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Abstract: This paper solves a modified version of the asymmetric traveling sales-
man problem with the possibility of omitting certain nodes and with a defined time
limit for the total travel time, also referred to as the asymmetric orienteering prob-
lem (AOP). This problem belongs to the class of NP-hard problems. A proposed
mathematical model maximizes the total score gained from visiting nodes within a
predefined time limit. The possibility of exceeding the time limit, which results in
a penalty to the total score, is also considered. The profitable penalty is examined,
i.e., whether accepting the penalty can be advantageous for increasing the total
score. The problem is demonstrated in a case study from the ski adventure race,
organized in the Jizera Mountains in the Czech Republic.
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1. Introduction

Distribution problems represent a broad category of optimization challenges with
wide-ranging practical applications. One significant subset of distribution problems
is routing problem, where the goal is to determine the optimal routes from one or
more depots (or origins) to a set of nodes (cities, customers, or locations). At the
core of routing problems lies the traveling salesman problem (TSP). A more recent
variant of the TSP is the TSP with profits, where the traveler must complete their
journey within specified constraints such as time, cost, or distance, while optimizing
a given objective. Unlike the traditional TSP, this variant does not require visiting
all places. The most widely studied example of TSP with profits is the orienteering
problem (OP), which originated from an outdoor sport where participants navigate
between control points in a set time limit. In the OP, the traveler earns a profit or
reward from each visited node, and the goal is to maximize the total profit within
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the available time. This variant is also known as the selective traveling salesman
problem. The asymmetric orienteering problem (AOP) is a newer variant of the
classical TSP that introduces additional constraints and complexities. The key
characteristic of the problem is the asymmetric nature of the matrix of unproductive
crossings between nodes, i.e., the distances or costs per trip between two nodes may
differ based on the path’s direction. Additionally, there is a possibility of omitting
some nodes for various reasons, e.g., due to the existence of a time limit allocated
for node visits, low efficiency of serving some nodes, or other logistical constraints.
The time limit adds a dynamic element to the task making it more realistic in
practical applications where time management is critical.

The optimization objectives can vary based on the specific practical application.
These objectives might include maximizing total profit within a predetermined
time, minimizing total distance, minimizing travel time, or striking a balance be-
tween distance and time while considering the omission of certain nodes.

This paper focuses on the asymmetric orienteering problem (AOP) as a special-
ized extension of the orienteering problem (OP). Assuming that each visited node
is assigned a score and our goal is to maximize the total score while accounting
for the asymmetry of the problem, the time limit, and the necessity of selecting
only certain nodes, an additional dynamic element has been introduced in the form
of a penalty for exceeding the time limit. However, we may still achieve a higher
overall score by exceeding the predefined time limit, even when factoring in the
penalty (i.e., the profitable penalty). This is the aim of this paper and a case study
from the sport discipline of Ski Adventure Race in the Czech Republic serves as an
example to demonstrate the model and optimization results.

2. Literature Review

The orienteering problem is also known by other names, such as the selective trav-
eling salesperson problem [7, 16], the maximum collection problem [3, 15] and the
bank robber problem [1]. It belongs to the routing problems and is close to the
traveling salesman problem (TSP) and the vehicle routing problem (VRP). The OP
is a well-known routing problem where the objective is to maximize the total score
collected by visiting a subset of locations within a given time or distance constraint.
On the other hand, VRP typically involves optimizing routes for a fleet of vehicles
to service all customers, minimizing the total distance or cost. Unlike OP, VRP
often requires that all nodes (customers) are visited, and the focus is on optimizing
routes for efficiency in terms of distance, time, or cost. The OP maximizes the total
score by visiting a subset of locations within a time or distance limit, while the TSP
aims to find the shortest route that visits all locations and returns to the starting
point. In OP, not all nodes need to be visited, whereas in TSP, every node must
be visited. The key difference is that OP optimizes the profit under constraints,
while TSP optimizes the minimum distance without constraints. Surveys on the
TSP with profits [5] and on Hamiltonian and non-Hamiltonian problems [18] po-
sition the OP among other routing problems, both with and without profits, and
highlight the distinctions. Both papers [5, 18] briefly address the OP, discussing
some solution strategies and a few of its extensions and variants.
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The book chapter titled “The Generalized Traveling Salesman and Orienteering
Problems” [6] explores advanced variations of the classic TSP, explicitly focusing on
the generalized traveling salesman problem (GTSP) and the OP. In this chapter, the
authors thoroughly examine these complex combinatorial optimization problems.
The GTSP extends the traditional TSP by requiring the selection of one node
from each of several predefined groups or clusters while minimizing the total travel
distance. The OP, on the other hand, involves maximizing the total score collected
from visiting a subset of locations within a given time or distance limit. The
chapter discusses the practical applications and challenges associated with GTSP
and OP, offering insights into how these variations can be effectively addressed
using optimization methods.

Detailed description and mathematical models of all these models can be found
in the book “Orienteering problems: Models and algorithms for vehicle routing
problems with profits” [21].

Similar to OP and TSP, an asymmetric alternative to these problems exists. the
asymmetric orienteering problem (AOP) focuses on maximizing the total score by
visiting a subset of nodes within a given time or distance limit, where travel costs
between nodes can vary based on direction. In contrast, the asymmetric traveling
salesman problem (ATSP) seeks to minimize the total travel distance or cost while
requiring that all nodes be visited, also with asymmetric travel costs [19].

The OP has gained significant attention over the past few decades. Several
well-known variants have been extensively studied, including the team OP [4],
the capacitated team OP [11], the (team) OP with time windows, and the time-
dependent OP [21]. More recently, a range of new OP variants has emerged, such
as the stochastic OP, the generalized OP, the arc OP, the multi-agent OP [22], and
the clustered OP [12], among others.

A comprehensive overview of the OP covering the history, various formulations,
and the different variants of the OP can be found in the paper titled “The Orien-
teering Problem: A Survey” [22] and in the book “Orienteering problems: Models
and algorithms for vehicle routing problems with profits” [21]. The authors high-
light the practical applications of the OP in fields such as tourism, logistics, and
other areas where optimal route planning is critical.

Another paper titled “Orienteering Problem: A Survey of Recent Variants,
Solution Approaches, and Applications” [9] also provides a comprehensive survey
of the OP and discusses the latest applications, including the tourist trip design
problem and the mobile crowdsourcing problem. The paper categorizes the variants
based on different constraints and objectives, such as multi-period OP, team OP
and time-dependent OP. For each variant, the authors discuss its specific challenges
and the corresponding solution approaches, including exact algorithms, heuristics,
and metaheuristics.

The basic team OP, a formulation often used in logistics and operations research,
involves a fleet of vehicles tasked with completing operations such as deliveries or
collections while maximizing overall profit [4,21]. The problem requires coordinat-
ing the vehicles so they work together efficiently, adhering to constraints such as
time limits for each vehicle. The goal is to divide tasks and optimize routes while
balancing profitability and operational feasibility.
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The practical use of OP and AOP is extensive based on the literature [6, 8–
10, 21]. Companies such as FedEx, UPS, and Amazon use route optimization to
minimize time and distance when delivering packages. The ability to skip less im-
portant stops due to time constraints or dynamic changes in delivery priorities can
increase efficiency. Infrastructure maintenance and repair companies can optimize
the routes of their technicians, and in cases of time pressure, it may be advisable
to skip non-essential maintenance. Home health care providers can optimize the
routes of nurses or caregivers visiting patients, considering patient priority and
travel time. Vehicles in integrated rescue systems (ambulances, police, and fire
trucks) must reach critical locations as quickly as possible. In disaster scenarios,
some locations may need to be skipped to prioritize high-urgency calls within a
limited amount of time. Optimizing police patrol routes is also important to cover
high-crime areas more frequently while skipping lower-risk areas if time does not
allow full coverage. Companies optimizing itineraries for visits by multiple suppli-
ers or partners can use AOP to minimize travel costs and time, possibly skipping
non-critical suppliers. In industries with strict time windows for pick-up and deliv-
ery (e.g., perishables), optimizing routes within time constraints is crucial. Travel
agents can design optimized itineraries where tourists visit a set of sites within
a limited time, skipping less attractive sites if necessary. Route optimization for
reconnaissance missions or supply drops in the military and defense sector, where
real-time intelligence and time constraints may require skipping certain points, is
as necessary as route optimization in air and maritime transport, urban waste
collection, street sweeping, and snow removal.

The extension of the classical OP to incorporate multiple drones that cooperate
with a truck to visit a subset of the input nodes was presented in the paper titled
“The Orienteering Problem” [19]. In this case, multiple drones have limited battery
endurance. Thus, they can either move together with the truck at no energy cost
for the battery or be launched by the truck onto short flights that must start and
end at different customer locations.

A practical application of the OP can be found in team orienteering races [4,25].
In this sport, participants start at a designated control point, aim to visit as many
checkpoints as possible and return to the starting point within a set time limit.
Each checkpoint has a specific score, and the objective is to maximize the total
score collected. In this context, the OP involves selecting a subset of vertices and
determining the shortest Hamiltonian path among them so that the OP can be
viewed as a combination of the knapsack problem (KP) and TSP. While the TSP
focuses on minimizing travel time or distance, the OP aims to maximize the total
score with the flexibility of not needing to visit all checkpoints. Finding the shortest
path between selected checkpoints is crucial to visiting as many as possible within
the available time.

In recent years, the OP, AOP, TSP, and ATSP have been applied in many
practical applications, leading to the development of numerous exact algorithms,
heuristics, and metaheuristics [21].

The TSP is difficult to solve because it is a combinatorial optimization problem
with a solution space that grows factorially with the number of places. Specif-
ically, for n places, there are (n− 1)! possible routes, which makes the problem
computationally infeasible to solve exactly for even moderately large numbers of
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places. The TSP is classified as an NP-hard problem, meaning there is no known
polynomial-time algorithm that can solve all instances of the TSP exactly. Unlike
some problems where a structured or hierarchical approach can be applied, the TSP
has no inherent structure that makes it easier to solve. The connections between
places (distances) can vary non-uniformly, making it difficult to apply simple rules
to reduce the problem space. While heuristic and approximation algorithms (e.g.,
genetic algorithms, simulated annealing, or the nearest neighbor algorithm) can
provide good solutions, finding the exact optimal solution is challenging. These
methods do not guarantee the optimal solution, and evaluating the quality of an
approximate solution can be difficult. Of course, solving modifications of TSPs
such as GTSP, OP, ATSP, etc., also falls into the group of NP-hard problems.
However, for practical purposes, it is necessary to find an optimal, or at least good
enough, solution. Therefore, many publications have focused on optimizing these
problems in the last decade.

The paper titled “Genetic Algorithm with Neighbor Solution Approach for
Traveling Salesman Problem” [24] explores an innovative method to solve the TSP
using a hybrid approach that combines the strengths of genetic algorithms with a
neighbor solution technique to improve the search for an optimal solution. In their
approach, the genetic algorithm is used to generate a population of potential solu-
tions, which are then refined through a neighbor solution method. This technique
helps in exploring the solution space more effectively by making small adjustments
to existing solutions, thereby improving their quality. The results of the study show
that this combined approach is effective in finding high-quality solutions for the
TSP, offering improvements in both solution accuracy and computational efficiency
compared to traditional methods. The paper concludes that the genetic algorithm
with the neighbor solution approach is a promising method for solving the TSP
and potentially other combinatorial optimization problems.

The paper titled “A Novel Neural Approximation Technique for Integer For-
mulation of the Asymmetric Travelling Salesman Problem” [19] presents a new
approach to solving the ATSP using neural networks. The author proposes a neu-
ral approximation technique that formulates the ATSP as an integer programming
problem. This approach leverages the capabilities of neural networks to approxi-
mate solutions to this complex combinatorial problem. The paper details the design
of the neural network model, including its structure, training process, and how it
integrates with the integer programming formulation of the ATSP. The neural net-
work generates approximate solutions, which are then refined to meet the integer
constraints of the problem. The results demonstrate that this neural approximation
technique is effective in providing high-quality solutions to the ATSP, with signif-
icant improvements in computational efficiency. This approach shows promise in
addressing the challenges posed by asymmetric costs in route optimization, offering
a novel method for tackling similar optimization problems in operational research.

A combinatorial optimization problem that involves determining the most valu-
able route through a set of locations, given specific constraints on distance or time,
is explored in the paper “The Orienteering Problem” [8]. The authors discuss
various formulations of the problem, including its applications in real-life scenarios
such as tourism, logistics, and robotics. They also present algorithms for solving the
problem, ranging from exact approaches to heuristics, illustrating the trade-offs be-
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tween computational efficiency and solution accuracy. An efficient center-of-gravity
heuristic is introduced, which outperforms heuristics found in the literature.

The paper titled “New Formulations for the Orienteering Problem” [14] presents
new mathematical formulations to solve the OP. The authors propose two novel for-
mulations aimed at enhancing the computational efficiency and accuracy of existing
models by integrating different mathematical programming techniques. The first
formulation is a mixed-integer linear programming (MILP) model that optimizes
the route planning aspect, while the second formulation improves the efficiency of
solving larger instances of the problem. The paper also compares the performance
of the proposed models with existing approaches using CPLEX 12.5. Computa-
tional experiments show that both new formulations outperform existing models,
and the proposed formulations are able to solve all benchmark instances that had
previously only been solved using specialized heuristics.

The paper titled “The Orienteering Problem with Variable Profits” [10] ad-
dresses the OP in the context of varying profits associated with visiting different
locations. The problem involves finding the optimal route through a set of locations
to maximize total profit while respecting constraints such as time or capacity. In
this study, the authors introduce the concept of variable profits, where the profit
associated with visiting each location can change based on certain factors. They
propose a model and algorithm to solve this extended version of the OP efficiently.
The OP with variable profits (OPVP) is formulated on a complete undirected graph
with the depot located at vertex 0. Each vertex, except the depot, is associated
with a profit value and a selection parameter ranging from 0 to 1. A vehicle can
visit a vertex multiple times, gathering a portion of the profit specified by the selec-
tion parameter during each visit. Alternatively, another model allows the vehicle
to spend continuous time at each vertex, collecting a percentage of the profit based
on the time spent at that location. The objective is to find the route that maxi-
mizes profit for the vehicle, starting and ending at the depot, while adhering to the
travel time constraint. The paper contributes to the field of operations research
by exploring a more realistic scenario where profits are variable rather than fixed,
and it provides a framework for solving such problems effectively.

An enhanced branch-and-cut algorithm for solving large-scale orienteering prob-
lems, achieving significant improvements in solving benchmark instances, was pro-
posed in the paper titled “A Revisited Branch-and-Cut Algorithm for Large-Scale
Orienteering Problems” [16]. The authors presented a revisited version of the
branch-and-cut algorithm for the OP that brings multiple contributions together.
They developed two heuristics for cycle problems, building on existing TSP meth-
ods. An efficient variable pricing procedure was designed for the OP, reducing
repetitive calculations.

The application of artificial neural networks (ANNs) to address the OP is pre-
sented in the paper titled “Using Artificial Neural Networks to Solve the Ori-
enteering Problem” [23]. The authors develop an ANN-based approach to solve
the OP, leveraging neural networks’ learning and pattern recognition capabilities
to identify optimal or near-optimal solutions. The paper details the design and
implementation of the neural network model, including the architecture, training
process, and evaluation methodology. The authors compare the performance of
their ANN-based solution with traditional optimization methods, demonstrating
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that the neural network approach can effectively solve the OP, particularly for in-
stances where other methods struggle. The results indicate that ANNs provide
a promising alternative for solving the OP, offering competitive solution quality
and computational efficiency. This research also highlights the potential of neural
networks in solving complex optimization problems beyond traditional techniques.

The team orienteering problem (TOP) is described in the paper titled “A
Branch-and-Cut Algorithm for the Team Orienteering Problem” [2]. The TOP
involves a team of individuals collectively selecting routes to maximize the total
profit while visiting a set of locations within a specified time limit. In this study,
the authors propose a branch-and-cut algorithm to solve the TOP efficiently. They
introduced a new two-index formulation that features a polynomial number of
variables and constraints. This streamlined formulation, enhanced by the inclusion
of continuity constraints, has been tackled using the branch-and-cut algorithm.
This algorithm combines techniques from branch-and-bound methods with cutting
planes to improve the solution quality and computational performance. The au-
thors successfully resolved 327 out of 387 reference instances to optimality, surpass-
ing previous methodologies by 26 instances. Additionally, 24 previously unresolved
instances have now been closed to optimality.

3. Mathematical Formulation of the AOP Model

A complete edge-valued ordinary digraph defined by the set of nodes V and the
set of oriented edges Y is given. Let the nodes v1, v2 . . . , vn in the set of nodes
V = {v1, v2 . . . , vn+1} represent the locations of possible visits and let a score of
ci > 0, where i ∈ V {n+ 1}, be defined for each of these nodes. Let the node
vn+1 represents the place in which the route starts and ends. Let the oriented
edge [vi, vj ] ∈ Y , where i = 1, . . . , n + 1, j = 1, . . . , n + 1 and i ̸= j represents
the minimum path from node i = 1, . . . , n + 1 to node j = 1, . . . , n + 1 and its
evaluation ti,j represents the traversal time from node i = 1, . . . , n + 1 to node
j = 1, . . . , n + 1. Let the time limit (maximum route duration) Tmax be further
defined.

The task is to decide which nodes should be visited within the planned route
and the order of visiting these nodes so that the maximum total score (point gain)
is achieved within a defined time limit.

Notation:

n number of nodes generating a point gain (score) in the transport net-
work,

cj value of the point gain obtained by visiting node j = 1, . . . , n (for node
n+ 1 the value cn+1 = 0),

ti,j travel time from node i = 1, . . . , n+ 1 to node j = 1, . . . , n+ 1, where
i ̸= j,

Tmax time limit given for node visits.

In order to model the required decisions, we introduce the following variables
into the mathematical model:
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xi,j a binary variable representing the traversal from the node i = 1, . . . , n+
1 to j = 1, . . . , n + 1 and i ̸= j; if xi,j = 1 after the optimization
is completed, then the traversal from node i = 1, . . . , n + 1 to node
j = 1, . . . , n+ 1 will occur; if xi,j= 0, the traversal will not occur,

zi a non-negative variable ensuring that an undesired type of subcycle
(one that does not pass through the node where the route starts and
ends) does not occur, for i = 1, . . . , n.

Mathematical model of the optimization problem is as follows:

max(x, z) =

n+1∑
i=1

n+1∑
j=1

cjxi,j , (1)

Subject to:

n+1∑
j=1
j ̸=i

xi,j ≤ 1 for i = 1, . . . , n+ 1, (2)

n+1∑
i=1
i ̸=j

xi,j =

n+1∑
i=1
i ̸=j

xj,i for j = 1, . . . , n+ 1, (3)

n+1∑
i=1

n+1∑
j=1
j ̸=i

ti,jxi,j ≤ Tmax, (4)

zi − zj + nxi,j ≤ n− 1 for i = 1, . . . , n, j = 1, . . . , n

and i ̸= j, (5)

xi,j ∈ {0, 1} for i = 1, . . . , n+ 1;

j = 1, . . . , n+ 1 and i ̸= j, (6)

zi ∈ R+
0 for i = 1, . . . , n. (7)

Function in Eq. (1) represents the optimization criterion – the total score (points
gain) achieved within the time limit Tmax. The constraints in group (2) ensure
that a traversal to just one other node will be made from each visited node i = 1
and node n + 1, where the route starts. The constraints in group (3) guarantee
the continuity of the path at the visited nodes. Constraint (4) guarantees that
a defined time limit is respected in the route planning. Group of constraints (5)
ensures that undesired subcycles (subcycles not passing through the node where
the route starts and ends) do not occur during route construction. Finally, groups
(6) and (7) define the domains of the variables used in the model.
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Mocková D. et al.: Asymmetric Orienteering Problem with Profitable Penalty

4. AOP Model with Profitable Penalty

Now, we extend the formulation of the problem presented in Section 3 by adding
another aspect – the penalty for exceeding the time limit Tmax. We rename the
original time limit (maximum route duration) Tmax as the baseline time limit (max-
imum route duration without penalty). Next, we define a set of possibilities to in-
crease it M , where |M | = m, and let be defined time values τi, where i = 1, . . . ,m,
representing the values by which the value of the basic time limit is increased.
Increasing the base time limit Tmax can results in extra point gains from node
visits made in the time interval (Tmax; Tmax +

∑m
i=1 τi⟩ , but it is also a source of

penalty points that decreases the total score, whereby increasing the time limit by
the value, τi, for i = 1, . . . ,m, decreases the value of the total score by the value
c̄i > 0.

The task is to decide on the nodes to be visited within the planned route and
the order of visiting these nodes so that the maximum total score is achieved within
a defined time limit.

Notation

n number of nodes generating a point gain (score) in the transport net-
work,

m number of possibilities for increasing the basic time limit,
cj value of the point gain obtained by visiting node j = 1, . . . , n (for the

node n+ 1 the value cn+1 = 0),
c̄j value of the penalty resulting from visits to nodes when the time limit

is increased by j = 1, . . . ,m,
ti,j travel time from node i = 1, . . . , n+ 1 to node j = 1, . . . , n+ 1,

where i ̸= j,
Tmax basic time limit given for node visits,
τi the value of the time step i = 1, . . . ,m allowing the time limit increase.

In order to model the required decisions, we introduce the following variables
into the mathematical model:

xi,j a binary variable representing the order of visits to nodes i = 1, . . . , n+
1, j = 1, . . . , n + 1 and i ̸= j; if xi,j = 1 after the optimization is
completed, then the traversal from node i = 1, . . . , n + 1 to node j =
1, . . . , n+ 1 will occur; if xi,j = 0, the traversal will not occur;

yi a binary variable representing the existence of possibilities to increase
the basic time limit by the time interval

∑i
j=1 τj , where i = 1, . . . ,m;

if yi = 1 after the optimization is completed, then the value of the base
limit will increase by the value

∑i
j=1 τj ; if yi = 0, the increase will not

occur;
zi a non-negative variable ensuring that an undesired type of subcycle

(one that does not pass through the node where the route starts and
ends) does not occur, for i = 1, . . . , n.

Mathematical model of the optimization problem is as follows:

max(x, y, z) =

n+1∑
i=1

n+1∑
j=1

cjxi,j −
m∑
j=1

c̄jyj . (8)
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Subject to constraints (2), (3), (5)–(7) supplemented by constraints:

n+1∑
i=1

∑
j=1
j ̸=i

n+1
ti,jxi,j ≤ Tmax +

m∑
k=1

yk

k∑
p=1

τp, (9)

m∑
k=1

yk ≤ 1, (10)

yi ∈ {0; 1} for i = 1, . . . ,m. (11)

Function in Eq. (8) represents the optimization criterion – the total score
achieved within one of the permissible time limits. Constraint (9) ensures that
the basic time limit is respected when planning the route and allows extending it.
Constraint (10) ensures that the basic time limit is extended by at most one of the
possible time intervals. The group of constraints (11) defines the domains of the
variables used in the model.

5. Case Study

Mathematical models presented in Chapters 3 and 4 will be applied and validated
in the SKI ADVENTURE sports discipline in the Czech Republic. This is a ski
orienteering race. The race takes place on the Czech side of the CHKO Jizerské
hory (Jizera Mountains Protected Landscape Area), in the area of the Jizerská
magistrála (Jizera cross-country route) and its surroundings, on a plateau at an
altitude of around 1000 meters above sea level.

A similar version of this race is the summer orienteering sport on mountain
bikes (MTBO).

5.1 The Race Rules

The race rules differ from the classical ski orienteering primarily in that the partici-
pants of the race form racing pairs (hereinafter referred to as teams) in 7 categories
(MM – male/male, MM+ – male/male with the sum of their ages over 90 years,
MD – male/female, MD+ – male/female with the sum of their ages over 90 years,
DD – female/female, DD+ – female/female with the sum of their ages over 90
years, RD – parent/child under the age of 15). During the race, the distance be-
tween the pair must be minimal, and they must be allowed to communicate without
technical devices. The start and finish of the race are located at the same point
(K33), and there are 32 checkpoints (K1–K32) along the route. These checkpoints
are positioned such that teams cannot visit all of them during the race. Passing
through the checkpoints K1–K32 a team gains a point score of 10, 20, 30, 40, 50,
or 100 points (each checkpoint has only one valid score). The objective for teams
is to plan routes that maximize point gain within the 5-hour time limit. A map
of the area with the checkpoints marked is given to the teams 12 hours before the
race, allowing them to prepare their route strategy.

In order to increase the total point score, there is the option to exceed the
5-hour race time limit. However, after exceeding this limit, teams must expect
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a penalty in the form of a reduction in the total point score, depending on the
amount of time over the limit. The total point score is reduced for each started
minute according to the rules (see Tab. I).

Race completion interval c̄j
[h:min] [points per minute started]

Penalty 0 ⟨0 : 00; 5 : 00⟩ 0
Penalty 1 (5 : 00; 5 : 05⟩ 2
Penalty 2 (5 : 05; 6 : 00⟩ 5

Tab. I Penalty points for every minute started in the race completion interval when
exceeding the time limit.

The maximum time limit for completing the race is 6 hours. However, a team
may score more points overall if the point gain minus the penalty is profitable, see
Tab. II. Tab. II considers the penalty’s profitability for different point values per
visited checkpoint beyond the basic time limit. However, a team may visit multiple
checkpoints between the time of 5:00:01 and 6:00:00, which is beyond the basic 5-
hour time limit, thus increasing the profitability of the penalty. For this reason, in
constraint (9) of the mathematical model, the value of τi will be increased up to
60 minutes.

5.2 Input Data

The complete, strongly continuous edge-weighted digraph is composed of nodes
representing the start/finish of the race and the positions of the individual check-
points and oriented edges whose ratings represent the traversal times of the ski
teams between each pair of nodes in seconds, depending on the performance of the
virtual teams (V1, V2, V3), i.e., the teams entering the computational experiments.

The traversal time between each pair of nodes is calculated based on the kilome-
ter distance, the speed of the virtual teams and the terrain elevation. It is true that
the more efficient the virtual team, the higher its average speed, see Tab. III. Time
distance matrices according to the performance of virtual teams: The fragments
of the time requirements of the transitions between nodes are given according to
the performance of the virtual teams in seconds, ranging from less to more efficient
(time distance matrix A, matrix B, matrix C), see Tab. IV–VI. To each element
of the matrix, a constant value of 15 is added, which is needed to orient the virtual
teams at the checkpoints K1–K32 and for the virtual teams to decide the next race
direction.

5.3 Results of Computational Experiments

The outputs of the optimization are the values of the optimization criteria, the
values of the total time spent by the virtual teams on the race route (TT ), the values
of the total score without penalty, the total value of penalties, the computational
complexity (T ) and the gap value, which can be calculated using Eq. (12) according
to [13].
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Race completion c̄j [points Profitable penalty for different point
time interval per minute values per visited checkpoint beyond
[h:min] started] the basic time limit [points/checkpoint]

(0 : 00; 5 : 00⟩ 0 20 30 40 50 100

(5 : 00; 5 : 01⟩ 2 18 28 38 48 98
(5 : 01; 5 : 02⟩ 4 16 26 36 46 96
(5 : 02; 5 : 03⟩ 6 14 24 34 44 94
(5 : 03; 5 : 04⟩ 8 12 22 32 42 92
(5 : 04; 5 : 05⟩ 10 10 20 30 40 90
(5 : 05; 5 : 06⟩ 15 5 15 25 35 85
(5 : 06; 5 : 07⟩ 20 0 10 20 30 80
(5 : 07; 5 : 08⟩ 25 – 5 15 25 75
(5 : 08; 5 : 09⟩ 30 – – 10 20 70
(5 : 09; 5 : 10⟩ 35 – – 5 15 65
(5 : 10; 5 : 11⟩ 40 – – – 10 60
(5 : 11; 5 : 12⟩ 45 – – – 5 55
(5 : 12; 5 : 13⟩ 50 – – – – 50
(5 : 13; 5 : 14⟩ 55 – – – – 45
(5 : 14; 5 : 15⟩ 60 – – – – 40
(5 : 15; 5 : 16⟩ 65 – – – – 35
(5 : 16; 5 : 17⟩ 70 – – – – 30
(5 : 17; 5 : 18⟩ 75 – – – – 25
(5 : 18; 5 : 19⟩ 80 – – – – 20
(5 : 19; 5 : 20⟩ 85 – – – – 15
(5 : 20; 5 : 21⟩ 90 – – – – 10
(5 : 21; 5 : 22⟩ 95 – – – – 5
(5 : 22; 5 : 23⟩ 100 – – – – –

Tab. II Number of points for the profitability of the penalty based on the score for
a given control point.

Team V1 Team V2 Team V3
average speeds average speeds average speeds

[km.h−1] [km.h−1] [km.h−1]

Steep descent 19.5 20 20.5
Gentle descent 16.0 17 18.0
Flat terrain 12.5 14 15.5
Gentle ascent 10.0 11 12.0
Steep ascent 7.5 8 8.5

Tab. III Table of average speeds in relation to terrain type depending on the per-
formance of the virtual racing pair.
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K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

K1 0 636 996 759 939 1515 2422 2976 3476 4277
K2 791 0 749 766 1133 1709 2616 3170 3670 4443
K3 1151 749 0 1138 1505 2081 2989 3543 4043 4816
K4 697 685 1138 0 382 958 1865 2420 2919 3692
K5 877 1052 1505 382 0 591 1498 2297 2769 3356
K6 1453 1628 2081 958 591 0 1095 1865 2452 3264
K7 2360 2535 2989 1865 1498 1095 0 1045 2200 3021
K8 2645 2819 3543 2150 2122 1776 761 0 1289 2139
K9 3320 3494 4043 2825 2600 2283 1941 1195 0 1770
K10 3797 4065 4518 3395 3181 2994 2972 2122 1601 0

Tab. IV Fragment of time distance matrix A for team V1.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

K1 0 586 908 700 861 1375 2185 2692 3135 3861
K2 719 0 671 692 1020 1534 2344 2851 3294 4020
K3 1040 671 0 1018 1346 1860 2670 3177 3620 4346
K4 631 623 1018 0 343 857 1667 2174 2617 3343
K5 791 951 1346 343 0 529 1339 2060 2481 3114
K6 1306 1465 1860 857 529 0 979 1675 2198 2947
K7 2116 2275 2670 1667 1339 979 0 947 1973 2709
K8 2391 2551 2946 1943 1910 1602 704 0 1157 1919
K9 2985 3144 3539 2536 2337 2054 1765 1076 0 1605
K10 3564 3723 4118 3115 2877 2710 2674 1910 1460 0

Tab. V Fragment of time distance matric B for team V2.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

K1 0 544 835 636 781 1246 1978 2444 2843 3535
K2 659 0 607 632 928 1392 2124 2590 2989 3690
K3 950 607 0 921 1217 1681 2413 2880 3278 3979
K4 576 572 921 0 311 776 1507 1974 2372 3073
K5 721 868 1217 311 0 480 1211 1868 2248 2878
K6 1186 1332 1681 776 480 0 886 1520 1993 2684
K7 1918 2064 2413 1507 1211 886 0 866 1788 2456
K8 2184 2330 2820 1774 1738 1460 656 0 1050 1740
K9 2713 2859 3278 2302 2123 1868 1620 980 0 1469
K10 3371 3527 3876 2970 2630 2479 2432 1738 1344 0

Tab. VI Fragment of time distance matrix C for team V3.
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gap =
BestBound−Best Solution

Best Solution
· 100, (12)

where BestSolution (BS) is the value of the best integer solution found so far
BestBound (BB) is the value of the upper estimate of the best integer solution
found so far.

The computational experiments were performed on a PC equipped with the
Intel(R) Core(TM) i9-10900X processor with the parameters: 3.70GHz and 64GB
RAM with an installed version of the optimization software – FICO Xpress IVE
Version 9.0 (64-bit, release 2022).

The optimization runs for virtual team V1 without penalty and with a profitable
penalty are documented in graphs Fig. 1 and Fig. 2. The graphs include the time
evolution of the lower and upper estimates of the values of the optimization criteria
and the time evolution of the gap value. The optimization runs for virtual teams V2
and V3 without penalization and with cost-effective penalization followed similar
trends. In a relatively short time after the start of the optimization computation,
the gap value dropped sharply to the near-optimal solution, and in the remaining
computation time, the gap value dropped significantly slower and for different
lengths of time. This is documented by the different values of the computational
demands T (Tab. VII).

TT
∑n+1

j=1 cj
∑m

j=1 c̄j
∑n+1

j=1 cj−
[h:min:s] [points] [points] −

∑m
j=1 c̄j T [s] gap [%]

[points]

BS V1
without 04:59:44 640 0 640 1100.2 0
penalty
BS V1 with
profitable 04:58:55 640 0 640 1401.1 2.7 · 10−12

penalty

BS V2
without 04:58:24 700 0 700 2806.8 7.5 · 10−12

penalty
BS V2 with
profitable 05:02:42 710 6 704 14715.8 0
penalty

BS V3
without 04:59:46 760 0 760 7302.4 0
penalty
BS V3 with
profitable 05:04:34 770 10 760 8208.5 0
penalty

Tab. VII Overview of the results of optimizations depending on the performance
of virtual teams and the possibility of profitable penalties.
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Fig. 1 Graph of the computation process and a gap of BS V1 without penalty.
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Fig. 2 Graph of the computation process and a gap of BS V1 with profitability
penalty.
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5.4 Comparison of Computational Experiments with Real
Race Results

To compare the results of the optimizations, the final list of real results from the top
five teams (team R1, team R2, team R3, team R4, team R5) in the MM – male/male
category from 2020 will be used. The results will be arranged in descending order
based on the point scores. In the case of identical point scores, the results will be
arranged by the total time spent on the race course. The ranking will also include
the results of virtual teams based on performance from computational experiments
(Tab. VIII).

When we compare the results of the real teams with the virtual teams, in cases
without penalties, the most efficient real team loses 120 points to team V3 and 60
points to team V2. In cases allowing for profitable penalties, the most efficient real
team loses 120 points to team V3 and 60 points to team V2. However, in both
scenarios, the most efficient real team always achieves better results than team V1.

TT
∑n+1

j=1 cj
∑m

j=1 c̄j
∑n+1

j=1 cj −
∑m

j=1 c̄j
[h:min:s] [points] [points] [points]

BS V3
without 04:59:46 760 0 760
penalty
BS V3 with
profitability 05:04:34 770 10 760
penalty

BS V2 with
profitability 05:02:42 710 6 704
penalty
BS V2
without 04:58:24 700 0 700
penalty

R1 04:57:43 640 0 640
BS V1 with
profitability 04:58:55 640 0 640
penalty

R2 04:59:18 640 0 640
BS V1
without 04:59:44 640 0 640
penalty

R3 05:02:35 640 6 634
R4 04:55:58 600 0 600
R5 04:51:21 590 0 590

Tab. VIII Comparison of results of computational experiments with real race re-
sults in MM category.
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6. Discussion and Conclusions

The AOP is an optimization problem that finds applications in a wide range of
areas. The main contribution of this paper is the extension of the existing spectrum
of exact approaches for solving the AOP by introducing mathematical models that
allow exceeding of the time limit in order to gain a benefit, such as additional
points, even in cases where exceeding the time limit results in a penalty. In the
proposed mathematical model for solving the AOP with a profitable penalty, the
penalty for each time unit exceeded can be either constant or variable. If the total
score becomes worse due to the penalty, the option to exceed the time limit will
not be used. In such cases, the penalty will be assessed as unprofitable.

The case study demonstrates that the organization of the Ski Adventure race
is one of the applications of the proposed mathematical model, with the option to
exceed the time limit and apply variable penalties. The proposed mathematical
model can be used by sports team managers or the teams themselves, as well as by
the race organizers. In preparing their race strategy, teams receive a map of the
area with the locations of the checkpoints and the point values of each checkpoint
12 hours before the start of the race. The computational times achieved during the
computational experiments show that these times are significantly shorter than this
12-hour window. This fact means the teams have enough time to prepare their race
strategy to maximize their point score. Based on the mathematical model results,
race organizers can better predict the strategies of different teams and, based on
these predictions, appropriately place refreshment stations for competitors, medical
teams, or other types of service stations.

From the computational experiments with the proposed models it was also
found that:

• The computational times varied significantly across different experiments,
ranging from 1100.2 seconds (for team V1 and the variant without penalty)
to 14715.8 seconds (for team V2 with profitable penalty),

• The experiments without penalties (for all teams V1–V3) were less time-
consuming,

• The optimal solution was achieved at different stages of the optimization
process. The fastest convergence to the optimal solution occurred in the
computational experiment for team V2 with a profitable penalty (9.8% of
the computational time), while the slowest was for team V1 without penal-
ties (99% of the computational time). This fact shows different convergence
speeds to the optimal solution. It is impossible to predict the computational
time in an exact solution based on the branch-and-bound method.

Further applications of the mathematical model with profitable penalties can be
found in other sports, distribution logistics, or tourism. In distribution logistics, the
proposed model can be used to assess the efficiency of serving additional customers
when exceeding a time limit, such as the length of a driver’s shift. In tourism, the
model can be applied to assess the effectiveness of visiting other landmarks within
a tourist trip of a predefined length.
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