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Abstract: This article addresses the challenges operators face in decision-making
during the operational management of tunnels and other transport systems. Oper-
ators of complex systems must process vast amounts of information and suggestions
from various devices, subsystems, and both internal and external sources. In ad-
dition, they receive requests from multiple entities. This overwhelming influx of
data and demands places significant pressure on operators to evaluate and respond
swiftly and accurately, which is often crucial to ensuring smooth operation of the
entire transport system. To assist operators in making better decisions, new ap-
proaches are being introduced, such as expert systems and artificial intelligence.
These tools aim to enhance decision-making not only during crises but also for
routine operations and more complex tasks related to controlling and monitor-
ing transport systems. The article outlines components of an expert system that
uses fuzzy logic to address the complexities of acquiring certain data, particularly
from predictive maintenance, which cannot be easily interpreted through simple
operational interventions by the operator. Predictive maintenance also relies on
decision-making supported by advanced algorithms, which are integrated with the
system’s technology and control framework.
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1. Introduction

The issue of ensuring reliable interaction between artificial systems and humans
(HMI) remains unresolved despite increasing control of complex systems by au-
tomated systems. While the introduction of new technologies with AI elements
reduces the likelihood of failures and extends the lifespan of such equipment, it si-
multaneously places greater demands on operator reliability. Operators must man-
age system complexity, evaluate new functions, and oversee automatic responses,
which they may either influence or which are entirely autonomous, leaving the op-
erator to react to subsequent events. In some cases, operators need predictions of
system states to prepare, control, and operate effectively. Fully automated systems
are increasingly used across fields like information technology, energy, the military,
and particularly in transport. In transport systems, a combination of various ad-
vanced systems is often applied, which directly or indirectly affects the behaviour
of road users and lower-level operators. This makes the transport system signif-
icantly more complex and some elements of autonomy significantly more difficult
to implement [1].

We can examine the system from two key perspectives: the behaviour of the
operator and the behaviour of the equipment, including monitoring its condition
and estimating potential error rates. This article focuses on both of these critical
viewpoints, highlighting an interdisciplinary challenge. On one side, we gather
extensive data from the system, and on the other, we have an operator whose
knowledge, reactions, and behaviour significantly impact the system’s performance.
Therefore, while we need to monitor and evaluate the equipment’s condition and,
where possible, operate autonomously or automatically, the operator’s role remains
essential, particularly in maintaining focus and ensuring the correct functioning of
the system. In this context, the article uses tunnel systems as a specific example
of interest [1, 2].

A tunnel system is a transport structure that forms part of critical infrastruc-
ture, which includes a number of devices and systems that function as a tech-
nological and technical unit. This unit significantly influences its surroundings,
affecting vehicle traffic flow and driver behaviour in cities, urban areas, and on
motorways [1–4]. The construction of tunnels also impacts other key systems,
such as energy, transportation, safety, and others, which place significant demands
on operators, not only during regular operations but also in emergency situations.
These emergencies may arise from equipment failures, traffic flow issues (i.e., driver-
operator-vehicle interactions), or external factors, such as crisis events requiring
coordination with emergency services or national defence. Although much is de-
scribed in regulations for tunnel constructions or for individual systems, certain
areas are still being researched, developed, and tested, particularly with a view
toward future applications of artificial intelligence and new approaches, etc. [5–9].

1.1 Operator’s Influence on the Transport System

The issue of detecting operator behaviour and attention loss is one of the main
challenges in controlling technical systems. The HMI (human-machine interface)
is classified as a soft system, characterized by uncertainty and complexity, which
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makes it difficult to predict or interpret accurately, especially under extreme or
boundary conditions. A typical example is a tunnel system dispatcher, who may
rely on some automatic system responses, yet faces long-term stress, high levels
of sensory input, emergency responses, and continuous monitoring of technical
equipment all of which significantly impact their behaviour. By conducting direct
or indirect measurements, it is possible to detect patterns that reveal whether an
operator is thinking, resting, sleeping, or responding to environmental stimuli. To
describe the different states the operator may experience more accurately, multiple
measurements are performed simultaneously [10,11].

An operator who works with complex and powerful systems is required, above
all, to maintain a high level of focus on [12]:

• Maximum attention and concentration,

• Speed of response to the request,

• Correct resolution of emerging problems,

• Selection of the most relevant perceptions,

• A broad and high-quality range of perceived stimuli for informed decision-
making,

• AI-based automatic assistance (in modern systems) to support decision-making.

Most often we refer to the reliability of information processing, psychophysiological
reliability, and physical reliability. In technical applications where a person acts
as an operator, the focus is usually on the reliability of information processing. In
such scenarios, the human operator acts as a component of the system’s structure,
serving as a transformation link characterized by both amplification and delay.
The other two aspects of reliability psychophysiological and physical evaluate the
operator’s mental and physical capacity to effectively participate in the operation
of the hybrid system [11–14].

We will further explore the specific perceptions received from the tunnel system,
which are critical for supporting decision-making. One example is predictive diag-
nostics, which using a partially expert approach based on fuzzy logic must enable
the dispatcher to accurately assess the situation and decide on necessary corrective
actions, evaluate the severity of impacts, and coordinate with other entities. Reli-
able methods for detecting the operator’s condition include electroencephalography
(EEG), as well as sequential testing of voice perception and reaction monitoring,
with correlations drawn from both approaches. Additionally, other methods may
also be used [13–15].

1.2 Diagnostics of the Transport System – Tunnel

A road tunnel is an appropriate example of a system that must operate continu-
ously, except during closures for maintenance and repairs. To ensure the required
level of operational safety, it is essential to monitor the current state of technical
equipment, the functionality of the tunnel control system, and other subsystems.
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New functions, such as simulators, tunnel simulations, custom tunnel models (dig-
ital twins), and the application of artificial intelligence—particularly in predictive
diagnostics can be introduced. Predictive diagnostics, based on the life cycles of
individual technical subsystems, would help identify potential errors and failures in
advance, optimizing tunnel restrictions and minimizing closures. These advanced
functions contribute to a more automated and autonomous approach, placing sig-
nificant responsibility on the operator’s knowledge and attention. Generally, tunnel
functionality is well-documented in standards and technical literature. In this ar-
ticle, we focus on predictive maintenance, as it introduces a fundamentally new
approach to dispatcher behaviour and highlights the need for an AI-based expert
system to assist operators in decision-making [6–9].

An important requirement for applying predictive diagnostics is ensuring the
reliability of data and information from devices and individual systems used in
tunnels. For efficient and reliable maintenance with targeted service interventions,
comprehensive documentation is essential. This is now being developed and im-
plemented through building information modelling (BIM) and overall digitization,
which greatly aids in navigating the tunnel and its technological systems. On one
hand, technical documents clearly outline the correct functioning of equipment,
while also supporting reliability detection and life cycle prediction based on the
equipment’s actual condition. The SCADA tunnel control system already enables
simulations of system behaviour, including fault detection and alarms. This ar-
ticle presents an example of how various inputs, data acquisition methods, and
parameter combinations are analysed, along with a methodological approach for
predictive maintenance of tunnel technologies. This is linked to the operator’s role
in decision-making to ensure long-term operational efficiency [5, 9].

In addition to controlling and responding to transport and tunnel technologies,
ensuring proper operation and maintenance is a crucial part of an operator’s re-
sponsibilities. Continuous system monitoring is essential to verify that the system
and all its components are performing their required functions. This verification
can be achieved by assessing the degree of damage to materials, specific devices, or
the entire system. The process of employing various detection methods to assess
this is known as diagnostics. When detecting equipment failures, we can use di-
rect methods where specific parameters are measured, such as changes in processes
that directly impact the device’s lifespan or performance, like temperature or un-
dervoltage. Alternatively, indirect methods can be used, where defined parameters
are measured, and the system’s functional behaviour and life characteristics are
calculated based on comparisons and evaluations [5–8].

The goal of diagnostics is to gather all relevant process data and evaluate it
appropriately. By comparing historical data, manufacturer specifications, and cur-
rent measurements, we can determine the system’s current state and predict how
its performance will develop over time. This allows us to compare the projected
behaviour of the process or device with its actual lifespan, taking into account
previously detected states and past experience with the equipment. To ensure
the system’s functionality, it is crucial not only to operate it correctly but also to
identify faults, and most importantly to eliminate these issues to keep the system
running smoothly. From the perspective of service life, equal emphasis must be
placed on both system operation and its ongoing maintenance [2, 16].
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According to the service life of selected technological equipment ranges from
10 to 25 years [8, 9, 17, 18]. For electronic systems, lighting control, and SCADA
systems, the expected lifespan is around 10 years. Power and communication cables
have a service life of 20 to 25 years, while ventilation and security equipment is
estimated to last 15 to 20 years. Variations for these subsystems are typically
within a range of 3 to 5 years. Maintenance should be standardized and optimized
by considering failure predictions and the equipment’s expected service life, which is
further refined during regular inspections [5–9]. The goal of the system for analysing
and diagnosing tunnel technology is to monitor the condition of individual devices
and create predictive life cycles based on fault analysis, manufacturer data, and
expert refinements during inspections. Given that the technological equipment
in tunnels comprises various devices and subsystems [5, 8, 9], each with different
lifespans, a different approach was adopted compared to the tunnel’s structural
components. For the initial verification of the predictive system, alarm messages
and diagnostic information from the equipment were analysed and compared with
the data provided by the component manufacturers.

The service life of components and equipment is well illustrated by the well-
known bathtub curve, which may follow a slightly different pattern for mechanical
and electronic elements but remains a fundamental model in reliability engineering,
describing the frequency of failures over time (see Fig. 1). Our focus in predictive
diagnostics is particularly on the “Maintenance” and “End of Useful Life” periods in
the second half of the curve, especially the transition between them. This transition
is significant by a higher number of component failures and increased operational
interventions, which in turn lead directly to higher operating cost [5, 16–18].

Fig. 1 Bath curve of failure frequency [5].

The main challenge in data analysis is that maintenance process data is not di-
rectly integrated into the control system, and much of this information is currently
unavailable to operators. Service intervention records are often kept in either pa-
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per or electronic form in various documents. Manually reviewing and linking these
service actions to specific devices is inconvenient and does not easily provide a
comprehensive data model or valuable insights, such as the frequency of failures or
the time intervals between them.

The history of service actions performed on each device would be recorded
electronically and sent to the system with a time stamp. This record contains
information on the history of the service as well as tracking the replacement and
installation of new equipment for the forthcoming failure rate calculations. Based
on this refined and automated data, it is possible to generate accurate predictions
and analyses of the reliability of the equipment in the tunnel, leading to optimized
maintenance and more efficient allocation of funding for the tunnel construction
[5, 6].

2. Proposed Methods

Within the chapters and proposed methods, two new professional approaches are
considered: monitoring integrated rescue system (IRS) service operators, power
engineering personnel, transport systems operators, traffic controllers, and tunnel
operators. Two key tasks are also addressed: monitoring the decline in operator
attention through electroencephalography (EEG) and detecting changes in voice
patterns.

Besides, the use of predicted data from the diagnostic module is proposed as a
new approach for tunnel system dispatcher responses. This new input can signifi-
cantly influence the operator’s behaviour, attention, and reactions, and ultimately
impact the success of managing transport systems or critical infrastructure, such
as tunnel technology.

2.1 Operator Tracking

The methods used to assess the condition of the monitored individual or to detect
a decrease in attention include, in particular [12–15]:

• Electrical activity of the brain,

• Breathing frequency,

• Heart rate,

• Eye movements,

• Change in skin resistance,

• Change in facial expression,

• Voice change detection.

All these methods for monitoring the operator can be found in literature sources
[12–19]. Both the technical literature and those focused on the psychological or
medical aspects of the monitored individual agree on the challenges and individu-
ality of implementing a system capable of reliably detecting a decline in attention.
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Tichý T. et al.: Support for Tunnel System Dispatcher’s Decision-Making Using. . .

To detect decreased attention in operators, methods such as electroencephalogra-
phy (EEG), combined with eye tracking (EOG) or facial expression monitoring,
will be described below. Additionally, a new method using voice analysis will be
introduced, which, in combination with EEG, represents a significant advancement
in non-invasive techniques. While EEG requires electrodes to be placed directly on
the head, the voice recognition method only requires a microphone positioned near
the mouth [15].

Electroencephalography is a fundamental methodology for evaluating the con-
dition of the monitored individual, also serves as a reference for other methods.
The pre-processing of the measured data, using spectral analysis, categorizes the
signals into distinct states based on basic frequency bands: delta – δ (1–3.5Hz),
theta – ϑ (4–7.5Hz), alfa – α (8–13.5Hz), beta – β (14–20Hz). Based on these fre-
quencies, the individual’s state can be classified into four basic categories: vigilance
(VG), thinking (TH), relaxation (RX), and sleep (SP). Fig. 2 illustrates examples
of frequency spectra for each state according to this classification [12,13]. The state
of vigilance can manifest in two forms: one with open eyes (OE) and another with
closed eyes (CE), the latter closely resembling a state of relaxation.

Fig. 2 EEG spectrum for the state of a) Vigilance (VG – OE and CE), b) Thinking
(TH), c) Relaxation (RX), d) Sleep state (SP) [12,13].

This division into four groups is partly subjective and serves as an indicative
framework, though it has informative value based on static verification with a
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sample of over 200 operators. Each individual has their own unique EEG curve
and specific distribution of parameters across the basic states.

On the other hand, EEG signals are unfortunately very weak and often affected
by eye movements and muscle activity. Additionally, the EEG signals measured on
the scalp are generated by multiple neural sources, each responsible for different
cognitive functions [20].

As mentioned above, several methods have been developed to estimate opera-
tor fatigue levels. While some are highly accurate, they often rely on physiological
measurements that require expensive or intrusive equipment. In safety-critical en-
vironments, where operators regularly engage in verbal communication, a fatigue
estimation method based on speech analysis can offer not only an alternative but
also a more cost-effective and less disruptive solution [21]. Automatic fatigue esti-
mation systems are increasingly being used in such safety-critical environments.

A system capable of estimating speech-related fatigue would be valuable in
domains where operators regularly engage in verbal communication as part of their
duties, such as IRS units and traffic controllers. Previous studies on speech fatigue
identification have been limited by their reliance on subjective assessments and the
lack of comparison with other fatigue evaluation methods [15,19,21].

The production of speech sounds relies on precise coordination between the
sensory and motor systems. Controlling vocal articulators is a biofeedback process
that involves sensing and monitoring the vibrations of the vocal cords through the
sound and sensations they produce. As fatigue increases or impairments such as
alcohol consumption occur, this system becomes disrupted [15,19,22].

Several researchers have reported various speech-based manifestations of this
disruption. Previous studies linking voice changes to fatigue have generally focused
on discrete characteristics of the speaker’s voice, such as pitch, word choice [23],
and the timing between articulated sounds [15, 19]. Changes in the spectral pa-
rameters of the voice have also been associated with alcohol-related disorders [24].
Additionally, significant effects of circadian rhythms on vocal characteristics have
been observed in multiple studies [15,19,23].

The development of reliable methods for predicting speech fatigue requires ob-
jective fatigue measurements for use in model training. However, previous studies
on speech fatigue prediction have often relied on subjective assessments of sleepi-
ness as an output parameter. These subjective evaluations do not always correlate
well with objective measures obtained through behavioural tasks [21].

Identifying specific acoustic characteristics of the voice that are relevant to
emotion recognition is a complex and not fully understood process. The existing
literature offers numerous approaches to combining different acoustic properties for
classifying emotions, but consensus on the most appropriate method has yet to be
reached, and the field continues to evolve [25].

Despite the underwhelming performance of commercial vocal analysis soft-
ware [26], the variables underlying these classifications hold promise for predicting
fatigue if properly calibrated to specific environments. Previous research [27] sup-
ports the idea that voice can be a reliable and valid measure of emotion and decep-
tion, making it suitable for integration into future technologies, such as automated
security checks and advanced human-computer interactions.
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In this work, we explore the implications of using voice analysis to monitor the
effects of fatigue on cognitive performance and validate its application as a tool
for identifying and tracking fatigue in practical settings, particularly for transport
operators, with a specific focus on air traffic controllers [15,19].

2.2 Fault Analysis of Technical Tunnel Equipment

The process of obtaining data can be represented using a design approach in the
form of a diagram. From the defined set of signals within the Tunnel System,
individual signals can be selected according to technology classes, with a sepa-
rate determination of the status of each device within the system. By performing
time-based correlations between the signal types and the devices themselves, an
initial selection can be made to estimate the probability of failure. This allows
for the identification of the most common failures in equipment and technology
types, which can then be compared with other factors, such as service interven-
tions, temperature measurements, and manufacturer or supplier recommendations.
By analysing these factors over time, experts can more accurately determine the
root cause of failures. Fig. 3 outlines a methodological procedure for data analysis
and the identification of potential failures using an expert knowledge system. There
are several reasons for this approach, the main ones being the lack of suitable his-
torical data, difficulties in generalizing from other tunnel systems, and insufficient
knowledge of similar equipment and component life cycle characteristics within the
tunnel environment [5, 9].

3. Analysis and Results

This chapter focuses primarily on the integration of operator state measurements
in tunnel control systems with insights drawn from the latest approaches used by
air traffic controllers, and the potential transferability of voice analysis compared
to electroencephalography (EEG) for determining the specific operator state and
detecting attention lapses. During the verification of operator behavior, certain
edge conditions such as voice loss, illness, or other impairments, as well as arti-
ficial voice distortions, were not considered, in order to identify correlations with
the operator’s state. While the operator manages numerous tasks, they are cur-
rently not required to address potential malfunction scenarios; thus, the objective
is to highlight this issue, which is expected to have a significant impact on the
increasing demands placed on operators in the future. This trend is unlike those
in transportation, energy, military, and telecommunications sectors, where these
issues may not be relevant. However, the gradual advancement of technologies and
the need for cost optimization and real-time response will increasingly influence
the quality of complex system management by the operator. Although seemingly
different aspects are being addressed, they are interrelated, as higher stress levels
under increased workload have shown to push tunnel system operators towards a
higher degree of concentration, closely resembling the performance standards of air
traffic controllers.
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Fig. 3 Graphical representation of the failure evaluation method [5,9].

3.1 Operator Measurements

For the initial processing of the electroencephalographic (EEG) signal, the TruScan
software, developed by DEYMED Diagnostic s.r.o., was used. Seven basic states
were identified, from which three-second segments of measured data were selected.
The criterion for selecting a suitable graph was that it included all seven basic
states, allowing for the identification of the proband’s state and the measurement
of reaction time. While reaction time is not a primary value in processing the data,
it serves as a secondary component that aids in identifying individual states.

From the total dataset, 35 graphs (30 from men and 5 from women), repre-
senting individuals aged 22–55, were selected as complete and suitable for analysis.
These graphs represent approximately 10–15% of the total measured data [12–14].

New interpretation of the data, EEG coherence was used, which reflects the de-
gree of synchronization and similarity between two signals recorded from different
sites on the scalp. It can be interpreted as an indicator of the functional connec-
tivity between different brain regions. Unlike spectral analysis, EEG coherence is
independent of signal amplitude and phase, allowing it to detect changes that may
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otherwise go unnoticed. The mathematical basis for this method is the calculation
of the cross-power spectrum. The coherence value ranges from 0 to 1, where 1
indicates identical signals and 0 indicates completely different signals. This mea-
sure provides insights into the level of connectivity between neuronal populations
in different brain regions [12–14]. The coherence is given by the formula found
in [28].

coh(i, j) =
|ψ(i, j)|2

ψ(i, i)ψ(j, j)
, (1)

where ψ(i, j) is the cross-power spectrum; ψ(i, i), ψ(j, j) are the two power spec-
trums compared.

The TruScan SW tool from DEYMED Diagnostic s.r.o. allows the results of
spectral analysis (FFT) and EEG coherence – coherent function (CF) of the spec-
trum to be displayed and expressed in the form of maps, where the intermediate
points between the electrodes on the surface of the LBI were calculated by lin-
ear interpolation and the values were expressed in pseudo colours. The values for
FFT are given by the square of the microvolts, the values for CF can be expressed
as a percentage, where zero percent means no coherence between spectra, 100%
means the identity of the spectre Fig. 4. For orientation, each map is accompa-
nied by a colour scale with the indicated sensitivity. Map projection is called BM
(brain mapping) or BEAM (brain electrical activity mapping) in the literature.

Fig. 4 Spectra and coherence with open eyes (OE) and closed eyes (CE) of the
operator [11].

303



Neural Network World 5/2024, 293–316

The length of the analysed section of the EEG curve ranged from 3 to 5 seconds
and sections without biological and technical artefacts and corresponding to the
conditions of frequency spectrum processing in which the measured subject may
be located (vigilance – open eyes (OE), closed eyes (CE), thinking – the counting
test, Raven’s test, relaxation and sleep) were selected. [12–14].

The greater the mental exertion, the higher the delta activity observed. How-
ever, the amount of delta activity is determined by subjective effort rather than the
objective difficulty of the task. An individual with a lower IQ exerts more effort
on a simple test, resulting in higher delta activity. Conversely, an individual with
a higher IQ exerts less effort even on a difficult test, leading to lower delta activity.
Similar findings apply to coherence: the more challenging the cognitive task, the
more pronounced the differences between the “islands” of maxima and minima in
the multifocal arrangement [12–14].

We can thus conclude that EEG analyses, such as FFT (fast Fourier trans-
form) and CF (coherence function), are highly effective in distinguishing not only
serious organic issues but also subtle functional mental changes. These changes
are often characterized by an EEG curve that appears optically flat and is almost
indistinguishable to the naked eye, even when well-trained. This applies to states
like wakefulness, falling asleep, mental activity, paradoxical sleep, and more. No-
tably, these methods are especially useful in discriminating between wakefulness,
microsleep, and states of increased cognitive activity, such as deep thinking [12–14].

Participants’ responses from each experiment were recorded and sent to ad-
vanced voice analysis software for processing. The voice recordings were captured
using the recording and playback system (RRS), which recorded all participants.
The data from RRS was anonymized to prevent identification of the measurement
times and then forwarded to a representative of the manufacturer of the layered
voice analysis (LVA) software (ANIS Group) for analysis. LVA technology was
chosen due to its successful use at the flight school and its proven effectiveness in
monitoring stress levels and development in trainees for air traffic controller posi-
tions. This technology, initially designed for operators, can also be applied to other
transport system operators, such as tunnel operators [15].

The analysis was conducted using layered voice analysis (LVA) software, which
operates across the full spectrum of vocal frequencies. It is user-friendly and can
analyse voices both in real-time (while the subject is speaking) and offline (using
recorded material). LVA processes the vocal signal by extracting and combining
attributes to identify various types of stress, cognitive processes, and emotional
responses. The original purpose of LVA technology was to measure multiple emo-
tions, which, when combined, would allow users to assess whether a speech segment
was at low or high risk of being deceptive. LVA software produces outputs based
on different levels of analysis to support these conclusions [15,19,29–31].

The basic hypothesis established that attention levels would differ between the
evening and morning measurements, with fatigue being significantly higher during
the morning session. This would include a modified EEG spectrum coherence
and lower scores in LVA parameters. A correlation between EEG and LVA was
identified, as shown in Tab. I, where the correlation in the defined EEG spectra is
evident [15,19].
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Tab. I Correlation of voice and EEG spectra [15].

Furthermore, the relationship between voice analysis parameters and the estab-
lished methods of fatigue detection is considered crucial. The expected positive
correlation between EEG power spectra and selected voice parameters is evident.
Based on the recommendations from the LVA software manufacturer, we antici-
pate a positive correlation between EEG activity in the beta and gamma bands
and the voice parameters “Average Voice Energy – Upset%” and “Stress%,” which
has been demonstrated [15].

In conclusion, LVA is an emerging technology that has not yet been applied in
the context of air traffic control. However, our research shows that voice analysis
is capable of identifying differences in wakefulness and fatigue, as its results often
correlate with EEG findings (voice changes frequently correspond to changes in
electrical brain activity within certain frequency bands and electrodes) and other
methods. Voice analysis holds great promise as a tool for fatigue detection and
monitoring in various operational settings where voice communication is essential,
and where traditional laboratory instruments may be impractical due to their dis-
ruptive nature and impact on operator comfort [15].

3.2 Measuring Data From the Tunnel

Data was collected from tunnels on Czech motorways as well as in urban areas.
The proposed analysis was based on the experience from collected data and already
performed analysis from the Lochkov Tunnel, located on the Prague Ring Road.
The analysis was based on data archives over a 4-month period and includes several
types of notifications, each with a specific meaning. These logs contain fault and
error notifications, as well as operational and traffic information.

The notifications are split into the following groups [2, 5–8]:

• A0–A2 – alarm notification,

• D0–D2 – traffic events,
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• E – energetics,

• Sys – system notifications.

Since the daily average number of notifications was quite high (around 10,000), the
application of proposed approach could be applied and lead to quality enhance-
ments.

The trend in notification frequency from previously performed analysis is below
(see Fig. 5) [2, 5–8].

Fig. 5 Frequency of notifications in the tunnel Lochkov [8].

For the validation of functionalities, an effort was made to utilize additional
datasets from the Lochkov Tunnel for the period 2019–2023. However, the volume
and quality of the data significantly decreased, including issues with data retrieval,
which is why newer data were not included or used for further analysis. Experiences
were leveraged to obtain data from the Mrazovka urban tunnel in Prague during
2022–2023, which exhibits some similar conditions. However, a detailed analysis of
tunnels in the Czech Republic indicated that, despite differences in technology, the
detailed data can only be partially utilized, considering the number of alarms and
their classification into the same categories. For subsequent, more detailed work,
data from the Mrazovka Tunnel were considered due to the use of a similar tunnel
control system supplier, who maintained consistent alarm labeling, and because
certain technological components are sourced from the same suppliers. For each
alarm type (A, D, E, Sys), not only the frequency of occurrence is verified, but also
the potential severity and impact of the fault, assessed on a scale of ⟨0, 1⟩. This
results in a higher level of prioritization in the database records, which can be dis-
played to the operator as a potentially higher-priority alarm. Particularly, alarms
labeled A0–A2 are primarily associated with specific tunnel technology devices and
may be incorporated into a causality matrix, enabling a more accurate determi-
nation of both the likelihood and severity of faults. Repeated occurrences allow
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for state prediction, facilitating the anticipation of potential faults in the respec-
tive device. Devices whose faults can lead to tunnel closure (e.g., camera systems,
lighting, ventilation systems etc.) are assigned higher significance, as these unex-
pected events require immediate active response from both the technology and the
operator. Predicting such faults in advance is crucial for timely intervention.

In the example of the causality matrix shown in Fig. 6, the relationships between
selected alarm events labeled 1–19 (col1) and their potential strong dependencies
with other events (col2) leading to a fault event are depicted. For instance, if event
17 (power supply failure for barrier control) occurs, it triggers event 11 (failure
to execute the command for the same barrier), and so on. Based on the number
of alarms and monitoring of relationships with other systems and their behavior,
as applied according to the described methods in Fig. 6, it is possible to estimate
complex device status functions and potential faults from a sufficient number of
events. This approach has led to various prediction methods currently under vali-
dation. However, due to the volume of data and the difficulty of transferring these
methods between devices in different tunnels and technologies, a descriptive expert
approach was chosen, for which fuzzy logic can be applied. The subsequent selec-
tion value of the device or system corresponds to a specific range, and the relevant
function of the selected probability of fault value FNo is fed into the predictive
model to provide a recommendation for the operator.

Fig. 6 An example of the evaluation of the matrix of causalities.

The operator requires qualified information from an expert model regarding
potential failures or more accurate interpretations of certain conclusions. Artifi-
cial intelligence, implemented through an expert fuzzy model, should be capable
of effectively analysing and aggregating large amounts of data, providing warnings
of potential failures that could negatively impact the dispatcher’s decision-making
due to information overload. The goal is to present these outputs clearly, including
insights into the technical conditions of the equipment in the tunnel. The predic-
tion capabilities will enable proactive processing and timely responses to critical
conditions, with potential applications in predictive maintenance [32]. The design
of such a model and its integration into the tunnel system is discussed in the next
chapter.
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4. Proposal for a Complex System

It is evident from the above that presenting selected data is challenging, and making
quick and accurate decisions based on the stimuli received by the operator from
the traffic management system specifically tunnel technology during a given shift
is equally difficult. Additionally, determining the status and behaviour of the
operator is a complex task. Detecting a decrease in attention, whether through
invasive or non-invasive methods, has technical limitations. However, monitoring
the operator’s behaviour is crucial for managing emergency situations.

For this purpose, simulators are used to replicate tunnel control behaviour based
on predefined scenarios. These scenarios are derived from the tunnel’s emergency
cards (see Tab. II) [6,9], which are part of the tunnel’s operational documentation
and outline the steps the operator should take during specific emergencies. These
scenarios aim to cover all possible emergency situations arising from operations or
external factors in the tunnels. If needed, additional scenarios can be implemented,
and their functionality verified using the simulator.

Scenario number Scenario

1 Man in the tunnel
2 Animal in the tunnel
3 Slow-moving vehicle
4 Stationary vehicle
5 Stationary dangerous vehicle
6 Object on the road
7 Chemical leakage (subject)
8 Chemical spill (cistern)
9 Demonstration in the tunnel
10 Threat of a terrorist attack (bomb)
11 Wrong-way vehicle
12 Entry of an oversized vehicle
13 Standing bus
14 Traffic accident (pedestrian collision)
15 Traffic accident (collision of an animal)
16 Traffic accident (collision of vehicles)
17 Traffic accident (subject)
18 Fire
19 Critical device or system failure

Tab. II List of scenarios for simulation [6,9].

While the simulation of a scenario is performed within the model or directly in
the control system, the operator’s task during testing and verification is to respond
to non-standard events (scenarios). Using the control system, which manages both
transport and technological aspects, the operator can control various tunnel equip-
ment. For instance, they can close individual lanes within the tunnel, close a
section across the entire profile, or even shut down the tunnel completely. It is also
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possible to manage systems such as the ventilation fans. Additionally, the operator
can respond to scenarios by dispatching a vehicle to the incident site to manage
the situation.

For testing and verifying the operator’s behaviour, a tunnel simulator is used
to simulate selected situations and assess the operator’s responses. The operator
is supported by video detection systems that function as they would in real-world
operations, with the option to adjust functionality or simulate malfunctions. These
systems alert the operator to unusual events occurring inside or near the tunnel.
When an event is detected, the camera displaying the affected area is shown. The
simulator is a 3D model of the tunnel, accurately representing a real road tunnel. It
provides detailed views of all tunnel sections, including the roadway and adjacent
areas that impact traffic within the tunnel.

The complete system for tunnel technology, which can be adapted for use in
other transport and related systems, is illustrated in Fig. 7 below.

Fig. 7 A comprehensive approach to supporting the decision-making process of
tunnel system operators.

Fig. 7 clearly illustrates the interconnection of key modules. On one side, there
is data from the technology, which the operator must assess, evaluate, and respond
to in a timely manner, contacting service or intervention units if necessary. The
next part focuses on monitoring the operator’s behaviour and knowledge, verifying
their functional abilities, and evaluating stress levels, attention lapses, and other
factors that may impact decision-making and reactions to events. To ensure com-
prehensive functionality, an expert system is introduced. This system not only
evaluates data from the tunnel systems but also provides decision recommenda-
tions based on insights into the operator’s behaviour. It assesses whether the op-
erator followed the recommendation, adapts future recommendations accordingly,
or evaluates inadequate behaviour. In case of a potential error, the system alerts
the operator and suggests the correct intervention.
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4.1 Expert System Based on Fuzzy Approach

For the fuzzy approach, a fuzzy model utilizing the Mamdani linguistic system was
employed. Detection is based on defined rules derived from simulator experience
and predictive diagnostics, as well as the operator’s behaviour. The use of linguistic
variables allows for a better understanding of fuzzy approximation by transitioning
into a non-numerical domain, where basic elements and operations are defined when
constructing linguistic descriptions of behaviour or system control [12].

The language variable L will be used to denote the ordered quintuple:

L = {PM,T(PM),X,G,M},

where the meaning of each symbol is:

• PM – is the name of the variable or identifier (the state of the person being
measured),

• T(PM) – is a set of language terms (very small, small, medium, large, very
large),

• X – is the universe on which the individual terms are defined,

• G – is a syntactic rule (generative grammar for generating terms),

• M – is a semantic rule by which each language expression is assigned its
meaning, which is a fuzzy set AF = (X, µAF),

• µAF is the fuzzy set membership function AF, µAF : X → ⟨0, 1⟩.

Based on the linguistic description, we can describe the states of the operator’s
behaviour using fuzzy sets. These fuzzy sets should make the interpretation of the
states of the measured person more accurate. An example is a notation in the form
of the inference rule IF (δ is small value) AND (ϑ is large value) AND (α is large
value) THEN (O is SP). Similarly, it may determine approaches to fir states of a
given system based on the defined 19 scenarios listed in Tab. II, as well as a causal
approach to the device status based on A0–A2 alarms and significance determined
by the type of device or system in evaluation of the matrix of causalities in Fig. 6.

To address vagueness, we can use fuzzy sets to describe uncertainty and then
construct a fuzzy model. This model can be implemented into the design of a func-
tional decision-making and evaluation block for detecting and assessing decreases in
attention, stress levels, and linking these to system behaviour. The system would
evaluate potential states or trends, such as equipment conditions or failures, in
combination with the operator’s mental state and behaviour.

The output fuzzy variable will produce a single value representing the current
state of the measured person, while also indicating the relevance of the selected
scenario (SNo). This value will fall within the range of ⟨1, 19⟩ (see Tab. II). Ad-
ditionally, the variable will represent the probability of failure (FNo) in the given
device, expressed as a probability within the range of ⟨0, 1⟩. Related to A0–A2
alarms of a specific device or system that have a critical impact on the functional-
ity and failure of tunnel technology evaluation from the matrix of causalities (see
Fig. 6).

310
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For the output variable, we introduce a fuzzy set O, which will contain six fuzzy
sets:

O = {VG,TH,RX,SP,SNo,FNo}.

Fuzzy sets correspond to linguistic expressions and express:

• VG – vigilance,

• TH – thinking, stress,

• RX – relaxation, fatigue,

• SP – sleep,

• SNo – scenario value,

• FNo – probability of failure of the selected device or system.

The fuzzy classifier employs the Mamdani implication function, as shown by the
formula, and the centroid method is used for defuzzification. The centroid is calcu-
lated similarly to the statistical mean value in a set and is the most common and
widely recognized method for defuzzification [33,34].

5. Discussion

The tunnel fulfils some characteristics where the causes of failures may arise due
to various factors [2, 5–8]:

• Inappropriate operator intervention,

• Human factor behaviour – the user,

• Influence of aggressive environment – degradation of equipment and system,

• Overloading of certain elements, leading to degradation,

• Sudden malfunctions – accidents, etc.

For proper implementation, it is essential not only to evaluate the current situation
and make forecasts, but also to address the root causes of failures. The causes of
failures may differ from known statistical evaluations, and unexpected correlations
can emerge. Typical examples include technological equipment where emergencies
may occur [2,4–6,8]. Additionally, monitoring the attention and stress levels of op-
erators significantly impacts the accuracy and speed of their responses to potential
emergencies.
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A clear benefit of predictive maintenance is the ability to troubleshoot con-
stantly, well in advance of the actual failure or before reaching a critical failure
state. This approach minimizes the cost associated with repair cycles, as it helps
prevent emergencies, equipment shutdowns, or tunnel closures, along with the sec-
ondary costs these incidents entail. Downtime during preventive repairs can be
minimized or appropriately planned. However, the disadvantage of this approach
is the greater initial investment—requiring systems with not only sufficient diag-
nostics but also real-time data. Additionally, the equipment must be regularly
monitored and evaluated to establish a reliable data history, which is necessary
for accurately predicting failure thresholds. New BIM (building information mod-
elling) approaches can be integrated during the design phase, creating the necessary
data for future implementation and maintenance of the technology [5, 35, 36]. It
is also advisable to implement novel and progressive technologies beyond standard
tunnel systems, such as C-ITS and others [37].

Similarly, it is advisable to regularly train and assess the behaviour and con-
dition of the transport system operator. Sustained attention and concentration
can lead to a gradual decline in perception over time, which may result in inac-
curate decision-making. Using multiple detection methods, such as voice analysis,
EEG, and behaviour monitoring, can significantly help in accurately determining
the operator’s status, especially when dealing with complex tasks in a transport
system that is part of critical infrastructure. By combining these insights, we can
develop an effective AI-based expert system, utilizing fuzzy logic, which not only
predicts the behaviour of the system but also that of the operator. This enables
timely intervention suggestions for the system while optimizing the operator’s time,
attention, and overall performance.

The application of such a system can be extended to sectors like the military,
energy, call centres, and other industries where high operator attention is required
for managing complex systems or equipment. Expert systems providing “whis-
pered” recommendations are already in use in various industries, although they
are less commonly applied in control centres for transport system dispatchers and
similar environments, etc.

In the context of further research, it is also possible to address boundary condi-
tions such as operator illness and various other behaviors, including stress and voice
distortion. Air traffic controllers rely significantly more on voice communication
compared to tunnel dispatchers, operators in the energy sector, or military system
operators, for example. Similarly, there is a need to assess advance information
on potential malfunctions and the operator’s response to such events, along with
other essential perceptual inputs that require further validation and testing [38].
The focus of research should be on exploring the relationships between the volume
of data outputs and the operator-dispatcher’s behavioral responses. Future test-
ing should demonstrate the utility and potential transferability of enhanced voice
interaction with the tunnel system, including communication with auxiliary units,
maintenance teams, etc. Voice analysis of the operator’s state and interaction with
future AI modules is expected to become a prominent trend in development, as
it represents a non-invasive approach that is likely to be increasingly applied in
practice.
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6. Conclusion

This research addresses two primary tasks: detecting operator behaviour and im-
plementing predictive diagnostics as part of the overall transport system control
process. Operator behaviour was analysed in a sample of more than 30 individuals
across various conditions, and these results were correlated with a selected sample
of voice analysis. The combination of these methods has proven effective in reli-
ably determining the operator’s condition in terms of decreased attention, defined
behavioural states, and stress levels, etc.

Similarly, efforts were made to gather the necessary data for predictive diag-
nostics of the equipment and to provide information not primarily intended for
controlling the system. Predictive maintenance diagnostics were conducted in se-
lected tunnels, involving a detailed analysis of data records and a review of the
relevant documentation. Significant effort was made to allocate sufficient sources
of relevant data for the selected tunnels [2, 5–8].

Subsequently, a comprehensive system was designed, including an expert sys-
tem based on fuzzy logic, which will be further tested for reliability in selecting
appropriate scenarios for controlling tunnel technology or identifying system states.
This system also provides a potential probability of device failure. A key com-
ponent is the assessment of operator status, offering assistance in selecting their
current condition and providing support during system control, stressful situations,
or emergencies. At this stage, further testing is required, as some data has proven
to be insufficient, and certain settings may need to be individualized based on the
person’s unique profile.

Equally important is not only to have historical data but also to understand
the relationships and connections between subsystems or sub-components. In sum-
mary, to implement predictive diagnostic and expert methods in the tunnel system,
it is essential to further optimize and fine-tune long-term measurements, historical
and statistically relevant data. In the future, the system can also be enhanced
with cognitive functions that automate processes, reduce maintenance cost, mini-
mize operator interventions, and extend the lifespan of the equipment or the entire
system.
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Subject – Artificial System Interactions, In: Acta Polytechnica, 2002, 42, 3, pp. 31–40, ISSN
1210-2709.
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