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Abstract: This study aims to evaluate the viability of hydrogen fuel cell (FC) tech-
nology as a range extender in powered two-wheelers (PTWs), focusing on choosing
efficient FC size and under a time-limited, constant power delivery FC control
strategy. The analysis presented in this study sheds light on the feasibility of hy-
drogen FC technology as an alternative energy source for mobility applications. In
this study, a 1D powertrain simulation model was created, which enables the effi-
cient analysing of both fundamental and advanced behaviour of individual vehicle
subsystems and control strategies, even at the early conceptual design phase. The
simulation results show that hydrogen FCs are a promising technology for range
extension in urban mobility.
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1. Introduction and Review

The rapid urbanization of the modern world has increased mobility demands while
escalating environmental concerns. Transportation, as a major contributor to
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global greenhouse gas emissions, requires a shift to sustainable practices. Among
urban transport modes, powered two-wheelers (PTWs) stand out for their afford-
ability, compactness, and efficiency in congested cities. However, their widespread
use raises concerns about emissions, pollution, and energy consumption. Integrat-
ing alternative energy sources into PTWs has become essential to reduce envi-
ronmental impacts while maintaining their benefits. Studies show PTWs signifi-
cantly contribute to particulate matter and nitrogen oxide emissions in urban areas,
worsening air quality [1]. Small hydrogen vehicles, light-duty EVs, for city trans-
portation are seen as an alternative to larger conventional vehicles and an asset to
reduce greenhouse gas emissions (GHG) emissions in city centres [2]. To address
these challenges, understanding the relationship between traffic emissions and even
meteorological conditions is crucial, as it can help develop strategies to mitigate
the environmental impact of transportation [3].

Decarbonizing transportation is vital in combating climate change. While elec-
tric passenger cars have advanced, PTWs lag in adopting clean energy, requiring
targeted research to address their unique technical and infrastructural needs. Elec-
tric motorcycles face challenges like limited battery capacity, range anxiety, and
insufficient charging infrastructure [4, 5]. Hydrogen fuel cell (FC) technologies for
PTWs show promise but face significant infrastructural barriers [6].

Alternative energy solutions such as electric propulsion, hydrogen FCs, and
biofuels offer promising pathways to reduce PTW emissions without compromising
affordability. Hydrogen FCs stand out for their high energy density, zero emissions,
and long range, making them ideal for urban mobility. However, hydrogen adoption
in transportation depends on advancements in production, storage, and refuelling
infrastructure [7].

Hydrogen-powered PTWs highlight the potential of innovative technologies in
transforming urban mobility. Comparing hydrogen-powered PTWs with electric
motorcycles and combustion engine models provides insights into their feasibility
and sustainability. While electric motorcycles are more energy-efficient, hydrogen
models offer longer ranges and faster refuelling, crucial for specific use cases [7,
8]. Comparative analyses of emissions, range, and infrastructure underscore the
opportunities and challenges of integrating hydrogen into PTWs.

FCs have emerged as a promising technology for mobility applications. The
main types of FCs considered for mobility include proton exchange membrane fuel
cells (PEMFCs), solid oxide fuel cells (SOFCs), and alkaline fuel cells (AFCs).
Among these, PEMFCs are the most widely adopted due to their high-power den-
sity, rapid start-up capability, and compatibility with hydrogen as a fuel source
[9].

Hydrogen, stored in pressurized tanks, is the primary fuel used in fuel cell-based
mobility. While it boasts a high energy density per unit mass, the low volumetric
density of hydrogen poses challenges in storage and transportation. These chal-
lenges are being addressed through advancements in high-pressure composite tanks
and cryogenic storage systems. The implications of using hydrogen include the need
for robust refuelling infrastructure, enhanced safety measures, and standardization
across the mobility sector, including the roads infrastructure [10, 11, 12, 13].

Efficient operation of FCs in mobility applications requires advanced control
strategies to manage dynamic conditions such as variable load demands and tran-
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sient states. Key parameters, including temperature, humidity, and reactant flow
rates, must be precisely controlled to ensure optimal performance and longevity of
the FC system [14]. Auxiliary components, such as air compressors, humidifiers,
cooling systems, and power converters, play critical roles in supporting fuel cell
operation and maintaining system stability.

FCs are being deployed in various mobility applications, ranging from passenger
vehicles and buses to heavy-duty trucks, trains, and even maritime and aerospace
systems. In passenger vehicles, FCs provide a practical solution for achieving longer
ranges and faster refuelling compared to battery electric vehicles (BEV). In heavy-
duty applications, such as trucks and buses, FCs address the high energy demands
and extended operation times effectively [15]. Emerging applications in trains and
ships highlight the versatility of FCs in reducing greenhouse gas emissions across
diverse transportation modes. Applications in small-scale vehicles, such as PTWs
have been least researched due to the assumed size of the FC system.

Determining the sufficient size of a FC involves analyses of power demand,
system efficiency, physical constraints, and dynamic response requirements. Power
demand assessment considers peak and average loads for the application, such as
acceleration needs in vehicles or steady-state loads in stationary systems. The FC’s
efficiency curve must align with expected operating conditions to avoid inefficiencies
or stress from improper sizing. Physical and economic constraints, including space,
weight, and cost, also play a critical role. Applications with dynamic loads may
require hybrid systems to support transient performance. Finally, environmental
and safety considerations, such as heat management and regulatory compliance,
are essential in ensuring optimal and safe operation [11, 14, 4, 9, 10].

Hydrogen FC combined with the battery represent an advanced powertrain
for range extension purposes. The FC serves as an on-board power supply that
can supply both the battery pack and the electric motor. This combination thus
represents a flexible system for powering the vehicle. The complexity of the system,
on the other hand, is quite high and the sizing of a FC needs to match the FC
characteristics as well as the battery pack capacity to achieve the optimized energy
management, range and cost of the vehicle [16].

To simplify the process, the hydrogen FC was used in our case for charging
the battery only. Thus, there is no communication between the electric motor
and the FC. Using this configuration, the FC can be operated at (or close to)
a nominal level without swift power demand surges. This setup improves the
hydrogen consumption and longevity of the FC. The battery unit accounts for
the peak power demands, and a DC/DC converter is used to meet the energy
distribution control requirements. For hydrogen storage in mobility applications,
compressed hydrogen or metal hydride canisters are typically used. The most
perspective hydrogen FC technology is the proton exchange membrane (PEM),
which offers advantages such as rapid start-up, low operating temperature, and
high-power densities [15].

A suitable approach for the initial assessment of fundamental performance pa-
rameters and subsequent optimization in alternative powertrains is the use of 1D
simulations. This simulation methodology enables the efficient modelling of both
fundamental and advanced behaviour of individual vehicle subsystems and control
strategies, even at the early conceptual design phase. Due to their computational
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efficiency and flexibility, 1D simulations are particularly valuable for determining
key parameters, such as the power output of powertrain subsystems, and provide
essential inputs for subsequent detailed simulations and physical testing [17].

This article focuses on evaluating the potential of hydrogen FCs as a range
extender in PTWs, emphasizing the optimization of FC size under defined control
strategy. Through a 1D powertrain simulation, the study aims to identify the most
efficient FC configuration for maximizing vehicle mileage while ensuring effective
energy management and cost efficiency.

2. Method

This chapter focuses on the sufficient FC size estimation in context of PTW in
powertrain configuration as presented in Fig. 1. Described powertrain configura-
tion is analysed as 1D powertrain simulation model created in computational SW
Ignite1.
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Figure 1 Powertrain description - FC as range extender 
Fig. 1 Powertrain description – FC as range extender.

For the purposes of simulation, it is important to define main subsystems prop-
erties such as FC, battery box, powertrain including transmission, motor and its
controller, and vehicle parameters. Main parameters of the simulated vehicle are
listed in the Tab. I. For these purposes the 1D computational model contains block
from Ignite powertrain library together with Modelica2 scripted blocks describing
the FC behaviour. The simplified FC range extender system is composed of hy-
drogen tank, FC and DC/DC converter. For the purposes of simulation, the time
limited constant power delivery FC control strategy was implemented in the model.
It means charging the battery with nominal current based on FC size (see Tab. I).
The FC could not be restarted during the simulated riding.

1Realis Simulation. SW Ignite. Version 2024.1 Realis Simulation
2Unified Object-Oriented Language for Systems Modeling, https://modelica.org/
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Item Parameters

Vehicle

Weight
Motorcycle 220 kg

Rider 80 kg

Aerodynamics
Drag coefficient Cd 0,6 [-]

Frontal area 0,8m2

Wheels Tire radius 0,25m

Powertrain

Electric motor

Rated power 8 kW
BLDC hub – Peak power 11 kW
electric motor Rated torque 100N.m

Peak torque 210N.m

Transmission
Type Direct transmission

Gear ratio 1 [-]

HV Battery

BB rated voltage 66,6V
BB rated discharge 58A
BB peak discharge 384A
Overall BB capacity 3,86 kW.hr

Fuel stack

Fuel stack type PEMFC
Number of cells Variable (25-150)

Hydrogen tank capacity 288 g

Tab. I Parameters of the simulated vehicle – 1D simulation inputs.

The method described in this article generally targets the calculations of mileage
of the vehicle while riding in a defined drive cycle. Drive cycles are used for stan-
dardized evaluation of vehicle energy consumption and emissions under various op-
erating conditions. They enable objective comparison of results between different
control strategies and validation of mathematical models. The main target drive
cycle was defined as World Motorcycle Test Cycle3 (WMTC) class 3 due to planned
usage of the developed motorcycle prototype in urban, suburban and limited high-
way conditions [18]. In this study, other drive cycles (WMTC2, NEDC, WLTC3,
and HWFET) were also utilized, especially for comparison and verification of the
created 1D simulation.

The computational model contains the drive cycle rider block that contain
proportional-integral-derivative (PID) regulator to reach the defined drive cycle
velocity with the 1D computational model setup. The simulation process includes
testing of variety of FC sizes with the variable number of cells. In this way, each
FC size was assigned parameters for efficiency, continuous power delivery, hydro-
gen consumption, operating time, and output currents. In this process, parameters
such as efficiency, continuous power delivery, hydrogen consumption, operating
time, and output currents were assigned according to each FC size. As the vehicle
uses FC as range extender it was crucial to define parameters of the battery box

3Regulation (EU) No 168/2013 of the European Parliament and of the Council
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that is being continuously supported with the FC while riding (see Tab. I). Goal
of this approach is to define powertrain configuration that effectively reaches the
highest possible mileage with the smallest possible FC size.

The second variable in the presented approach is the drive cycle itself. Even
though the main target drive cycle is defined, it is important to estimate behaviour
in different driving conditions. In this way the simulation process considers six
drive cycles as presented in Fig. 7.

Each powertrain configuration, integrating different FC sizes and drive cycles,
is simulated independently while maintaining common external conditions. This
ensures identical initial conditions, including a 99% battery state of charge (SOC), a
fixed amount of hydrogen in the tank, and the FC activation point set at 80% SOC,
representing the moment when the FC starts operating. Each simulation concludes
when the battery SOC drops to 5%. These conditions represent necessary time that
the FC system needs under real conditions for proper start of operation.

3. Results

The Results section presents the outcome of the 1D powertrain simulation approach
described in the Method section. Fig. 2 illustrates the influence of FC size on the
vehicle’s overall mileage. The analysis shows that FC sizes ranging from 35 to 93
cells achieve a similar maximum mileage of approximately 120 km. The parameter
“Mileage when FC stops” indicates the distance traveled before the hydrogen in
the tank is fully consumed, after which the vehicle operates purely as a BEV for
the remainder of the simulation.
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Fig. 2 Fuel cell size effect on the overall mileage of the vehicle as function of
WTMC 3 drive cycle.

Another view on the results brings the Fig. 3 analysing in detail the amount of
effectively used hydrogen and the battey SOC level when the FC stopped operation.
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These results reveal the problematic feature of insufficient power of FC sizes smaller
than 35 cells and excess power used with FC with more than 75 cells. This figure
also shows that using FC sizes from 50 to 63 cells results in the highest battery
SOC level when the FC stops.
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battery charging possibility in low speed sections of the drive cycle. 
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Fig. 3 Battery SOC level when the FC stopped due to low hydrogen level accompa-
nied by the effectively used amount of hydrogen in context of drive cycle WMTC 3.

Following Fig. 4 presents the example of FC with 50 cells performance in WMTC
3 drive cycle. This FC size represents the sufficient power delivery of FC together
with efficient usage of hydrogen even using time limited contentious power delivery
strategy of FC as range extender. Fig. 4 reveals the trend of battery charging
possibility in low speed sections of the drive cycle.
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Further results provide a detailed analysis of the simulation output for a specific
FC size. Fig. 5 illustrates the vehicle’s performance in the WMTC 3 cycle, which
reflects its intended use in urban and suburban areas, with limited highway capa-
bilities at a maximum speed of 80 km/h. In the testing scenario, highway segments
are represented by the vehicle operating at its peak speed. Additionally, the study
examines the vehicle’s performance without the FC as a range extender. Fig. 6
demonstrates how the simulated model would behave in BEV-only mode. Under
these conditions, the vehicle achieves a total mileage of 67 km before depleting its
battery.

 
author: title 

 9 
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Fig. 6 Simulation results of vehicle as BEV without FC range extender.
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In the final part of the results, the influence of different drive cycles is presented
including the riding under full load during the whole simulation time. The Fig. 7
shows mileage in particular drive cycle with and without the FC as range extender.
From this point of view, we are able to define that under similar drive cycles like
WMTC 3 and WLTC the vehicle reaches similar mileage. From the point of view
of hydrogen usage efficiency in cycles WMTC 2/3, WLTC and HWFET all the
hydrogen is used properly under the described control strategy. In the simulation
under full load drive cycle the amount hydrogen was not fully used, because the
battery reached SOC 5% before the hydrogen was fully consumpted. On the other
hand in the simulation scenario with NEDC drive cycle the power demand was
significantly lower and part of the hydrogen was consumed to losses, when the
battery SOC reached 100% and due to defined control strategy the FC could not
be stopped and restarted.
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Fig. 7 Mileage of the tested vehicle with the FC with 50 cells under different drive
cycles.

4. Discussion

The analysis presented in this study sheds light on the viability of hydrogen FC
technology in PTWs, focusing on its performance as a range extender in combi-
nation with battery electric propulsion. It is important to note that the study
focuses on optimizing the hydrogen consumption and FC performance under a
time-limited, constant power delivery strategy. As observed in the results of the
1D simulations in Fig. 2, FCs with sizes between 35 and 93 cells provided similar
high mileage (around 120 km) for the simulated powertrain configuration. Beyond
this range the overall mileage decreased on both sides of the FC size spectrum.
These results are applicable for the defined simulated FC control strategy. In gen-
eral, the approach of the presented 1D simulation method is to find the smallest
efficient applicable FC size.
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Another perspective on FC performance is presented in Fig. 3, which illustrates
the effectively utilized amount of hydrogen. The analysis indicates optimal perfor-
mance within the 35 to 75-cell range, where hydrogen usage is most efficient. In
FCs with a higher number of cells the hydrogen was not used effectively under the
defined control strategy and part of it was spent into losses. On the other hand,
the figure shows the issue of undersized FCs (less than 35 cells). When the FC
is too small to meet the power demands, the system cannot adequately support
the battery, leading to faster depletion of the battery and suboptimal performance.
Another insight from the simulation is the impact of the FC on the battery SOC
level when the FC stops operation. In FC size range of 50 to 63 cells, the battery
SOC is better maintained, leading to more efficient use of the energy stored in both
the battery and the hydrogen tank.

The vehicle’s performance under different drive cycles revealed valuable insights.
Notably, the simulations indicated that in more dynamic drive cycles, such as the
full load cycle, the vehicle could not fully utilize the hydrogen before the battery
reached its discharge threshold (SOC 5%). In contrast, under standard urban and
suburban conditions, the hydrogen was consumed more efficiently, aligning with
the expectations of real-world usage.

Generally, it is important to mention that the size of the FC define its output
power possibilities. In this scenario, a low number of FC cells fails to provide
sufficient support for the battery, while an excessively high number of cells can
result in surplus energy that cannot be utilized efficiently.

5. Conclusion

The growing need for sustainable urban mobility calls for alternative energy so-
lutions for PTW. Hydrogen FCs, with their high energy density and zero carbon
dioxide emissions show promise as a cleaner alternative source of energy in urban
mobility. However, challenges like infrastructure development, fuel storage and pu-
rity of hydrogen itself should be addressed. Continued advancements in hydrogen
technologies, along with powertrain optimization through simulations, can enhance
the feasibility of hydrogen-powered PTWs.

This study examines the usability of hydrogen FC technology as a range ex-
tender in PTW, focusing on choosing efficient FC size and under a time-limited,
constant power delivery FC control strategy. In this way a well-sized FC helps
maintain battery SOC more effectively, especially in more dynamic drive cycles.
Selecting the optimal FC size is crucial to ensure both performance efficiency and
cost-effectiveness, avoiding energy waste or underperformance.
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