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Abstract: The goal of the paper is to introduce a universal approach for cal-
culating integrated information assessment (IIA) in complex systems by utilizing
the geometric product from geometric algebra (GA). Traditional models of con-
sciousness try to explain how neural networks and cognitive processes give rise to a
unified conscious experience. Quantum mechanics (QM) could provide a framework
for understanding this integration by suggesting that conscious experience arises
from entangled states across different system parts. Thanks to the high redundancy
of neural networks, it is possible to realize different variants of cognitive processes
in parallel and switch between them as needed. This opens up the possibility of
hypothetically creating non-separable (not necessarily non-local) entangled models
without requiring a quantum environment. The described IIA algorithm is derived
from the assessment of entanglement in QM systems using GA. The results are
shown on a set of illustrative examples.
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1. Introduction

Geometric algebra (GA) is a mathematical framework [1] that extends traditional
calculus by incorporating geometric concepts directly into the algebraic system.
It provides a unified language for mathematics and physics, allowing for a more
intuitive understanding and manipulation of geometric objects.

Integrated information theory (IIT) is a theoretical framework [2] that seeks to
explain the nature of consciousness. According to IIT, a system is conscious if it
can integrally and irreducibly integrate information. The key principles of IIT are
as follows:
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• Intrinsic Existence: Consciousness exists from its own perspective. A system
with consciousness has intrinsic existence and cannot be fully explained by
its individual parts alone.

• Composition: Consciousness comprises different components that integrate
to form a unified experience.

• Information: Each conscious experience is specific and distinct from other
potential experiences.

• Integration: Consciousness is not merely a collection of independent compo-
nents, but a holistic entity in which all parts work together.

• Definiteness: It exists at a specific level of integration and does not simulta-
neously spread across different levels.

Our approach aims not to replace the entire IIR methodology but to demonstrate
new possibilities for evaluating the separability of complex systems.

Among other things, quantum mechanics (QM) introduces the concept of entan-
glement [3], which involves particles being correlated in ways that classical physics
cannot explain. The intersection of quantum physics, neuroscience, and cognitive
science encourages interdisciplinary collaboration. This collaboration could lead to
novel theoretical models and experimental approaches, pushing the boundaries of
the understanding of both QM and cognitive science. Some researchers propose
that quantum entanglement and superposition could play a role in the integration
of information [4], which is a key aspect of IIT.

The paper is structured in such a way that Section 2 summarizes the basic
principles of geometric algebra (GA). Section 3 deals with models of quantum in-
formatics, specifically the analysis of the feature known as quantum entanglement.
In Section 4, the algorithm for integrated information assessment (IIA) is intro-
duced and Section 5 presents some illustrative examples. Section 6 concludes the
paper.

2. The Principles of Geometric Algebra

Geometric algebra (GA) introduces multivectors [1], which extend beyond simple
vectors to include scalars (just magnitudes), bivectors (areas), trivectors (volumes),
and higher-dimensional elements. A blade can be thought of as an oriented segment
of a geometric entity, such as a directed line or a plane segment. Rotors are special
multivectors that provide rotations in any dimension. They simplify the description
of rotations by avoiding the complexity of matrices or quaternions, making the
rotation process more intuitive. In GA, it could be combined dimensions in a
coherent way. For example, by combining two vectors in three-dimensional space,
a plane can be obtained, represented by a bivector.

GA offers a rich and powerful language that unifies various mathematical dis-
ciplines, making it easier to describe geometric or physical concepts. It extends
beyond traditional algebra by incorporating geometric intuition directly into the
algebraic framework, enabling more natural and efficient problem-solving across
mathematics and physics.
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Consider any two vectors a⃗, b⃗ in Cm written in orthonormal basis {êi}mi=1. The

geometric product of two higher dimensional vectors a⃗⃗b is the fundamental opera-
tion in geometric algebra, as it extends traditional algebraic operations:

a⃗⃗b = a⃗ · b⃗+ a⃗ ∧ b⃗. (1)

The dot product a⃗ · b⃗ measures how much one vector projects onto another. Ad-
ditionally, the wedge product a⃗ ∧ b⃗, also known as the exterior or outer prod-
uct, measures the area or higher-dimensional content spanned by two or more
vectors. While the dot product focuses on scalar projection and alignment, the
wedge product expands the ability to describe and work with areas, volumes, and
higher-dimensional geometric constructs. Together, these operations form a robust
framework for exploring a wide range of mathematical and physical problems.

Consider two vectors a⃗, b⃗ in coordinates ê1, ê2, ê3:

a⃗ = ê1 + 2ê2 + 3ê3,

b⃗ = 4ê1 + 5ê2 + 6ê3. (2)

Their wedge product is (using the anti-commutativity êi ∧ êj = −êj ∧ êi and the
fact that êi ∧ êi = 0):

a⃗ ∧ b⃗ = (ê1 + 2ê2 + 3ê3) ∧ (4ê1 + 5ê2 + 6ê3) =

= ê1 ∧ 4ê1 + ê1 ∧ 5ê2 + ê1 ∧ 6ê3 + 2ê2 ∧ 4ê1 + 2ê2 ∧ 5ê2 + 2ê2 ∧ 6ê3 +

+ 3ê3 ∧ 4ê1 + 3ê3 ∧ 5ê2 + 3ê3 ∧ 6ê3 = −3ê1 ∧ ê2 − 6ê1 ∧ ê3 − 3ê2 ∧ ê3.
(3)

This non-zero bivector indicates that the vectors a⃗, b⃗ span a non-zero area.

3. Quantum Informatics

3.1 Quantum Models

In quantum informatics [3] two qubits can be defined:

|ψ1⟩ = α1 · |0⟩+ β1 · |1⟩ , |ψ2⟩ = α2 · |0⟩+ β2 · |1⟩ . (4)

Bracket notation |·⟩ is a powerful way to represent and manipulate quantum states.

Their superposition can be expressed as:

|ψ⟩ = (α1 · |0⟩+ β1 · |1⟩)⊗ (α2 · |0⟩+ β2 · |1⟩) =
= α1 · α2 · |00⟩+ α1 · β2 · |01⟩+ β1 · α2 · |10⟩+ β1 · β2 · |11⟩ . (5)

Coefficients αi, βj are complex parameters for all i, j. Symbol ⊗ represents the
tensor product and the probabilistic normalization condition can be given as:

|α1 · α2|2 + |α1 · β2|2 + |β1 · α2|2 + |β1 · β2|2 = 1. (6)
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We can assume an equal probability of zeros and ones for all combinations. This
refers to probabilistic classical bits, where superposition allows to work simultane-
ously with all possible combinations. For example, with three probability bits, we
have a superposition of eight combinations that each have an equal probability:

|ψ⟩ = 1√
2
· (|0⟩+ |1⟩)⊗ 1√

2
· (|0⟩+ |1⟩)⊗ 1√

2
· (|0⟩+ |1⟩) =

=
1

23/2
· (|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩) . (7)

This representation of quantum binary systems can generally be extended to more
complex n-dimensional space.

3.2 Quantum Entanglement

Quantum entanglement is a fundamental phenomenon in which particles become
interconnected in a way that the state of one particle instantly affects the state of
another, regardless of the space-time distance between them. Entanglement enables
interactions across different dimensions and scales, providing a deeper comprehen-
sion of how different parts of a system impact each other. This is particularly
important for modeling and analyzing complex systems in various fields such as
biology, chemistry, and physics.

Entanglement swapping [5] is a phenomenon employed in quantum networks to
expand the reach of entanglement. By entangling pairs of particles at intermediate
nodes, it becomes possible to create long-distance entanglement, which is crucial in
constructing scalable quantum complex systems. If we have four events, with the
first and second events being entangled, and the third and fourth events also being
entangled, then as soon as there is entanglement between the first and third events,
the second and fourth events will also become entangled without any exchange of
information between them. It is important to note that these phenomena can occur
even when there is a significant amount of distance in both space and time between
them.

Entanglement entropy [6] is used to quantify the amount of entanglement in a
quantum system and measures the information shared between its different parts.
When the subsystems are maximally entangled, the entanglement entropy reaches
its maximum value. Consider two entangled qubits. When observing a single
qubit in isolation, its state may seem random due to its entanglement with the
other qubit. The entanglement entropy quantifies this randomness by reflecting
the amount of information connecting the state of one qubit to the state of the
other.

Bell states [3] are maximally entangled, meaning the highest degree of entan-
glement between two qubits:∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩) ,

∣∣Φ−〉 =
1√
2
(|00⟩ − |11⟩) ,∣∣Ψ+

〉
=

1√
2
(|01⟩+ |10⟩) ,

∣∣Ψ−〉 =
1√
2
(|01⟩ − |10⟩) . (8)
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If there is no entanglement, the entanglement entropy is zero. By measuring the
information shared between subsystems, entanglement entropy enables a deeper
understanding of the complexity and coherence of entangled subsystems.

4. Integrated Information Assessment

In quantum mechanics (QM), observables correspond to measurements that can
be performed on the system. In geometric algebra (GA), these measurements are
represented by specific multivectors or combinations of multivectors. The outcome
of a measurement can be interpreted as the projection of the state multivector onto
the observable multivector, thus providing a geometric understanding of quantum
measurement. While quantum entanglement and the wedge product originate from
different areas of science, they share a fundamental focus on integration, multidi-
mensional interactions, and holistic descriptions.

4.1 Decomposition of Quantum Binary Systems

For simplicity, we will analyze an n-dimensional quantum system superposed only
from qubits that have a value of either zero or one. This simplification is a log-
ical first approximation for modeling neural networks, where an active neuron is
represented by one (indicating it fires) and a passive neuron by zero (indicating
it doesn’t fire). The extension to three dimensions (qutrit) and higher dimensions
(qudit, etc.) are discussed in [3, 7].

The studied quantum system encompasses all possible combinations generally
captured by the complex parameters αk1,k2,...,kn

:

|Ψ⟩ =
1∑

k1,k2,...,kn=0

αk1,k2,...,kn |k1, k2, . . . , kn⟩ , (9)

where k1, k2, . . . , kn ∈ {0, 1}.
The quantum system Eq. (9) can be divided into two parts. The first part

|k1, k2, . . . , km⟩ represents the input information (causal trigger, cause-effect), while
the second part is the result of the operation (post-measurement, consequence of
the input information):

|Ψ⟩ =

1∑
k1,k2,...,kn=0

αk1,k2,...,kn
|k1, k2, . . . , kn⟩ =

=

1∑
k1,k2,...,km=0

|k1, k2, . . . , km⟩

 1∑
km+1,km+2,...,kn=0

αk1,k2,...,kn |km+1, km+2, . . . , kn⟩

 . (10)
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We can mark the post-measurement |pk1,k2,...,km
⟩ state as:

|pk1,k2,...,km
⟩ =

1∑
km+1,km+2,...,kn=0

αk1,k2,...,kn
|km+1, km+2, . . . , kn⟩ . (11)

This model can effectively describe a variety of classic and quantum functions
between input and output vectors including the superposition of all variants, even
in the presence of forward and backward loops.

It should be noted that the model Eq. (10) and (11) can also be used in reverse
order. In this mode, the input information (causal trigger, cause-effect) consists
of the outputs of the analyzed system. The second part (post-measurement, con-
sequence of the input information) will then include all possible system inputs
corresponding to the specific system outputs. This approach is often used in IIR
theory [2] where intrinsic information must be evaluated by perturbing a set of sys-
tem states in all possible way and not just observing them like in case of Shannon
information.

4.2 Entanglement Quantification by Wedge Product

Let us define the multidimensional wedge products:

n
∧
i=1

|vi⟩ = |v1⟩ ∧ |v2⟩ ∧ · · · ∧ |vn⟩ (12)

The basic idea of integrated information assessment (IIA) is to analyze the entan-
glement between all possible combinations (pairs, triples and tuples) of the output
state |pk1,k2,...,km

⟩. Each set of combinations contributes to the magnitude of en-
tanglement quantification [8] as follows:

Em = fm ·
∥∥∥∥ 1

∧
k1,k2,...,km=0

|pk1,k2,...,km
⟩
∥∥∥∥ , (13)

Em−1 = fm−1 ·

 1∑
l1,l2,...,lm=0

∥∥∥∥∥∥ 1
∧

k1,k2,...,km=0
k1 ̸=l1,...,km ̸=lm

|pk1,k2,...,km
⟩

∥∥∥∥∥∥
 , (14)

. . .

E2 = f2 ·

 1∑
l1,l2,...,lm=0

1∑
k1,k2,...,km=0

∥|pk1,k2,...,km
⟩ ∧ |pl1,l2,...,lm⟩∥

 , (15)

E = Em + Em−1 + · · ·+ E2. (16)

The weighting constants f2, f3, . . . , fm can be determined in such a way that the
overall value of entanglement quantification is equal to one for the maximal possible
entanglement and zero for no entanglement. Parameters E2, E3, . . . , Em express the
evaluation of entanglement for all possible pairs, triples, and m-tices. Parameter
E represents the sum of all internal entanglement within the complex system.
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4.3 Separability Assessment

Separability in quantum physics refers to the ability to express a quantum system
as a tensor product of its individual components. Separability concept ensures
that information about the overall system is not lost when breaking it down into
its parts. A complex system is thus separable across all bipartitions only if every
single bipartition is separable. Therefore, a necessary and sufficient criterion for
system separability is E = 0.

On the other hand, the concept of non-separability means that a complex system
cannot be decomposed into sub-parts without loss of information. In other words,
all components of the system are entangled. Therefore, the entanglement evaluated
by the wedge product can be regarded as a measure of integrated information in a
complex system.

It’s important to add that quantum properties like entanglement are not limited
to the microworld, where they exhibit non-separability and non-locality, but can
also be applied to redundant systems like our brain [9] that possesses high non-
separability features.

When the weighting parameters in a quantum system are not complex, we can
model classical probabilistic input-output relationships. In a fully deterministic
system, the parameters can only take on values of zero or one. A value of one
signifies the resulting state determined by inherent logic, while a value of zero
indicates the other impossible states. The magnitude of entanglement can be mea-
sured using the wedge product algorithm that considers all possible combinations
and subsets of different variants. Using the entanglement quantification, we can
provide the assessment of integrated information also in classical systems.

5. Examples of Integrated Information Assessment

In the following illustrative examples, we will present the IIA algorithm for both
quantum and classical systems.

5.1 Two-dimensional Binary System

Let us define the input quantum qubit:

|ϕ⟩IN = α0 |0⟩IN + α1 |1⟩IN . (17)

If the input state is |0⟩IN, the system output will assign qubit |ϕ1⟩OUT. However,
if the input state is |1⟩IN, the output assigns |ϕ2⟩OUT:

|ϕ1⟩OUT = β0 |0⟩OUT + β1 |1⟩OUT , (18)

|ϕ2⟩OUT = γ0 |0⟩OUT + γ1 |1⟩OUT . (19)

We can establish the resulting quantum model:

|ψ⟩ = |0⟩IN α0 (β0 |0⟩OUT + β1 |1⟩OUT) + |1⟩IN α1 (γ0 |0⟩OUT + γ1 |1⟩OUT) =

= α0β0 |00⟩+ α0β1 |01⟩+ α1γ0 |10⟩+ α1γ1 |11⟩ . (20)
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Based on Eq. (15) the entanglement quantification can be determined:

E2 ∝ |α0β0α1γ1 − α0β1α1γ0|2 = |α0α1 (β0γ1 − β1γ0)|2 . (21)

We can observe that the maximum values can be achieved when the following set
of equations are fulfilled:

β0γ1 = ±1, β1γ0 = 0, (22)

or alternatively:

β0γ1 = 0, β1γ0 = ±1. (23)

Both variants Eqs. (22) and (23) correspond to the well-known Bell states Eq. (8),
which represent maximal non-separability. The zero value, indicating no entangle-
ment, is reached in the situation that corresponds to the linear dependence:

β0γ1 = β1γ0. (24)

This means that the system is separable.

5.2 Three-dimensional Binary System

Let us define the 3-dimensional quantum binary system:

|ψ⟩ = α000 |000⟩+ α001 |001⟩+ α010 |010⟩+ α011 |011⟩+
+α100 |100⟩+ α101 |101⟩+ α110 |110⟩+ α111 |111⟩ . (25)

First two digits are supposed to be the input vector, third one represents the
quantum post-measurement. We can rewrite the quantum model as follows:

|ψ⟩ = |00⟩ (α000 |0⟩+ α001 |1⟩) + |01⟩ (α010 |0⟩+ α011 |1⟩) +
+ |10⟩ (α100 |0⟩+ α101 |1⟩) + |11⟩ (α110 |0⟩+ α111 |1⟩) =

= |00⟩ |p00⟩+ |01⟩ |p01⟩+ |10⟩ |p10⟩+ |11⟩ |p11⟩ , (26)

p00 = α000 |0⟩+ α001 |1⟩ ,
p01 = α010 |0⟩+ α011 |1⟩ ,
p10 = α100 |0⟩+ α101 |1⟩ ,
p11 = α110 |0⟩+ α111 |1⟩ . (27)

Entanglement quantification Eq. (15) can be computed as:

E2 ∝ ∥p00 ∧ p01∥+ ∥p00 ∧ p10∥+ ∥p00 ∧ p11∥+
+ ∥p01 ∧ p10∥+ ∥p01 ∧ p11∥+ ∥p10 ∧ p11∥ =

=
(
|α000α011 − α001α010|2+|α000α101 − α001α100|2+|α000α111 − α001α110|2

)
+

+
(
|α010α101 − α011α100|2+|α010α111 − α011α110|2+|α100α111 − α101α110|2

)
.

(28)
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As an illustrative practical example, we can analyze separability of classical and
deterministic XOR-gate with two inputs and one output. The bracket expression
is given:

|ψ⟩XOR ∝ |001⟩+ |010⟩+ |100⟩+ |111⟩ =
= |00⟩ (0 · |0⟩+ 1 · |1⟩) + |01⟩ (1 · |0⟩+ 0 · |1⟩) + |10⟩ (1 · |0⟩+ 0 · |1⟩)

+ |11⟩ (0 · |0⟩+ 1 · |1⟩) . (29)

The symbol ∝ means equality up to a constant. Post-measurement vectors could
be defined:

p00 = 0·|0⟩+1·|1⟩ , p01 = 1·|0⟩+0·|1⟩ , p10 = 1·|0⟩+0·|1⟩ , p11 = 0·|0⟩+1·|1⟩ . (30)

The entanglement quantification (15) is computed as:

E2,XOR ∝ ∥p00 ∧ p01∥+ ∥p00 ∧ p10∥+ ∥p00 ∧ p11∥+ ∥p01 ∧ p10∥+
+ ∥p01 ∧ p11∥+ ∥p10 ∧ p11∥ =

= 1 + 1 + 0 + 0 + 1 + 1 = 4. (31)

Let us compare the separability assessment between XOR-gate and OR-gate. The
OR-gate model is given as:

|ψ⟩OR ∝ |000⟩+ |011⟩+ |101⟩+ |111⟩ =
= |00⟩ (1 · |0⟩+ 0 · |1⟩) + |01⟩ (0 · |0⟩+ 1 · |1⟩) + |10⟩ (0 · |0⟩+ 1 · |1⟩) +

+ |11⟩ (0 · |0⟩+ 1 · |1⟩) . (32)

The OR-gate entanglement quantification is expressed as:

E2,OR ∝ ∥p00 ∧ p01∥+ ∥p00 ∧ p10∥+ ∥p00 ∧ p11∥+ ∥p01 ∧ p10∥+
+ ∥p01 ∧ p11∥+ ∥p10 ∧ p11∥ =

= 1 + 1 + 1 + 0 + 0 + 0 = 3. (33)

These results imply that both XOR- and OR-gate are non-separable, meaning
they cannot be decomposed into sub-functions. This confirms that the information
between two inputs and one output are integrated. The numerical calculation
indicates that the XOR-gate has a higher degree of integration compared to the
OR-gate.

5.3 Four-dimensional Binary System

This example illustrates the extension of a binary system to a three-state system,
where states |0⟩ , |1⟩ , |2⟩ are represented as |00⟩ , |01⟩ , |10⟩. Let us suppose that
first two digits |00⟩ , |01⟩ , |10⟩ represent the input vector, and third and fourth
ones |00⟩ , |01⟩ , |10⟩ are the quantum post-measurements:

|ψ⟩ = |00⟩ (α0000 |00⟩+ α0001 |01⟩+ α0010 |10⟩) + |01⟩
(α0100 |00⟩+ α0101 |01⟩+ α0110 |10⟩) +
+ |10⟩ (α1000 |00⟩+ α1001 |01⟩+ α1010 |10⟩) =

= |00⟩ |p00⟩+ |01⟩ |p01⟩+ |10⟩ |p10⟩ , (34)
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p00 = α0000 |00⟩+ α0001 |01⟩+ α0010 |10⟩ ,
p01 = α0100 |00⟩+ α0101 |01⟩+ α0110 |10⟩ ,
p10 = α1000 |00⟩+ α1001 |01⟩+ α1010 |10⟩ . (35)

Entanglement quantification can be computed for this reduced four-dimensional
model as:

E3 ∝ ∥p00 ∧ p01 ∧ p10∥ = det

∣∣∣∣∣∣
α0000 α0001 α0010

α0100 α0101 α0110

α1000 α1001 α1010

∣∣∣∣∣∣
2

=

= |α0000 (α0101α1010 − α0110α1001)− α0001 (α0100α1010 − α0110α1000)+

+ α0010 (α0100α1001 − α0101α1000)|2 . (36)

E2 ∝ ∥p00 ∧ p01∥+ ∥p00 ∧ p10∥+ ∥p01 ∧ p10∥ =

=
(
|α0001α0110 − α0010α0101|2 + |α0010α0100 − α0000α0110|2 +

+ |α0000α0101 − α0001α0100|2
)
+

+
(
|α0001α0101 − α0010α1001|2 + |α0010α1000 − α0000α1010|2 +

+ |α0000α1001 − α0001α1000|2
)
+

+
(
|α0101α1010 − α0110α1001|2 + |α1000α0110 − α0100α1010|2 +

+ |α0100α1001 − α0101α1000|2
)

(37)

The given examples can be generalized to include much more complex structure
created by combining individual components [10] that can be ordered either sequen-
tially or in parallel, and also in backward and forward loops. The superposition of
all possible combinations may encompass not only past and present states but also
future states (causes and effects partition) that are linked to studied subsystem, as
noted in IIT [2].

When it comes to more and more qubits, we can use the wedge product to
assess these vectors and investigate their entanglement properties [17]. In order
for the qubits to be entangled, it is necessary that their combined state cannot be
factored into the product of two separate states. In terms of geometric algebra,
this implies that the wedge product should result in a non-trivial multivector (such
as a bivector or higher).

6. Conclusion

The paper presents a GA-based algorithm for measuring integrated information in
complex systems. The IIA algorithm relies on the assumption that QM is capable
to describe a classical complex system, where the weighting coefficients could be
real rather than complex. Additionally, the bracket notation can represent all
the potential combinations and relations between past, current, future inputs and
outputs.
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In the paper, we also explored the geometric aspect of enhancing the traditional
QM approach by incorporating visually distinct forms of quantum entanglement.
This approach allows for a clearer understanding of how quantum entanglement
affects the behavior of a complex system including higher dimensional components
with their multidimensional entanglement.

Entangled states can be alternatively expressed by multivectors in GA, which
can effectively capture the complex links between sets of two, three, up to n-
quantum components. The wedge product in GA integrates the information of
individual vectors into a combined geometric entity, such as a plane or volume. By
using this approach, it becomes possible to better quantify integrated information
of classical or quantum complex systems on different resolution levels.

The resulting methodology can also provide better explanation of emergent phe-
nomena. In a GA, the individual multi-dimensional object has either a positive or
negative orientation. This characteristic is necessary for modeling high-dimensional
resonances that emerges at various resolution levels between different subsystems.
When it comes to positive or negative multi-dimensional object orientations in GA,
we can deduce that as we add more and more system components, the complex
system gradually gains a better model of its behavior trajectory.

This phenomenon can be likened to QM concept known as Feynman’s integral
through trajectories [14] revealing that all possible QM paths ultimately align with
the established laws of classical physics. In a similar way, it is possible to approach
to the information systems and use the wave probabilistic functions [15] to capture
emergent phenomena [16], especially in soft systems.

The artificial intelligence (AI) with natural language processing (NLP) uses the
knowledge representation in a multidimensional vector space. Large language mod-
els (LLMs) are highly advanced NLP models that have been trained on extensive
quantities of text data in order to comprehend, generate, and manipulate natural
language. These models utilize deep learning techniques, specifically transformer
architectures [12], to carry out a diverse array of language-related tasks.

Transformers estimate the context of a given text using various sets of vectors
that abstract the knowledge. For example, if one vector represents the city Berlin
and another city Tokyo, it is reasonable to assume that similar spatial attributes
would be associated with the representation of national dishes like bratwurst or
sushi, even though they exist in different vector subspaces. Currently used Trans-
formers work with a vector dot product to determine the context attention matrix.
These transformers could be replaced with a more general geometric product to
introduce geometric algebra transformers (GATr) [13].

The use of GA can also be observed in how it incorporates the orientation
of individual geometric objects (plus/minus signs as for complex numbers in QM
[11]). This orientation can be modified through different mathematical functions,
either by summing up or subtracting it. Furthermore, when working with multi-
dimensional geometric objects, the operations performed can impact the shape of
objects with lower dimensions. This enables the modeling of emergence properties
(information resonances) in complex systems.

In the context of cognitive processes, the geometric algebra can serve as a
tool for synthesizing information from different sources. If we have two different
sensations (e.g., visual and auditory stimuli) represented by vectors their wedge
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product could represent an integrated sensation (a new quality) that contains both
visual and auditory components.

So far, we have only discussed in detail the geometric product. However, GA
includes several other operations. The join operation, denoted by the symbol ∨,
combines two geometric objects to form a new one that includes all the points from
both of the original objects. This operation enables the creation of the smallest
geometric object that encompasses both of the input objects. The meet operation
is a powerful tool for finding intersections of subspaces. It relies on the geometric
product and the concept of duality to compute these intersections. The use of
GA tools, allows for the manipulation and composition of individual geometric
objects (using positive and negative signs) and enables the expansion to information
resonance explained in relation to human analytical and synthetic thinking [16] into
higher dimensions.
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