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H. Çevik∗, O. Přibyl∗, S. Samandar†

Abstract: Understanding individual travel behavior is crucial for developing ef-
fective travel demand management strategies and informed transportation policies.
This study investigates the factors influencing individuals’ mode choices by ana-
lyzing data from a comprehensive travel survey. We employ a deep neural network
model to explore the relationships between survey variables and respondents’ trans-
portation mode preferences, focusing on both observable and latent factors. The
SHAP method is applied to interpret the model’s outputs, providing global and lo-
cal explanations that offer detailed insights into the contribution of each variable to
mode choice decisions. By identifying the key determinants of mode selection and
uncovering the complex interactions between these factors, this research provides
valuable insights for designing targeted policies that can better address transporta-
tion needs and influence sustainable travel behavior.
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1. Introduction

Mode choice analysis plays a crucial role in transportation planning and policy
development, as it helps to understand and forecast travel demands [2]. Travelers
adopt new decisions and rely on environmental factors as key elements in their re-
peated decision-making process, particularly in stable contexts [26]. Furthermore,
socioeconomic factors such as gender, age, educational level, and income level sig-
nificantly influence mode choice decisions [20]. This research, therefore, examines
the important factors underlying how travelers make decisions regarding their mode
choice.

While statistical regression and discrete choice models have been commonly
used for travel mode analysis, they may offer some advantages in terms of results
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interpretability but have limitations in capturing unobserved factors and complex
relationships [9]. Nonlinear modeling approaches, such as support vector machines
and decision trees, can provide more effective mode choice analysis compared to
traditional statistical methods [22]. Advances in deep learning have produced com-
plex, high-performing models that lack interpretability, making it difficult for users
to trust the models and use the feature importance to enhance performance [9].
When using deep neural networks for mode choice modeling, black-box explana-
tions might be insufficient. Therefore, we employed an interpretable AI method to
understand why and how individuals make their travel mode choices.

Clarification of the terms “interpretation” and “explanation” is necessary since
they will be used throughout the paper and serve the purpose of this work. As
defined in [21], an interpretation is the mapping of an abstract concept into a
form that humans can understand, and an explanation is the set of interpretable
features that contributed to producing a particular decision, such as mode choice
decision, for a given example. We focus on interpreting the results of a deep neural
network and explaining each input variable as well as the relationships among
them. This work employed a methodology to analyze mode choices and provide a
clearer understanding of the results by using interpretable AI approaches within
deep neural network architectures.

This paper addresses two key problems. The first is looking at travel behavior
and understanding the nonlinear and complex relationships between variables, as
well as exploring the factors that influence it. The second is the need for deep neural
networks due to the simplified structure of statistical methods, with feature ranking
alone being insufficient. However, DNN models introduce a black-box nature that
requires explanation. Thus, the interpretability of these complex model structures
is another challenge that must be addressed.

In order to explore the decision-making process regarding mode choices, a travel
survey served as the input for our deep neural network model. The primary goal is
to provide interpretations of the DNN model’s results, revealing the reasons behind
respondents’ selection of specific travel modes. The target variable of interest is
the mode choice, and the model interpretation will shed light on how each feature
represents and influences the outcome, as well as the relevance of these features in
explaining the results. This paper seeks to address these issues through the activity
diagram shown in Fig. 2.

The paper is organized as follows: Section 2 presents the state-of-the-art mode
choice analysis and interpretability methods for understanding model behavior.
Section 3 describes the methodological approach, including the deep neural network
model used for mode choice analysis, the SHAP methodology applied to interpret
the model results, and the stability of SHAP explanations. Section 4 presents the
results from a case study detailing the modeling framework, the dataset, and the
interpretations of the model outputs. Finally, Section 5 discusses the findings in
the context of existing research, and Section 6 concludes the paper by highlighting
key contributions and future research directions.
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2. State of the Art

This section outlines an overview of machine learning models used for mode choice
analysis, introduces the crucial concept of model interpretability, and presents var-
ious techniques to interpret both machine learning and deep learning models.

2.1 Methods for Mode Choice Analysis

In urban transportation planning, knowing the transport mode is a crucial aspect,
which is typically explored through questionnaires/travel diaries/ telephone inter-
views [8]. Transport mode choice modeling methods include K-nearest neighbor,
support vector machines, and tree-based approaches such as single decision tree,
bagging, and random forest [8]. Additionally, deep learning models have proven
to be effective tools for analyzing transport mode choice, as they have outper-
formed traditional discrete choice models in terms of predictive accuracy for both
individual and aggregated behavior [24].

Discrete choice models like the multinomial logit have long been used to ana-
lyze individual travel behavior among discrete alternatives, despite their simplistic
assumption of linear utility for complex human choices [33]. However, they remain
practical due to their interpretability [33]. Meanwhile, data-driven machine learn-
ing techniques, particularly deep learning models, are emerging as alternatives in
transportation research, in contrast to the traditional multinomial logit model [33].

In travel behavior research, the main points discussed when comparing machine
learning and discrete choice modeling methods are their predictive performance and
their capacity to offer insights into travelers’ decision-making processes [18]. While
prediction is a common objective in all modeling approaches, whether using discrete
choice models or machine learning classifiers, many transportation applications also
require the ability to interpret the findings [31]. Achieving high prediction accuracy
often requires using complex non-linear models like support vector machines, deep
neural networks, or random forests [7]. However, these sophisticated models tend
to lack interpretability [7].

A key concern with using deep neural networks for transportation mode choice
modeling is their perceived lack of interpretability [31]. Interpretation tools have
been proposed to explain or reveal how deep models make decisions, as deep neural
networks are often seen as less interpretable due to their over-parameterized “black
box” model structure [12]. Prior studies employing deep neural networks for trans-
portation choice modeling have primarily focused on using DNN to predict mode
choice, activity choice, car ownership, and other related choices [31]. Only a few
transportation studies have examined the interpretability of DNN in choice mod-
eling without providing explicit metrics to measure the quality of interpretability
[31]. In comparison to discrete choice models, the interpretability of DNN models
will be a key factor in determining whether these approaches can be used for de-
mand prediction in transportation contexts and have practical implications on our
understanding of individual decision-making behavior [31].
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2.2 Interpretable AI

Interpretability is crucial for gaining insights into mode choice behavior and of-
fering these insights to inform urban mobility patterns [10]. Understanding the
model’s interpretability is important for users to have better trust in the model
and better comprehend the significance of the features for further improving the
model’s performance [9]. There are several techniques to interpret machine learning
and deep learning models. These include Shapley additive explanation (SHAP),
local interpretable model-agnostic explanation (LIME), deep learning important
features (DeepLIFT), model agnostic concept extractor (MACE), and generative
adversarial network (GAN) based methods [25].

In this work, we used Shapley additive explanations due to its model-agnostic
nature, which allows it to be applied to explain and analyze results across a wide
range of machine learning and deep learning models [25]. SHAP has been success-
fully employed with various models such as random forest [5, 9, 29, 30, 11], logistic
regression [9, 29], decision tree [9, 11], Naive Bayes [29], LSTM [25], XGBoost [30,
13], deep neural network [1]. The flexibility and broad applicability of SHAP make
it a well-suited tool for interpreting model outputs and generating valuable insights
into travel behavior.

3. Methods

This section outlines the methodological approaches used in this paper, including a
technique for enhancing the interpretability of the deep neural network models. It
presents the SHAP methodology and the calculation of SHAP values, with a focus
on the deep explainer approach. It briefly introduces the theoretical background
and provides a discussion on the stability and reliability of the obtained outcomes.

3.1 SHAP Methodology

SHAP (Shapley additive explanation) values are proposed by [17] as a unified
measure of feature importance. Shapley sampling values aim to explain any model
by applying sampling approximations to Eq. (1) and approximating the effect of
removing a variable from the model through integration over samples from the
training dataset [17].

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)], (1)

where ϕi, also known as the SHAP value, is the unified measure of additive feature
attributions. The set of all features is denoted as F , and S represents the feature
subsets. Models fS∪{i} and fS are trained with and without a feature, respec-
tively. Then, predictions from the two models are compared on the current input
fS∪{i}(xS∪{i}) − fS(xS), where xS represents the values of the input features in
the set S. Since the impact of excluding a feature depends on other features in the
model, the differences are computed for all possible subsets S ⊆ F \ {i} [17].

SHAP values show how each feature affects the model’s output by measuring
the change in the expected prediction when considering that feature. They explain
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Çevik H., Přibyl O., Samandar S.: Understanding Travel Behavior: A Deep Neural. . .

the output of a function f as the sum of the effects ϕi of each feature [16, 17]. The
x-axis (see Fig. 1) shows the cumulative model output as features are progressively
added. Each ϕi represents the contribution of the corresponding feature, and the
length of the arrows shows the magnitude of each feature’s effect on the prediction.
Larger arrows indicate that the feature contributes more to the change in the
model’s prediction, while smaller arrows indicate a lesser contribution.

Despite the high accuracy of machine/deep-learning models, their results can
be challenging for users to understand [25]. Additionally, it can be problematic to
uncover hidden biases within the datasets or identify model weaknesses without a
clear understanding of the decision-making process [25].

Fig. 1 Contribution of features to model output. [17]

3.2 Deep SHAP (DeepExplainer)

Deep SHAP combines deep learning important features (DeepLIFT) and Shapley
values. DeepLIFT is introduced by [28], a novel algorithm that assigns importance
scores to the input features for a given model output. DeepLIFT uses a backpropa-
gation approach, which efficiently propagates an importance signal from an output
neuron backward through the layers to the input in a single pass [28]. By assum-
ing independence among the input features and linearity within the deep model,
DeepLIFT approximates SHAP values [17].

Eqs. (2) through (5) below detail the calculations for SHAP values using the
Deep SHAP method [17]:

mxjf3 =
ϕi(f3, x)

xj − E[xj ]
, (2)

∀j ∈ {1, 2}, myifj =
ϕi(fj , y)

yi − E[yi]
, (3)

myif3 =

2∑
j=1

myifjmxjf3 chain rule, (4)

ϕi(f3, y) ≈ myif3(yi − E[yi]) linear approximation, (5)

where

– m – multiplier that normalizes the SHAP value by the difference between the
actual and expected values,

– ϕ – SHAP value, representing the contribution of a specific feature to the
model’s output,
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– x – the actual value of the input feature,

– E[x] – expected value of the input feature,

– y – actual output value of the model,

– E[y] – expected output value.

Eq. (2) calculates the multiplier for feature j by normalizing the SHAP value
of feature i with respect to the difference between the feature’s value and its ex-
pected value. Similarly, Eq. (3) calculates the multiplier for the output (yi). by
normalizing the SHAP value of feature i with respect to the difference between
the actual output and its expected value. Eq. (4) expresses the overall multiplier
for the output (yi) as the sum of the products of the multipliers from individual
features j and their contributions to the overall model output (f3). Finally, Eq. (5)
provides an approximation of the SHAP value for feature i based on the model
output and the difference between the actual output and its expected value, using
the multiplier derived from previous calculations.

3.3 Stability of SHAP Explanations

The stability of SHAP explanations is positively correlated with the size of the
background sample, which refers to a set of representative data points from the
training dataset [32]. A larger sample reduces randomness, resulting in a more
representative, stable, and reliable dataset [32]. Users are encouraged to use as
large a background dataset as possible, potentially even an entire training dataset.
However, it is essential to recognize that larger background datasets can signif-
icantly increase computational costs [32]. The optimal background dataset size
ultimately depends on the desired level of accuracy in ranking variable importance
[32].

Once the background dataset size is set, it must accurately represent the en-
tire dataset, as this provides the SHAP explainer with key information about the
population, which directly impacts the SHAP values [14]. When the majority class
dominates, an unbalanced dataset sets a lower baseline for minority class observa-
tions, which can lead to an overestimation of their SHAP values, as SHAP measures
the difference between the prediction and the average value [14].

While SHAP is a reliable approach for evaluating the importance of variables,
the precise ranking of variables requires thoughtful consideration [32]. Further-
more, SHAP is more dependable in ranking the most and least significant variables
compared to the moderately important ones [32].

4. Case Study

This section begins by outlining the modeling framework employed in the research,
followed by a detailed description of the input data, including both explanatory and
latent variables used in the model. Finally, the section presents the model results
and their interpretation, using various SHAP visualizations such as summary plots,
beeswarm plots, and decision plots to explain the influence of different variables on
transport mode choice.
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4.1 Description of The Modeling Framework

The framework, illustrated in Fig. 2, is represented as a unified modeling lan-
guage (UML) activity diagram, outlining the step-by-step methodology. The pro-
cess begins with data preprocessing, including cleaning the travel survey data and
performing exploratory data analysis, which reveals general patterns in the data.
The output variables indicating mode choices, originally categorical and labeled as
public transport, mobility as a service (MaaS), and Car, were transformed using
one-hot encoding. This process turned each choice into a unique binary format
(e.g., 100, 010, and 001). This transformation was necessary to ensure that the
deep learning model treats the mode choices as distinct categories rather than as
ordinal or continuous values.

Fig. 2 Research framework.

During the model training phase, we developed a feedforward neural network
model using the Keras library. The input layer consists of 21 neurons corresponding
to the 21 input features. The network includes two hidden layers, each composed of
32 neurons. These hidden layers are fully connected, meaning each neuron is linked
to every neuron in the next layer, allowing the model to capture complex patterns
in the data. Finally, the output layer has 3 neurons, corresponding to the number
of target classes. Given the dataset’s moderate size and feature count, this network
is designed to efficiently learn from the data and provide accurate interpretations
of the model’s outcome. To improve the model’s reliability, we employed K-fold
cross-validation during training, dividing the data into multiple subsets to ensure
consistent performance across different data partitions.

After defining the model architecture, we used GridSearchCV to determine the
optimal hyperparameters, such as the activation function, epoch number, batch
size, optimizer, learning rate, and dropout ratio. This hyperparameter tuning
process allowed us to obtain the optimal configuration and increase the model’s
performance. Tab. I shows the details of the hyperparameters used in our case
study. Given the technical capabilities of the computer hardware employed in this
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work, the range of hyperparameters that could be effectively tuned was limited.
The training and validation accuracy and loss over epochs are shown in Fig. 3, with
an average cross-validation accuracy score of 0.803.

Parameter Range Selected

Epoch number 10, 20, 30 30
Batch size 32, 64 64
Activation function relu, sigmoid, tanh relu
Optimizer adam, rmsprop, gd adam
Learning rate 0.01, 0.001 0.01
Dropout ratio 0.1, 0.2, 0.3 0.1

Tab. I Hyperparameter tuning.

Fig. 3 Comparison of training and validation accuracy and loss over epochs.

Following model training, the SHAP methodology is applied for model interpre-
tation using the DeepExplainer approach. SHAP values are computed to determine
feature importance and the influence of each variable on mode choice decisions. The
use of a background dataset, randomly sampled from the training data, provides
a baseline for interpreting SHAP values, ensuring that feature contributions are
computed in relation to representative data and, therefore, offering meaningful in-
sights into the model’s behavior. To improve computational efficiency and ensure
practical feasibility on a standard laptop, the background data size was reduced
to 5,000 from the original 25,972 training samples. While this reduction simplifies
the analysis, the approach remains applicable to larger datasets, and results on a
full sample would be expected to follow similar patterns.

Finally, SHAP plots are generated to visualize the most significant features
and their contributions. These plots offer both global insights into the overall
feature importance, as well as local explanations for individual predictions, giving
a detailed view of the model’s decision-making process. The analysis culminates in
a comprehensive summary, completing the framework’s interpretative process.
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4.2 Data Descriptions

In this research, we used a computer-based survey, the “MaaS together” survey [19],
which collected responses from 37,104 individuals across four European countries:
the Czech Republic, England, Germany, and Poland. Participants were recruited
through an online access panel, which ensured a diverse sample from these countries
[19]. The survey collected data on the transport mode choices of the participants
, and this research takes into account the following three modes: public transport,
mobility as a service, and car (see Tab. II). Further details about the survey and
all the variables, including latent factors, are available in the research conducted
by [23].

Mode choice Number of respondents Percentage [%]

Public transport 29515 79.5
MaaS 2104 5.7
Car 5485 14.8

Tab. II Mode choice distribution in the travel survey.

As shown in Tab. II, the original dataset exhibits an imbalance, with the number
of samples for each travel mode choice being significantly disproportionate (e.g.,
PT mode preference is 29515, whereas the Car is 5485). The imbalanced dataset
can lead to biased training, as the majority class instances are used significantly
more during the training process compared to the minority classes [9]. While both
undersampling and oversampling can be applied to address data imbalance, these
methods come with their own benefits and drawbacks. Undersampling risks losing
valuable information, while oversampling may result in overfitting [9]. Given these
considerations and the paper’s objective, these methods are not applied in this
research.

We take several explanatory variables (see Tab. III) into account in this survey,
such as gender, age, and income.

Variable name Description

Gender Respondent’s gender
Age Respondent’s age
HH size Number of members in the respondent’s household
Income Respondent’s household income level
Residence Size of the city where the respondent lives
Education Respondent’s education level
Profession Respondent’s occupation
Time Time of the chosen scenario
Price Price of the chosen scenario

Tab. III Model input explanatory variables.
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Tab. V presents descriptive statistics for key sociodemographic variables, in-
cluding household income, household size, residence, and profession. The majority
of respondents report a mid-range household income (Levels 2–3), with 62% being
full-time employees. Most households consist of two members (33%), while 26.3%
of respondents reside in cities, and 26.6% live in large cities. These statistics pro-
vide a broad overview of the sample’s sociodemographic makeup, offering valuable
context for interpreting the factors that influence transportation mode choices.

Additionally, the survey includes several latent variables (see Tab. IV), as pre-
sented in [23], which are the results of a PCA run over a predefined set of questions.
These variables reflect individuals’ perceptions of MaaS and how it influences their
decisions in general. They include the perceived usefulness of MaaS (PU) in terms
of functional, emotional, social, economic, and ecological aspects, as well as the
attitude toward using MaaS (ATT fac), and other latent factors (see Tab. IV for
details on the abbreviated variables).

Variable name Description

PU func Functional usefulness of MaaS
PU emot Emotional usefulness of MaaS
PU soc Social usefulness of MaaS
PU econ Economical usefulness of MaaS
PU eco Ecological usefulness of MaaS
ATT fac Attitude toward using MaaS
FAC share Latent factor describing attitude towards shared economy concept
FAC tech Latent factor describing users technology acceptance level
FAC env Latent factor representing users views on environmental concerns
FAC econ Latent factor representing users views on economical concerns
FAC soc Latent factor representing social impact of surrounding opinions
FAC safe Latent factor representing users perception of safety importance

Tab. IV Model input latent variables.

4.3 Model Results and Interpretation

This section discusses the interpretability of the developed model, following the
methodology outlined earlier. The outputs encompass the selected transport mode
of each respondent (see Tab. II), detailing the distribution of commuters across
three modes: public transport, mobility as a service (MaaS), and car. The analysis
concludes with the mode choice determinants for each mode of transport.

The visualizations presented below incorporate three different interpretative
tools: SHAP summary plots, beeswarm plots, and decision plots, which offer both
global and local explanations. In explainable AI, local explanations use SHAP
values to explain how a model makes its decisions, revealing the contributions of
individual features and why the ML model arrived at its decision [11].
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Variable name Category Percentage [%]

Household income Level 1 6.7
Level 2 21.9
Level 3 40.7
Level 4 17.8
Level 5 10.1
Level 6 2.8

Household size 1 person 23.7
2 persons 33.1
3 persons 22.9
4 persons 15.1
5 persons+ 5.1

Residence Town 17.3
City 26.3
Large city 26.6
Megacity 19.4
Metropolis 10.3

Profession In training 7.3
Full-time employee 62.5
Part-time employee 12.8
Senior executive 2.7
Self-employed 6.6
Homemaker 1.8
Retired 3.4
Seeking work 2.9

Tab. V Descriptive statistics of key sociodemographic variables.

4.3.1 Global Feature Importance

Accounting for feature interactions is a challenging task, as the individual features
may have different impacts when considered in isolation compared to when they
are part of a larger set of features [3]. Therefore, examining a feature’s global
importance is crucial for understanding its role across the entire dataset [3], which
is also one of the most basic approaches to understanding a model [15], often
depicted in a bar chart.

Fig. 4 presents the mean absolute SHAP values, which represent the average
magnitude of each variable’s impact on the model output across different transport
modes. The most important factor across all types of transport seems to be how
people feel about using MaaS, labeled as ATT fac. Age also plays a significant role
in shaping how people decide which mode of transport to use. In contrast, time
and gender appear to be the least influential factors in determining transport mode
choice, as they exhibit minimal average SHAP values across all transport modes,
indicating their limited impact on the model’s predictions.
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Fig. 4 SHAP summary plot of mode choice determinants for public transport,
MaaS, and car.

4.3.2 Local Explanations Overview

Detailed summaries of the overall model and individual features can be obtained
through local explanations [15]. Generating a beeswarm-style SHAP summary plot
provides a comprehensive visualization that depicts the magnitude, prevalence, and
direction of the effects of each feature on the final mode choice selection [15].
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The top five variables influencing travel mode choices are further examined in
Figs. 5 through 10. These plots provide a more nuanced understanding, showing
how each feature affects the model’s selection of transport modes, either positively
or negatively, as depicted in the beeswarm plots.

Fig. 5 SHAP beeswarm plot of determinants for public transport mode choice.

Fig. 6 SHAP summary plot of determinants for public transport mode choice.

In beeswarm plots, each data point represents an individual observation, with
its position along the x-axis indicating the SHAP value, which reflects the extent to
which a feature influences the prediction positively or negatively. Darker blue dots
represent high feature values, while lighter blue dots represent low feature values,
helping visualize how different feature values contribute to the model’s output.
For instance, in Fig. 5, high ATT fac and age values are associated with positive
SHAP values, meaning they increase the likelihood of choosing public transport.
On the other hand, higher values of territory, PU emot, and education are linked
to negative SHAP values, suggesting they reduce the probability of selecting public
transport.
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The summary plots demonstrate that attributes such as ATT fac and age are
consistently among the most influential variables across public transport, mobil-
ity as a service, and car transport modes (see Figs. 6, 8, and 10). This consis-
tency suggests that these factors play a pivotal role in determining transport mode
choice, regardless of the specific mode. However, a more in-depth analysis of the
beeswarm plots (See Figs. 5, 7, and 9) reveals notable differences in how these
features influence the model’s predictions, particularly in terms of the distribution
and magnitude of SHAP values.

Fig. 7 SHAP beeswarm plot of determinants for MaaS mode choice.

Fig. 8 SHAP summary plot of determinants for MaaS mode choice.

The beeswarm plot for public transport exhibits a wider range of SHAP values,
with more visible data points (dots) spread across the plot. This suggests the
model is capturing high variability in the feature values. This reflects diverse user
behavior, where various groups of users respond differently to the same feature,
resulting in a broader spectrum of predicted outcomes.

In contrast, the beeswarm plots for MaaS and Car modes show less variability.
The SHAP values are more closely clustered around zero, and there are fewer
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extreme values represented by the darker and lighter blue dots. This suggests
that while features like ATT fac and age remain important, their influence is less
pronounced in these modes. In other words, user choices in the MaaS and car modes
are influenced by these factors in a more consistent way, resulting in a smaller range
of variation in the model’s predictions.

Fig. 9 SHAP beeswarm plot of determinants for car mode choice.

Fig. 10 SHAP summary plot of determinants for car mode choice.

Following the insights gained from the SHAP beeswarm plots, we now explore
SHAP decision plots. Decision plots visualize how complex models make decisions
by using cumulative SHAP values, with each plotted line explaining a single model
prediction. Decision plots are a suitable option when there are many predictors or
features in the dataset that need to be visualized [11].

The decision plots below display a random sample of 100 observations for each
transport mode. This subsampling is necessary due to the large background dataset
of 5,000 observations. The x-axis represents the model output value, indicating
the likelihood of choosing public transport, while the y-axis lists the features in
descending order of their average contribution.
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The SHAP decision plot in Fig. 11 illustrates how each feature contributes to the
model output for individual observations of the public transport mode. ATT fac
(attitude factor) and age stand out as the key variables, having significant positive
and negative influences on the model output, depending on the specific observation.
Additionally, territory and PU emot, which represents the emotional usefulness of
MaaS, play important roles and impact the usage of public transport.

The decision plot for the MaaS mode (see Fig. 12) exhibits a similar pattern,
with ATT fac once again being the most influential feature, followed by territory,
age, and PU emot. Likewise, the decision plot for the car mode (see Fig. 13) shows
that ATT fac and age continue to be the dominant feature contributions, consistent
with the patterns observed for the other transport modes.

Fig. 11 SHAP decision plot of determinants for public transport mode choice.
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Fig. 12 SHAP decision plot of determinants for MaaS mode choice.

The difference in feature importance can be seen between the decision plots and
the summary plots, but the reason is that these two plots serve different purposes.
Summary plots show the global importance of features across the entire dataset.
They aggregate the mean absolute SHAP values for each feature, providing a high-
level view of which features are most influential on average for the entire population.
In contrast, decision plots focus on individual predictions or selected samples. They
visualize how each feature cumulatively impacts specific model outputs, which can
highlight different feature contributions compared to the summary plot because
the decision plot reflects local behavior for a subset of observations, not the entire
dataset. This means that it focuses on the local behavior of the model, which might
highlight different features than those emphasized by the global summary plot.
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Fig. 13 SHAP decision plot of determinants for car mode choice.

5. Discussion

Introducing interpretable AI methods such as SHAP enhances our understand-
ing of complex black-box models such as deep neural networks and makes these
models more transparent so that we can better comprehend their decision-making
processes. This approach represents a significant contribution to understanding
the factors that influence mode choice decisions.

Traditional statistical models, while useful for interpreting linear relationships,
often fall short when it comes to capturing the complexity and nonlinearity inher-
ent in travel behavior. By employing a DNN and SHAP, we were able to model
and understand these complex relationships, including latent interactions between
socioeconomic, environmental, and behavioral factors that influence individuals’
transportation choices.
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Building on this methodological framework, it is crucial to investigate the spe-
cific travel mode choices available, including options such as public transport, mo-
bility as a service (MaaS), and cars. Analyzing these travel mode choices using
machine learning models can enhance our understanding and prediction of travel
demands [4]. To better understand these choices, it is important to examine the
factors influencing the usage of public transport, MaaS, and car modes. The ex-
isting literature has identified numerous variables that influence public transporta-
tion ridership, including factors related to urban demographics, public transport
network characteristics, the availability of alternative transportation modes, and
economic conditions [6].

Numerous studies examining the determinants of public transport usage have
identified key factors that can be categorized into user-related aspects and system-
level attributes [27]. User-related aspects include socio-demographics, such as age,
income, and education, which significantly affect individuals’ likelihood of using
transit, along with accessibility to transit stops and the characteristics of the built
environment [27]. The socio-demographic factors identified in our study, partic-
ularly age and education, are also significant, with age being one of the most
influential factors across all transport modes. This finding is consistent with the
conclusions of other research in this field.

The literature review further revealed that key determinants of individual travel
mode choice include the prices of public transport and private car transport [6].
Prior studies have also shown that system-level attributes, such as level of service,
pricing structures, and external influences like economic conditions, car ownership
rates, and parking policies, play crucial roles in shaping public transportation rid-
ership [27]. Additionally, consistent with these findings, our results indicate that
price is also a significant feature, particularly for the MaaS and car modes.

6. Conclusions

This study presents a novel approach to analyzing individual travel behavior through
the integration of Deep Neural Networks (DNN) and SHAP, an interpretable AI
technique, to uncover the factors driving mode choice decisions. While DNNs are
powerful in terms of predictive performance and usually outperform traditional sta-
tistical approaches, their “black-box” nature limits their usability for policy-making
and trust-building. SHAP addresses this challenge by providing clear, interpretable
insights into the contribution of each variable, offering a transparent way to under-
stand how specific features—such as income, gender, distance to destination, and
environmental conditions—influence travel decisions. This interpretability is cru-
cial not only for researchers but also for transportation planners and policymakers
who need actionable insights to design targeted interventions.

The use of DNN and SHAP offers several advantages. First, the ability of
DNNs to model nonlinear and complex relationships makes them highly suitable
for transportation data, where individual decisions are influenced by a myriad of
interrelated factors. Second, SHAP enables us to break down the model’s decision-
making process, ensuring transparency and interpretability, which is critical for
stakeholders who need to trust and act on the results. Third, the findings provide
actionable insights that can help in crafting transportation policies that promote
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sustainable mode choices, optimize public transport, and influence behavior to-
wards more eco-friendly alternatives. Lastly, this approach can be scaled to larger
datasets and adapted to other regions or contexts, making it versatile for future
research or real-world applications.

In conclusion, our study highlights the significant potential of combining deep
neural network models with interpretable AI methods to not only improve the
accuracy of travel behavior models but also make them accessible and practical
for real-world application. By understanding the factors that shape mode choice
in a transparent way, transportation planners can develop more informed policies
that are aligned with the goals of sustainability, such as promoting environmen-
tally friendly transportation options as well as efficiency. Future research should
aim to expand on this work by refining these methods to further enhance their
applicability and comparing the performance and interpretability of this approach
with other mode choice modeling techniques. This comparative analysis could
provide valuable insights into the strengths and limitations of different modeling
approaches.
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