], and as the classification con-
fidences we used ELA, ELM, RELA, and RELM. For reference purposes, we also
used the Oracle confidence measure (for which F = 1 by definition). For assessing
the confidence measures, we used methods described in the previous section, i.e.,
similarity to the Oracle confidence (SOR) and the area under ROC curve of the
OK/NOK classifier (AUC), measured on the restricted validation set U(s), for s
such that U(s) covers 10% of the data. As the similarity threshold parameter for
RELA and RELM, we used a constant value T = 0.5. All the methods were run
using the same random seed, so when a pattern was classified, all the methods were
using the same data.

In the experiment, we classified the data using the following models:

• single-best classifier (SB) – result of the best single classifier in the classifier
team, representing a non-combined classifier

• mean value aggregation (MV) – representing a confidence-free classifier sys-
tem

• (static) weighted mean using global accuracy (WM-GA) – representing a
static classifier system

• (dynamic) weighted mean (WM) using ELA, ELM, RELA, RELM, OR con-
fidence measures – representing a dynamic classifier system

Classification error rates (mean value and standard deviation of the error rates
from 10-fold crossvalidation) are shown in Appendix A, Tab. A. Tab. I shows
a comparison of the performance of dynamic classifier systems (aggregated using
WM) using different dynamic confidence measures, compared to the performance
of confidence-free classifier systems (aggregated using MV). From these results,
we can see that, in general, dynamic classifier systems outperform confidence-free
classifier systems. Another interesting result is that the restricted versions of ELA
and ELM confidence measures obtained better results than the ordinary ELA and
ELM confidence measures.

However, the main goal of the experiment was to study the correlation between
the feasibility of a particular confidence measure (F) and the improvement in the
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Conf. measure WM better MV better Tie
ELA 13 6 7
ELM 15 10 1
RELA 16 6 4
RELM 19 7 0
OR 26 0 0

Tab. I Comparison of the performance of dynamic classifier systems vs.
confidence-free classifier systems. The table shows the number of datasets for
which a WM aggregator using a particular dynamic confidence measure obtained
better/worse/same mean error rate as the MV aggregator (ties are defined as the

same error rate up to first decimal place).

performance of a dynamic classifier system (aggregated by WM using dynamic
confidence measure) compared to the performance of a confidence-free classifier
system (aggregated by MV) (I).

For each feasibility measure, we obtained a scatterplot of (F , I) values (for the
26 datasets) which are shown in Figs. 5 and 6, including the least-squares linear
approximation of the scatterplot. To measure the correlation between F and I, we
computed Pearson’s and Spearman’s rank correlation coefficients, and tested their
significance. The results of the correlation tests are shown in Tabs. 5b and 6b.

4.1 Results Discussion

For F (SOR), the scatterplot shows a statistically significant correlation between
F and I for the ELA, ELM, and RELM confidence measures. For the RELA
confidence measure, Spearman’s test was not statistically significant; however, the
least-squares fit in the figure shows a well-fitting linear dependency, and Pearson’s
test was also statistically signigicant. On the other hand, Pearson’s and Spearman’s
tests for the ELA confidence measure are highly significant (< 1%), but because the
F (SOR) values are clustered in the area around F (SOR) = 50%, the least-squares
fit does not indicate strong linear dependency.

For F (AUC), the results are quite similar – for the ELM, RELA, and RELM
confidence measures, both Pearson’s and Spearman’s tests, and also the least-
squares fit indicate a strong correlation between F (AUC) and I. For the ELA
confidence measure, the correlation is not clear, neither from the tests, nor from the
least-squares fit (again, the F (AUC) values are clustered around F (AUC) = 50%).

In general, we can say that these results indicate that the methods for assessing
confidence measures described in the previous section (SOR, AUC), computed on
the restricted validation sets of 10% most-unconsensed values, could be used for
predicting whether using a dynamic classifier system instead of a confidence-free
system would bring improvement in the error rate. Moreover, the methods can also
be used for predicting which confidence measure will perform the best for a given
classifier type and a given dataset.
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Scatterplot of I versus F , OR

Pearson Spearman
Conf. measure ρ p [%] significant ρ p [%] significant
ELA 0.68 0.01 yes 0.55 0.4 yes
ELM 0.67 0.02 yes 0.41 4.4 yes
RELA 0.45 2.3 yes 0.33 10.4 no
RELM 0.72 0.003 yes 0.54 0.5 yes

(b) Pearson’s correlation and Spearman’s rank correlation tests. ρ denotes the
correlation coefficient of the sample and p denotes the statistical significance of the
test. The significance is evaluated at 5% level.

Fig. 5 Experimental results for the Similarity to Oracle (SOR) method, for re-
stricted validation set U(s), covering 10% of the validation data for the ELA, ELM,

RELA, RELM, and OR dynamic confidence measures.
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values

Pearson Spearman
Conf. measure ρ p [%] significant ρ p [%] significant
ELA 0.17 41 no 0.19 37.5 no
ELM 0.76 0.0008 yes 0.51 0.9 yes
RELA 0.72 0.005 yes 0.58 0.2 yes
RELM 0.78 0.0004 yes 0.63 0.1 yes

(b) Pearson’s correlation and Spearman’s rank correlation tests. ρ denotes the
correlation coefficient of the sample and p denotes the statistical significance of the
test. The significance is evaluated at 5% level.

Fig. 6 Experimental results for the Area Under ROC Curve (AUC) method, for
restricted validation set U(s), covering 10% of the validation data for the ELA,

ELM, RELA, RELM, and OR dynamic confidence measures.
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5. Summary

In this paper, we dealt with dynamic classification confidence measures in classifier
aggregation. We discussed the properties which should hold for a good confidence
measure, and we studied the performance of dynamic confidence measures in the
context of the degree of consensus in the classifier team. As the results show,
the properties of the confidence measures are important mainly for patterns with
a small degree of consensus only. This lead to the definition of two measures of
feasibility of a given classification confidence measure to a given classifier team and
given data.

In the experimental section, we have empirically shown that for both methods,
there is a statistically significant correlation between the feasibility, and the actual
improvement of the accuracy of the classifier system. This suggests that both
proposed feasibility measures can be used in practical applications to choose an
optimal confidence measure for a given application setup.
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[20] Marko Robnik-Šikonja. Improving random forests. In J. Boulicaut, F. Esposito, F. Giannotti,
and D. Pedreschi, editors, ECML, volume 3201 of Lecture Notes in Computer Science, pages
359–370. Springer, 2004.

[21] Lior Rokach. Taxonomy for characterizing ensemble methods in classification tasks: A review
and annotated bibliography. Comput. Stat. Data Anal., 53(12):4046–4072, 2009.

[22] Dymitr Ruta and Bogdan Gabrys. An overview of classifier fusion methods. Computing
and Information Systems, 7:1–10, 2000.

[23] Alexey Tsymbal, Mykola Pechenizkiy, and Padraig Cunningham. Dynamic integration with
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A Detailed Results of the Experiment

Dataset ref patterns classes dim.

Artificial

clouds [24] 5000 2 2

concentric [24] 2500 2 2

gauss 3D [24] 5000 2 3

gauss 8D [24] 5000 2 8

twonorm [9] 3000 2 20

waveform [9] 5000 3 21

Real-world

balance [9] 625 3 9

breast [9] 699 2 9

glass [9] 214 7 9

iris [9] 150 3 4

letter-recg. [9] 20000 26 16

pendigits [9] 10992 10 16

phoneme [24] 5427 2 5

pima [9] 768 2 8

poker [9] 4828 3 10

satimage [24] 6435 6 4

segmentation [9] 2310 7 16

sonar [9] 208 2 10

texture [24] 5500 11 10

transfusion [9] 748 2 4

vehicle [9] 946 4 18

vowel [9] 990 11 10

wine [9] 178 3 13

wineq-red [9] 1600 3 11

wineq-white [9] 4898 3 11

yeast [9] 1484 4 8

Tab. II Datasets used in the experiment.

Non-Combined Conf.-free Static Dynamic
Dataset SB MV κ SWM κ DWM

Artificial
clouds 13.3 ± 1.4 11.9 ± 1.9 GA 11.9 ± 2.0 ELA 12.0 ± 1.9

ELM 11.7 ± 2.0
RELA 11.8 ± 2.0
RELM 11.8 ± 2.2
OR 1.5 ± 0.8

concentric 7.0 ± 1.4 2.6 ± 1.4 GA 2.6 ± 1.4 ELA 2.5 ± 1.4
ELM 2.1 ± 1.1
RELA 2.3 ± 1.3
RELM 2.4 ± 1.2
OR 0.1 ± 0.2

gauss 3D 28.7 ± 2.4 23.9 ± 1.4 GA 23.9 ± 1.4 ELA 23.9 ± 1.2
ELM 22.8 ± 1.5
RELA 23.9 ± 1.3
RELM 23.6 ± 1.5
OR 2.1 ± 0.4
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Non-Combined Conf.-free Static Dynamic
Dataset SB MV κ SWM κ DWM

gauss 8D 24.7 ± 1.6 14.5 ± 0.8 GA 14.6 ± 0.7 ELA 14.6 ± 0.9
ELM 16.5 ± 1.8
RELA 14.6 ± 1.4
RELM 14.7 ± 1.2
OR 0.1 ± 0.2

twonorm 21.3 ± 2.7 8.6 ± 0.8 GA 8.5 ± 0.8 ELA 8.3 ± 0.9
ELM 3.2 ± 1.0
RELA 7.6 ± 0.7
RELM 6.7 ± 0.8
OR 0.0 ± 0.0

waveform 27.1 ± 1.3 18.0 ± 1.6 GA 18.0 ± 1.6 ELA 17.8 ± 1.4
ELM 15.4 ± 1.5
RELA 17.8 ± 1.4
RELM 16.8 ± 0.8
OR 0.1 ± 0.2

Real-world
balance 20.7 ± 5.2 13.5 ± 6.4 GA 13.6 ± 6.3 ELA 13.5 ± 6.1

ELM 11.9 ± 5.7
RELA 14.7 ± 5.0
RELM 13.9 ± 5.0
OR 2.7 ± 2.5

breast 6.6 ± 3.6 3.6 ± 3.4 GA 3.6 ± 3.4 ELA 3.5 ± 3.2
ELM 4.6 ± 2.6
RELA 3.7 ± 2.0
RELM 3.2 ± 1.9
OR 0.5 ± 0.8

glass 24.9 ± 5.8 19.5 ± 8.3 GA 20.2 ± 8.2 ELA 18.8 ± 8.5
ELM 18.8 ± 9.6
RELA 18.7 ± 9.5
RELM 19.4 ± 9.3
OR 0.7 ± 2.1

iris 9.3 ± 6.1 6.7 ± 6.7 GA 6.7 ± 6.7 ELA 6.7 ± 6.7
ELM 4.7 ± 4.3
RELA 7.3 ± 7.0
RELM 5.3 ± 5.0
OR 0.0 ± 0.0

letter-recg 21.7 ± 1.4 7.4 ± 1.0 GA 7.4 ± 1.0 ELA 7.3 ± 1.0
ELM 7.2 ± 1.0
RELA 7.0 ± 0.9
RELM 6.8 ± 1.0
OR 0.6 ± 0.2

pendigits 7.6 ± 0.7 2.0 ± 0.4 GA 2.0 ± 0.4 ELA 2.0 ± 0.4
ELM 2.3 ± 0.7
RELA 1.8 ± 0.4
RELM 1.8 ± 0.6
OR 0.1 ± 0.1

phoneme 19.2 ± 1.3 13.3 ± 0.9 GA 13.3 ± 0.9 ELA 13.0 ± 1.0
ELM 13.7 ± 1.0
RELA 12.9 ± 0.9
RELM 13.4 ± 0.8
OR 0.6 ± 0.4

pima 30.3 ± 5.9 24.7 ± 3.4 GA 24.7 ± 3.4 ELA 25.0 ± 3.5
ELM 24.5 ± 3.5
RELA 24.7 ± 3.2
RELM 24.4 ± 3.6
OR 0.7 ± 0.9

poker 50.1 ± 2.3 45.9 ± 1.8 GA 45.9 ± 1.7 ELA 45.7 ± 2.5
ELM 43.7 ± 2.4
RELA 45.0 ± 2.1
RELM 44.8 ± 2.2
OR 3.7 ± 1.2
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Non-Combined Conf.-free Static Dynamic
Dataset SB MV κ SWM κ DWM

satimage 16.8 ± 1.4 13.9 ± 1.1 GA 13.9 ± 1.2 ELA 14.1 ± 1.2
ELM 13.9 ± 1.1
RELA 13.9 ± 1.4
RELM 14.1 ± 1.3
OR 3.0 ± 0.6

segmentation 13.2 ± 2.9 7.7 ± 1.9 GA 7.6 ± 1.9 ELA 7.7 ± 1.8
ELM 8.8 ± 2.6
RELA 8.1 ± 1.6
RELM 8.2 ± 1.6
OR 0.5 ± 0.6

sonar 35.2 ± 7.0 24.1 ± 13.6 GA 24.6 ± 12.6 ELA 25.5 ± 13.9
ELM 26.1 ± 14.3
RELA 24.1 ± 13.2
RELM 25.1 ± 14.0
OR 0.0 ± 0.0

texture 13.1 ± 2.4 2.5 ± 0.7 GA 2.5 ± 0.7 ELA 2.4 ± 0.6
ELM 0.9 ± 0.3
RELA 2.2 ± 0.6
RELM 1.0 ± 0.4
OR 0.0 ± 0.0

transfusion 25.0 ± 3.9 23.8 ± 3.2 GA 23.8 ± 3.2 ELA 23.9 ± 3.2
ELM 22.5 ± 4.0
RELA 23.7 ± 3.6
RELM 23.4 ± 3.5
OR 6.7 ± 1.7

vehicle 35.5 ± 6.0 27.1 ± 6.8 GA 26.9 ± 6.4 ELA 27.0 ± 6.5
ELM 27.8 ± 6.4
RELA 26.5 ± 6.3
RELM 28.6 ± 7.0
OR 0.6 ± 0.6

vowel 45.2 ± 3.8 16.5 ± 3.2 GA 16.4 ± 3.6 ELA 15.0 ± 3.9
ELM 15.7 ± 4.1
RELA 9.8 ± 1.7
RELM 8.6 ± 2.8
OR 0.1 ± 0.4

wine 14.0 ± 10.6 4.4 ± 6.0 GA 3.9 ± 5.6 ELA 4.4 ± 6.0
ELM 5.0 ± 4.6
RELA 2.8 ± 4.5
RELM 2.8 ± 4.5
OR 0.0 ± 0.0

wineq-red 40.7 ± 4.9 28.8 ± 5.5 GA 29.1 ± 5.3 ELA 28.6 ± 5.1
ELM 31.1 ± 4.5
RELA 28.2 ± 5.0
RELM 28.2 ± 5.3
OR 0.3 ± 0.5

wineq-white 45.9 ± 3.3 34.2 ± 2.4 GA 34.2 ± 2.5 ELA 34.2 ± 2.4
ELM 35.1 ± 2.5
RELA 33.0 ± 2.5
RELM 34.1 ± 2.2
OR 0.8 ± 0.6

yeast 46.9 ± 2.6 36.6 ± 3.4 GA 36.4 ± 3.4 ELA 36.4 ± 3.1
ELM 35.4 ± 1.8
RELA 37.5 ± 2.6
RELM 36.4 ± 2.7
OR 3.3 ± 1.1

Tab. III Mean value ± standard deviation of the classifier error rates (in %)
from 10-fold crossvalidation. The best method (lowest mean error rate, excluding

DWM-OR) for each dataset is displayed in boldface.
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