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Abstract: This study presents a comprehensive multi-objective transportation
model aimed at optimizing complex vehicle routing problems, which are nonde-
terministic polynomial time NP-hard due to spatial, temporal, and capacity con-
straints. In this study, the multi-objective transportation model integrates decision-
maker preferences with hybrid optimization techniques, including the approximate-
combinatorial method, ant colony optimization and evolutionary algorithms. it
seeks to minimize transportation costs, time, and emissions while accounting for
real-world constraints such as fleet composition, customer demand, and service-
level agreements. The techniques like multi-criteria decision-making methods are
employed to refine the solution set, balancing objectives like cost, time, environ-
mental impact, and service level. The novel optimization model is applied to a fuel
distribution case study involving 18 customers and a heterogeneous fleet, where
it optimizes vehicle routes to meet delivery requirements efficiently. The multi-
objective transportation framework generates multiple feasible solutions, which
are further narrowed down using decision-making frameworks to ensure alignment
with organizational goals and decision-maker preferences. The integration of quan-
titative optimization techniques with qualitative decision-making processes makes
this model robust and scalable, offering a practical tool for enhancing operational
efficiency in transportation systems. This approach effectively addresses real-world
logistics challenges, demonstrating significant improvements in route efficiency, cost
savings, and environmental sustainability.
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1. Introduction
In its modern understanding, systems engineering, as well as engineering systems,
differs from traditional disciplines by emphasizing several key principles. It treats
systems as integrated wholes [3, 21, 7], aiming to harmonize their components,
including functions, timelines, and objectives that may vary across different levels.
Conceptual systemic design forms a core aspect of this discipline, alongside efforts
to bridge traditional engineering fields and address gaps between specialized areas
[3, 21, 7].

Modern systems engineering has evolved to redefine its domain and research
methodologies to address the challenges posed by technological advancements, com-
petitive pressures, and the complexity brought about by increasing automation
and specialization. These challenges necessitate innovative strategies to effectively
manage areas and interfaces across various disciplines.

Complex engineering systems are often exemplified by airport traffic control
systems, the design and operation of sophisticated engineering installations, solu-
tions to intricate vehicle routing problems tailored to real-world logistics scenarios
[33, 15, 30], and passenger aircraft systems [20]. The systemic approach in these
contexts seeks to achieve equilibrium, ensuring that no performance indicator im-
proves at the expense of others of equal or greater importance [3, 27, 11]. For
example, improving productivity should not result in unacceptable increases in
cost or energy consumption. As performance indicators are inherently interdepen-
dent, decision-making must balance all critical parameters to optimize both the
entire system and its individual components.

The optimization of decision-making processes in complex engineering systems
requires a profound understanding of the efficiency indicators that govern the per-
formance of decision-makers. In systems where multiple stakeholders influence
decisions, their preferences and objectives often create intricate interdependencies
that demand iterative optimization strategies. Traditional optimization techniques
often prove inadequate for such multidimensional problems, necessitating the de-
composition of complex tasks into smaller, more manageable sub-problems, each
addressed with specialized approaches.

To address these challenges, the approximate-combinatorial method [16, 19,
3] provides a robust theoretical framework for decomposing and optimizing com-
plex tasks. By breaking down a problem into a series of interconnected sub-tasks,
this method facilitates iterative refinements to decision-makers’ preference struc-
tures, progressively incorporating and expanding objectives. In this study, the
approximate-combinatorial method is applied to the domain of transportation sys-
tems, with a particular focus on the canonical vehicle routing problem (VRP).

The VRP stands as a quintessential example of a combinatorial optimization
problem, central to the field of transportation logistics and operations research [14,
24]. Introduced by Dantzig and Ramser [8], the VRP seeks to determine the
most efficient set of routes for a fleet of vehicles tasked with delivering goods to
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a network of customers. The primary objective is to minimize total operational
costs—commonly modeled as a combination of factors such as total distance trav-
eled, fuel consumption, and time—while adhering to various constraints including
vehicle capacities, time windows for deliveries, and the demand characteristics of
individual customers [37].

The VRP’s complexity stems from its combinatorial explosion of possible solu-
tions as the number of vehicles and delivery locations increases. Mathematically,
the VRP belongs to the class of NP-hard problems, where the time required to com-
pute an optimal solution grows non-polynomially with the size of the problem [25].
In such problems, the solution space is vast, and exact algorithms—such as those
based on branch and bound or dynamic programming—become impractical for
large instances due to their exponential time complexity. Consequently, solving
large-scale VRPs requires the application of heuristic or metaheuristic techniques,
which offer approximations of the optimal solution within a reasonable computa-
tional time. Methods such as genetic algorithms [35], simulated annealing [2], or
ant colony optimization [5] have been extensively studied and deployed in practice,
given their ability to explore and exploit the search space efficiently.

In practical applications, the VRP often evolves into a multi-objective problem,
driven by the need to balance several competing criteria. For instance, besides min-
imizing operational costs, decision-makers may aim to minimize the environmental
impact of transportation, balance the workload among drivers, or ensure customer
satisfaction by minimizing delivery times. This has led to the formalization of
multi-objective vehicle routing problems (MoVRPs), wherein multiple objectives
must be optimized simultaneously, often with trade-offs that cannot be fully rec-
onciled by a single solution. As such, Pareto-optimality becomes a key concept in
multi-objective optimization, where a solution is deemed optimal if no objective
can be improved without deteriorating at least one other objective. MoVRPs are
an active area of research, with contributions from a variety of authors [29, 36, 18,
17, 47, 45, 22, 13, 40, 42, 10, 26], each proposing methods to model and solve these
problems through a range of techniques, from evolutionary algorithms to hybrid
metaheuristics.

However, the challenge of expressing and formalizing the intricate interrelation-
ships between decision-makers’ preferences, customer demands, and the structural
characteristics of the distribution process remains unresolved. These interrelation-
ships form a highly nonlinear and multi-objective optimization landscape that is
sensitive to both real-time data inputs and subjective human judgment [23]. This
study aims to address this challenge by integrating decision-makers’ preferences
into a mathematically rigorous optimization framework that reflects the complex-
ity of real-world transportation systems. Through the adoption of a multi-objective
optimization approach, we align our modeling framework with the latest interna-
tional research trends in combinatorial optimization, developing solutions that are
computationally feasible and practically meaningful.

Transportation systems also exhibit a dual complexity arising from the interplay
between continuous and discrete decision-making problems. Continuous problems,
such as those involving cost minimization or time optimization, often coexist with
discrete challenges, such as determining vehicle allocation or route selection. To
manage this, decision-makers rely on multiple models that offer different levels of
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abstraction and granularity. These include multiple objective decision optimization
(MODO) models [4, 32], which handle continuous and quantifiable objectives; mul-
tiple criteria decision-making (MCDM) models, which are tailored for discrete, low-
dimensional problems; and Subjective Models (SM), which capture non-formalized,
experience-based knowledge and human intuition. The integration of these models
enables a more holistic approach to transportation optimization, combining the
quantitative rigor of MODO and MCDM models with the flexibility of SM, which
accounts for unforeseen or unmodeled factors in real-world decision-making.

To address critical challenges in the optimization of transportation systems,
this research focuses on advancing the VRP through a multi-objective approach.
The primary motivation lies in balancing conflicting objectives such as cost min-
imization, environmental sustainability, and adherence to operational time con-
straints. Existing methodologies often emphasize single-objective optimization or
fail to accommodate the complexities of real-world conditions, including fleet ca-
pacity limitations and diverse customer demands. To bridge these gaps, we pro-
pose a multi-objective transportation (MOT) model that integrates decision-maker
preferences, incorporates practical constraints, and leverages advanced optimiza-
tion techniques. By doing so, the model aims to offer a holistic and actionable
framework for addressing transportation challenges effectively.

The structure of this paper reflects a systematic approach to achieving these
goals. The theoretical foundations of multi-objective optimization methods and the
hybrid techniques utilized, such as ant colony optimization (ACO) and evolution-
ary algorithms, are explored in detail. The practical application of the MOT model
is demonstrated through a case study involving a fuel distribution problem that
considers a heterogeneous fleet and 18 customers. The analysis explores the im-
plications of the proposed approach, offering insights into its broader effectiveness
and applicability.

2. Methods

2.1 Approximate Combinatorial Method

The approximate combinatorial method provides a framework for addressing com-
plex optimization tasks by decomposing them into a series of simpler subproblems.
This approach is particularly useful in multi-objective optimization tasks, where
direct solutions are often infeasible due to the high-dimensional decision space and
the complexity of the involved objective functions. In this paper, the approxi-
mate combinatorial method is applied to optimize decision-makers’ preferences in
transportation systems, specifically focusing on the VRP. By iteratively refining
the search space and approximating the objective functions, the method offers a
practical way to handle large-scale optimization problems.

Given the set of possible solutions D, the objective function vector is defineda as

Z(x) = (z1(x), . . . , zn(x)), (1)

for a complex task that needs to be solved. The goal is to find a solution x∗ ∈ D
such that:
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Z(x∗) = minZ(x), x ∈ D. (2)

Practically, any multi-objective optimization task can be formulated in this way.
The following general procedure is used.

In the set D, an approximation function vector Q(x) is defined such that:

Z(x∗) ≥ Q(x∗), (3)

and for Q(x), effective methods and algorithms exist for determining not only
x0 ∈ D:

Q(x0) = minQ(x), x ∈ D, (4)

but also for all elements x ∈ D with Q(x) values that differ from Q(x0) by no more
than a parameter vector α ≥ 0. In this way, it is assumed that it becomes possible
to determine a set of solutions D0 ⊂ D such that:

Q(x0) ≤ Q(x) ≤ Q(x0) + α =⇒ x ∈ D0, (5)

Q(x) > Q(x0) + α =⇒ x ∈ D −D0. (6)

Among other consequences derived from the decomposition principles of the
method, the solution search is performed through successive approximations. This
is achieved by solving a series of approximate optimization tasks with objective
functions Q1(x), Q2(x), . . . , Qm(x) in D, such that:

Z(x∗) ≥ Q1(x
∗) ≥ Q2(x

∗) ≥ · · · ≥ Qm(x∗), (7)

where Qi(x) represents an approximation of Qi−1(x). Thus, it becomes possible to
search for the optimal solution to the original task within a series of progressively
smaller solution subsets (populations), beginning from Dn

0 :

D0
0 ⊂ D1

0 ⊂ · · · ⊂ Dn
0 and Z(x̄) = Z(x∗), (8)

where x̄ is the optimal solution of Z(x) in D0
0.

In more general cases, if the solution set generated while searching for solutions
to those subtasks is incomplete, and the selection of the best solution composition is
considered “optimal,” the procedure becomes an approximate optimization process
starting from solution populations obtained through heuristic methods. Conse-
quently, the entire procedure is heuristic. It is important to note that generating
solution populations by heuristic evolutionary methods presupposes the genera-
tion of α-optimal options. Although these solutions are generally incomplete, they
facilitate finding approximate solutions to optimization tasks by successive approx-
imations.
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2.2 Utility Functions Approximation
When addressing complex systems like the VRP, which involve multiple, often con-
flicting objectives, it is typically computationally infeasible to optimize all criteria
simultaneously. To manage this complexity, the approximate combinatorial method
is employed, allowing the problem to be decomposed into smaller, more tractable
subproblems. In this context, a partial utility function that considers only a subset
of the criteria can serve as an approximation of the full utility function. This iter-
ative approach enables optimization by progressively adding criteria and refining
the solution.

In this section, we focus on the approximation of the utility function U(z1, . . . ,
zr), which initially considers only r criteria. This utility function is treated as an
approximation of the complete utility function U(z1, . . . , zn), which includes all
n criteria. The objective is to develop an efficient approximation that facilitates
convergence towards an optimal solution for all n criteria, by iteratively expanding
the criteria space and adjusting the utility function.

Let the decision-maker’s preference system be represented by the utility func-
tion U(z1, . . . , zr), which incorporates the first r criteria of the multi-objective
optimization task. This function constitutes an approximation of the full utility
function U(z1, . . . , zn), which includes all n criteria. Under these conditions, the
following inequality holds:

U(z01 , . . . , z
0
r ) ≤ U(z∗1 , . . . , z

∗
n), (9)

where (z01 , . . . , z
0
r ) is the solution vector minimizing U(z1, . . . , zr) over x ∈ D,

and (z∗1 , . . . , z
∗
n) is the solution vector minimizing U(z1, . . . , zn) over x ∈ D. The

reason for this relationship is that U(z∗1 , . . . , z
∗
r ) constitutes the projection of the

efficient, non-dominated solution U(z∗1 , . . . , z
∗
n) from the n-dimensional criteria

space (variables z1, . . . , zn) onto the smaller r-dimensional criteria space (variables
z1, . . . , zr). Thus, the approximate-combinatorial method ensures that the func-
tion U(z1(x), . . . , zr(x)) is an approximation of U(z1(x), . . . , zn(x)), regardless of
whether the criteria zr+1, . . . , zn are quantitative or subjective.

It should be noted that the solutions (x0
1, . . . , x

0
r) and (x∗

1, . . . , x
∗
r) are gener-

ally different. Adding new criteria necessitates renewing the “optimal” solution
(x0

1, . . . , x
0
r) with another solution (x∗

1, . . . , x
∗
r). Depending on the methods used

for evaluating the criteria zr+1, . . . , zn, there exists an α value such that the optimal
value of the task can be found within the α-optimal solutions for the approximate
utility function task:

min
x∈D

U(z1(x), . . . , zr(x)), (10)

while simultaneously satisfying the given constraints. Due to the abstract nature
of the utility function, practical problems require substituting this function with
approximations, possibly defined through numerical procedures.

2.3 Approximation and Multi-Criteria Decision-Making
Relation (9) implies that U(z1, . . . , zr) is an approximation of U(z1, . . . , zn). Conse-
quently, the final population obtained from optimizing a task with only a subset of
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the original criteria can be processed using more complex procedures that consider
all the original criteria and reordering them accordingly. This makes it possible to
find a population with the aid of an optimization model and apply MCDM methods
to the final population considering all the criteria involved.

Thus, the solution to the decision-making process can be reduced to solving the
task:

x∗ = argmin
x

U(z1(x), . . . , zn(x)), x ∈ D. (11)

This can be approximated by:

U(z1(x0), . . . , zr(x0)) = min
x

{U(z1(x), . . . , zr(x))}, x ∈ D, n ≥ r. (12)

According to the approximate-combinatorial method and the property of any
utility function, the solution of the task:

U(z1(x
∗), . . . , zn(x

∗)) = min
x

{U(z1(x), . . . , zn(x))}, x ∈ D, (13)

can be found within the solution population given by:

U(z1(x̄), . . . , zr(x̄)) = min{U(z1(x) + α1, . . . , zr(x) + αr)}, x ∈ D. (14)

If all components of α = (α1, . . . , αr) are sufficiently large, then:

z1(x̄) + α1, . . . , zr(x̄) + αr ≥ z1(x
∗), . . . , zr(x

∗), (15)

where x∗ is the optimal solution of the task in the solution subspace D0 ⊂ D.
The vector α represents the loss of efficiency required for the first r objectives in

order to obtain the best trade-off between all n objectives in the decision-making
problem. In other words, α captures the acceptable deviation from the optimal
values for the first r objectives to achieve a balanced solution considering all criteria.

In cases where the error in determining the solution is given by:

z1(x̄) + α1, . . . , zn(x̄) + αr ≤ z1(x), . . . , zn(x) ≤ z1(x
∗), . . . , zr(x

∗), (16)

the utility function can be approximated by a series of tasks, including multi-
objective optimization, MCDM procedures, or subjective solution selection from a
population.

In cases where exact methods are used to solve multi-objective optimization
tasks, relations (13)–(16) have strict character. However, when metaheuristic
methods are applied, they provide an evaluation of the required parameters α =
C −Q(x0), where C = zsupi . The population size must ensure that relation (14) is
satisfied, and the α components are not known in advance. For a fixed-size evolving
population, the ith component of α can be evaluated as:

zi < zsupi , (17)

and
αi = zsupi − zinfi , ∀i = 1, . . . , r, (18)

where zsupi is the highest value of the zi objective in the final population and zinfi

is the lowest value.
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Moreover, as a result of searching for the best trade-off in decision-making,
the objectives zi+1, . . . , zn will also receive values between their possible lower
and upper bounds. Thus, relations (17) and (18) can be extended to objectives
zi+1, . . . , zn.

If α is calculated for a given population using relations (17) and (18), the
closeness of the utility function’s optimality is determined by the precision of the
metaheuristic procedure and the quality of the MCDM modeling, rather than by
the objectives reconciliation procedure.

2.4 Multi-Objective Transportation Problem Definition
MOT refers to the process of satisfying transportation demands while considering
decision-makers’ preferences and utilizing available company resources. It involves
determining the most feasible set of routes from a central depot to a geographically
dispersed set of clients, subject to various constraints, thus facilitating logistical
decision-making in the distribution process. The results provide crucial insights
into which vehicle should undertake a given route, how to meet client demands,
allocate cargo, and sequence the routes.

The problem addressed in this research expands on the standard definition
of MOT, incorporating a series of conditions that refine transportation models
for real-world scenarios. These models adapt to the process characteristics such
as communication routes, customer demands, fleet characteristics, and the trans-
portation process itself. The precision in modeling these characteristics allows for
generalization across transportation processes with the following considerations:

• Asymmetric and deterministic VRP: The underlying graph is a directed
graph, indicating that the distance between two points is not necessarily
the same in both directions.

• Predefined customer time windows: Each customer must be serviced within
a specific time window.

• Heterogeneous, fixed, and compartmentalized fleet: The fleet consists of ve-
hicles with different capacities, costs, and compartmentalized structures.

• Compatibility constraints: These exist between fleet and customers, fleet and
products, and between different products themselves.

• Multiple trips per vehicle: Vehicles are allowed to make several trips to meet
demand.

• Decision-makers’ priorities: Decision-makers intervene to set priorities for
customers and products.

• Multiple preferences/objectives: The optimization seeks to balance multiple
objectives, which may conflict with each other.

The transportation problem is modeled as a directed graph G(V,A). Let V =
{0}∪N represent the set of vertices, where N = {1, 2, . . . , n} denotes the customers
and 0 represents the depot. In this case, the distances between some pairs of
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vertices may be asymmetric, meaning that dij ̸= dji for at least one pair i, j ∈ V .
Therefore, the problem is formulated on a directed graph G = (V,A) with a set of
arcs A = {(i, j) ∈ V × V : i ̸= j}, and the arc distances dij for (i, j) ∈ A.

The transportation requests involve the distribution of products from the depot
(point 0) to a set of n customers. Each customer i ∈ N has a known demand
qi = (qi1, qi2, . . . , qip) ≥ 0, where p represents the number of products. The depot
itself has no demand, indicated by q0 = 0.

Customer demands must be satisfied within predefined time windows [ai, bi].
The service time at the depot is denoted by ς0pkt, representing the loading operation.

Serving customer i takes time ςipkt and must begin within the specified time
window. Arriving earlier than ai results in a waiting time ϵikt, while service must
always be completed before b0. Similarly, all operations must start after a0, and
vehicles must return to the depot before b0.

The fleet is heterogeneous, consisting of |K| vehicles, each with different char-
acteristics and associated costs. Each vehicle k ∈ K is divided into compartments
C = {1, 2, . . . , c}, with compartment capacities Qck. For each arc (i, j) ∈ A and
vehicle k ∈ K, the following parameters are defined: travel cost ctijk, travel time
τ tijk, and emissions etijk. Additionally, the profit generated by each vehicle depends
on the revenue from the sale price µp of the load qip, and the expenses associated
with this load, denoted as γp.

Each vehicle k ∈ K serves a subset of customers Vk ⊆ V , based on fleet-customer
compatibility constraints. Each compartment c of vehicle k may be dedicated to a
specific type of product, especially in cases where product incompatibilities exist.
Furthermore, each vehicle can transport a set of products Pk ⊆ P , adhering to
fleet-product compatibility constraints.

Due to fleet limitations, vehicles may need to make multiple trips across different
transportation periods T = {1, 2, . . . , t}. A vehicle serving a subset of customers
S ⊆ N starts from the depot, visits each customer in S, and returns to the depot.
If required, the vehicle can refuel at the depot and then resume its next route. A
route (or trip) is defined as (r, k, t), where r = (i0, i1, . . . , is, is+1) is a sequence
with i0 = is+1 = 0, and the set S = {i1, . . . , is} ⊆ N contains the customers to
be visited. A route (r, k, t) is feasible if both capacity and time constraints are
satisfied, making S a feasible cluster.

A solution to the MOT problem consists of |K| feasible routes, with at least one
route per vehicle. The routes r1, r2, . . . , r|K| and corresponding clusters S1, S2, . . . ,
S|K| form a feasible solution to the VRP if all routes are feasible and the clusters
partition the set N . The VRP thus involves two interconnected tasks:

• Partitioning the set of customers N into feasible clusters S1, . . . , S|K|;

• Routing each vehicle k ∈ K through {0} ∪ Sk.

Decision-makers intervene by setting priorities at two levels: prioritizing cus-
tomers to visit, denoted as ϕi, and prioritizing products to distribute, where ϕi

may also define customers who demand prioritized products.
The MoVRP, like the classic VRP, is an NP-hard problem. As the number of

variables—such as vehicles, customers, and constraints—increases, the complexity
grows exponentially, making it computationally infeasible to find optimal solutions
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for large instances. Exact optimization methods, such as branch-and-bound or
dynamic programming, become impractical due to the combinatorial explosion of
potential solutions. Consequently, heuristic and metaheuristic approaches are nec-
essary to provide near-optimal solutions within a reasonable computational time-
frame.

The focus therefore shifts to optimizing multiple conflicting objectives based
on a preference system. Key objectives include total transportation cost z1(x),
total profit-loss z2(x), total transportation time z3(x) and environmental pollution
from transportation z4(x). In addition, several multi-criteria selection objectives
are considered, i.e. capacity utilization z5(x), total sales z6(x), total distance z7(x)
and service level z8(x). Lastly, decision-makers consider the operator’s experience
with real-world situations, represented by z9(x).

The notation used in the optimization model is presented in Tab. I. The first
four efficiency indicators are selected as objective functions to describe decision-
makers’ preferences related to cargo transportation. These indicators are grouped
into four dimensions: economic, temporal, environmental, and spatial (the latter
being implicit in the modeling).

z1(x) =
∑
k∈K

fk
∑
t∈T

∑
j∈V \{0}

xt
0jk +

∑
t∈T

∑
k∈K

∑
(i,j)∈A

ctijkx
t
ijk, (19)

z2(x) = −
∑
p∈P

∑
t∈T

∑
k∈K

∑
i∈V \{0}

(µp − γp)qipy
t
ipk, (20)

z3(x) =
∑
t∈T

∑
k∈K

 ∑
(i,j)∈A

τ tijkx
t
ijk +

∑
p∈P

∑
i∈V

(ςtipk + ϵtik)y
t
ipk

 , (21)

z4(x) =
∑
t∈T

∑
k∈K

∑
(i,j)∈A

etijkx
t
ijk, (22)

where xt
ijk = 1 if the arc (i, j) ∈ A is traversed by vehicle k in period t, and

ytipk = 1 if client i is visited by vehicle k with product p in period t. The term∑
t∈T

∑
j∈V \{0} x

t
0jk represents the number of vehicles used in period t.

These objective functions can be broken down as follows:

• The total transportation cost objective function (19) is decomposed into fixed
and variable costs.

• The profit/loss function (20) is derived from total income and expenses.

• The total transportation time (21) includes travel, service, and waiting times.

• Environmental pollution (22) is directly linked to atmospheric emissions of
greenhouse gases.

This problem entails a series of conditions subject to a system of constraints.
The constraints can be classified into structural, spatial, and temporal categories,
which characterize vehicle routing problems with heterogeneous fleets, compart-
ments, and multiple trips. The relevant constraints are defined as follows:
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Input data characterizing the process

N Set of nodes or clients = {1, 2, . . . , n}
V Set of vertices = {0} ∪N , where 0 is the depot
A Set of arcs = {(i, j) ∈ V × V : i ̸= j}
C Set of compartments = {1, 2, . . . , c}
T Set of transportation periods = {1, 2, . . . , t}
S Set of visited clients = {i1, . . . , is} ⊆ N
dij Distance from i to j (km)
µp Selling price of product p (monetary)
γp Cumulative cost of product p (monetary)
uik 1 if client i ∈ Vk, 0 otherwise (binary)
vpk 1 if product p ∈ Pk, 0 otherwise (binary)
f t
pck 1 if compartment c can transport product p in vehicle k in period t, 0 otherwise

(binary)

Coordination variables

qip Product p to be delivered to client i (volume/weight/units)
K Set of vehicle fleet = {1, 2, . . . , k}
P Set of products to distribute = {1, 2, . . . , p}
Qck Capacity of compartment c of vehicle k (volume/weight/units)
ai Lower bound of the time window to service client i (hour)
bi Upper bound of the time window to service client i (hour)

Efficiency indicators

z1(x) Total transportation cost (TC)
z2(x) Total profit-loss of transportation (TPr)
z3(x) Total transportation time (TT)
z4(x) Total transportation pollution (TP)
z5(x) Capacity utilization (CU)
z6(x) Total sales (TS)
z7(x) Total distance (TD)
z8(x) Service level (SL)
z9(x) Operator experience with real situations

Intermediate variables of interest

ctijk Travel cost of vehicle k moving from i to j in period t (monetary)
τ t
ijk Travel time of vehicle k from i to j in period t (minutes)
ςtipk Service time of vehicle k with product p for client i in period t (minutes)
ϵtik Waiting time of vehicle k to service client i in period t (minutes)
etijk Emissions of vehicle k moving from i to j in period t (CO2-equivalent)
σi Start of service time at client i
ϕi Priority assigned by the decision-maker to client i

Decision variables

wt
pck 1 if product p is assigned to compartment c of vehicle k in period t, 0 otherwise

(binary)
xt
ijk 1 if the arc (i, j) ∈ A is traveled by vehicle k in period t, 0 otherwise (binary)

yt
ipk 1 if client i is visited by vehicle k with product p in period t, 0 otherwise

(binary)

Tab. I Extended notation for multi-objective transportation.
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∑
j∈V \{0}

xt
0jk ≤ 1 k ∈ K, t ∈ T, (23)

∑
j∈V,i<j

xt
ijk +

∑
j∈V,j<i

xt
jik = 2ytipk i ∈ V \ {0}, p ∈ P, k ∈ K, t ∈ T, (24)

∑
(i,j)∈A(S)

xt
ijk ≤ |S| − 1 S ⊆ V \ {0}, |S| ≥ 2, k ∈ K, t ∈ T, (25)

∑
p∈P

wt
pck ≤ 1 c ∈ C, k ∈ K, t ∈ T, (26)

∑
i∈V \{0}

∑
p∈P

qipy
t
ipk ≤ Qckw

t
pck p ∈ P, k ∈ K, t ∈ T, (27)

∑
i∈V \{0}

ytipk ≤ |V | ·
∑
c∈C

wt
pck p ∈ P, k ∈ K, t ∈ T, (28)

wt
pck ≤ f t

pck p ∈ P, c ∈ C, k ∈ K, t ∈ T, (29)

wt
pck ∈ {0, 1} p ∈ P, c ∈ C, k ∈ K, t ∈ T, (30)

xt
ijk ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T, (31)

ytipk ∈ {0, 1} i ∈ V \ {0}, p ∈ P, k ∈ K, t ∈ T, (32)

f t
pck ∈ {0, 1} p ∈ P, c ∈ C, k ∈ K, t ∈ T. (33)

Constraint (23) ensures that a vehicle departs at most once per trip. Constraints
(24) and (25) implement flow preservation and subtour elimination, respectively.
Each vehicle compartment can only be dedicated to one product type (26). The
total quantity of product a vehicle can service in a single trip is limited by the
compartment capacities (27). Constraint (28) connects the variables ytipk and wt

pck.
Constraint (29) ensures that products are assigned to appropriate compartments,
while constraints (30)–(33) enforce non-negativity and integrality for the decision
variables.

From a temporal perspective, the transportation system is subject to the fol-
lowing constraints:

σi+(τ tijk+ ςtipk+ϵtik)x
t
ijk−M(1−xt

ijk) ≤ σj (i, j) ∈ A, p ∈ P, k ∈ K, t ∈ T, (34)

ai ≤ (σi + ςtipk + ϵtik) ≤ bi i ∈ V, p ∈ P, k ∈ K, t ∈ T. (35)

Constraint (34) ensures that the start of service at node j depends on the start
of service time σi at node i, the service time ςtipk, the waiting time ϵtik, and the
travel time τ tijk. Meanwhile, constraint (35) guarantees that service at each node
occurs within the established time window. Here, M represents a sufficiently large
positive number.

Considering the compatibilities defined in the model, the following constraints
arise:

xt
ijk ≤ uik (i, j) ∈ A, i ∈ V \ {0}, k ∈ K, t ∈ T, (36)
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wt
pck ≤ vpk p ∈ P, c ∈ C, k ∈ K, t ∈ T, (37)

vpk ∈ {0, 1} p ∈ P, k ∈ K, (38)

uik ∈ {0, 1} i ∈ V \ {0}, k ∈ K. (39)

Here, constraint (36) states that each vehicle can only visit nodes to which it is
compatible, while constraint (37) limits the products that vehicle k can transport.
Constraints (38) and (39) establish the non-negativity and integrality conditions
for the respective variables.

In this model, two levels of priorities are established by decision-makers for
transportation, i.e. priority over the clients to visit and priority over the products
to distribute: ∑

j∈V,i ̸=j

xt
ijkϕj ≥ ϕjy

t
ipk i ∈ V \ {0}, p ∈ P, k ∈ K, t ∈ T. (40)

2.5 Solution Methodology for Optimal Operation
of the Transportation System

As was mentioned, the research is based on the application of the approximate-
combinatorial method [16, 19, 3], incorporating MODO (first solutions approxima-
tion), MCDM (second solutions approximation), and SM (third solutions approxi-
mation). These methods are employed to obtain a solution that best satisfies the
decision-makers’ preferences. The preference system is reflected in the utility func-
tion U(z1, z2, . . . , zn), which considers all n criteria for evaluating the solutions.
This utility function is approximated through multi-objective optimization, multi-
attribute optimization procedures, and/or the subjective selection of solutions from
the solution population.

The three-tiered solution approximation was meticulously designed to address
the multidimensional complexity of the MOT problem. The first tier, MODO,
employs ACO to explore the solution space comprehensively, generating initial
feasible solutions that balance key dimensions such as cost, time, and environmental
impact while maintaining computational efficiency for large-scale problems.

The second tier, MCDM, refines these solutions by incorporating additional
criteria, including capacity utilization, service levels, and transportation distance.
Methods such as PROMETHEE, AHP, and TOPSIS are used to align the solutions
with decision-makers’ specific preferences and priorities.

The third tier, Strategic Modeling (SM), integrates qualitative insights derived
from decision-makers’ real-world experience to address operational uncertainties,
such as accidents or shifting customer priorities. This ensures that the final solu-
tions are not only optimal but also practical and implementable.

This sequential approach transitions solutions from mathematically robust ap-
proximations to actionable decisions, offering a comprehensive framework for real-
world optimization.
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2.5.1 First Solutions Approximation with MODO

In the first approximation, the ACO algorithm is used (see Fig. 1). ACO is part
of the class of swarm intelligence algorithms, modeled after the behavior of ants
and other social insects. In this adaptation for the transportation system, mul-
tiple colonies are generated, each representing different types of vehicles at the
depot (with varying characteristics and compatibilities). This design follows the
contributions of Kubil et al. [22].

Artificial ants are placed at the depot and choose the next client to visit based
on a probability rule:

pki (t) =
[τix(t)]

α[ηix]
β∑

x∈X

∑
i∈Vk

[τix(t)]α[ηix]β
(41)

After visiting a node, the ant adds it to a taboo list, reduces the vehicle’s
compartment capacity Qck by the client’s product demand qip, and assigns products
to vehicle compartments. If Qck > 0, the ant continues selecting the next client

Place at the deposit 
an artificial and x  

Visit the client node following
kthe rule p  (t)  

List the visited client node
in the tabu list 

Assign
products to 

compartments

 

Substract
q  from Qip ck

 

Return to deposit  

Yes

No

q  > 0ip  

No
 

Yes

Ant colony k 
 

∞ ∞ 

 An ant x can make
 several trips  

Taboo list  

Information exchange 
mechanism between 
colonies 

 

 

Start   

ix

Q  > 0ck

Reducing the demand  
q   ( t he  demand  o f i x

product x for client  i) 
from the capacity Q   of ck 

c o m p a r t m e n t  c  o f  
vehicle k.

End  

Fig. 1 Algorithm for the initial population generation with ant colony optimization.
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using the probability rule; otherwise, it returns to the depot. This process is
repeated until transportation demands are fulfilled.

This approach is unique in its ability to handle multiple compartments, assign-
ing products to compartments during the route. The taboo list serves as a mech-
anism for exchanging information between colonies, constantly updating product
demand and time availability at each node. This mechanism prevents vehicles
from visiting already explored nodes, promoting exploration of new areas in the
search space and avoiding redundant efforts. Attributes such as solution quality
are incorporated to prioritize solutions with high fitness scores, ensuring efficient
propagation of information and balanced exploration and exploitation within the
algorithm.

The model (19)–(40) requires an ad hoc solution strategy combining evolution-
ary algorithms for multi-objective optimization. The goal is to iteratively evolve
the set of feasible solutions toward a population of non-dominated, diverse, and uni-
formly distributed solutions. The evolutionary strategy incorporates the following
stages:

1. Generation of an initial solutions population.

2. Selection of the set of feasible solutions.

3. Crossover between the best solutions.

4. Solution attribute mutation.

5. Preservation of the best solutions.

Steps 3 and 4 form the recombination mechanism. The initial population is gen-
erated using a modified ACO algorithm. The evolutionary algorithm then evolves
this population by selecting solutions that dominate others, according to the dom-
inance criterion evaluated in the fitness functions. Above mentioned evolutionary
strategy is graphically depicted in Fig. 2.

2.5.2 Second Solutions Approximation with MCDM

In this second approximation, objectives such as z5(x) (capacity utilization), z6(x)
(total savings), z7(x) (total time), z8(x) (total distance), and z9(x) (service level)
are considered, alongside the first four indicators. While ACO focuses on optimiz-
ing economic, spatial, temporal, and environmental dimensions, MCDM methods
complement MODO by providing a more detailed evaluation of the decision-makers’
preference system, accounting for additional criteria that influence transportation
performance.

One of the key methods used in this stage is the preference ranking organization
method for enrichment evaluation (PROMETHEE) II method for global ranking.
This approach involves several sequential steps. Initially, the criteria and the set
of alternatives for the decision problem are defined. Following this, the weight of
each criterion is determined, and the decision matrix is normalized to address both
profit and cost criteria. After normalization, pairwise comparisons are conducted
to identify deviations, and a preference function is established. Based on these
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Fig. 2 Evolutionary strategy for solving the multi-objective transportation model.

assessments, the multicriteria index is computed, followed by the calculation of
positive and negative flows. Ultimately, the net flow value is determined, which
enables the ranking of alternatives.

In parallel, the the analytic hierarchy process (AHP) method [34] is applied
to determine the criteria weighting. The process begins by defining a hierarchical
model for the MOT problem. Pairwise comparisons are performed at each hier-
archical level using the Saaty scale, followed by the construction of a normalized
decision matrix. The priority vector for each criterion is then calculated, with the
consistency index and consistency radius being computed to ensure the validity of
the pairwise comparisons. Once consistency is verified, the individual priorities are
aggregated into a group priority vector, reflecting the collective judgment of the
decision-makers.

To complement these methods, the technique for order of preference by similar-
ity to ideal solution (TOPSIS) method [38] is employed for solution selection. This
process starts with the construction of a decision matrix, in which the attributes
are transformed into a non-dimensional form, allowing for direct comparison. Next,
a weighted normalized decision matrix is created based on the criteria weights as-
signed by the decision-makers. The positive ideal solution and the negative ideal
solution are identified, and separation measurements from these ideal alternatives
are calculated. The relative proximity of each alternative to the ideal solution is
then determined, enabling the ranking of alternatives according to their closeness
to the ideal solution.

Upon completing these analyses, the best alternative is presented to the decision-
makers. Their satisfaction with the selected solution is assessed, and its applica-
bility and effectiveness within the transportation process are evaluated. This com-
prehensive evaluation ensures that the chosen solution aligns with the objectives
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and preferences of the decision-makers while also addressing the constraints of the
transportation system.

2.5.3 Third Solutions Approximation with Subjective Model

In this final step, the solutions from the second approximation are further refined
through the application of SM, which take into account decision-makers’ personal
experience and expert judgment. Unlike the previous approximations, which rely
primarily on mathematical and objective optimization techniques, the third ap-
proximation integrates qualitative factors that may not be easily modeled but are
critical for practical decision-making in transportation systems.

Real-world conditions—such as unexpected accidents, adverse weather, and
other unforeseen circumstances—often impact the operational efficiency and fea-
sibility of transportation plans. These factors, which are difficult to predict or
include in traditional optimization models, are crucial in determining the ultimate
effectiveness of any proposed solution. Therefore, the decision-makers’ personal
insights and situational awareness are incorporated into this final approximation.

In this phase, the operator, leveraging both experience and real-time knowledge,
plays a decisive role. The operator reviews the solutions generated in the second
approximation, focusing on how well they align with the efficiency indicators (such
as cost, time, capacity utilization, environmental impact, and service levels) and
the specific context of the transportation task. The subjective nature of this stage
allows the operator to account for nuanced operational realities that mathematical
models may overlook.

The final decision is thus made by the operator, who selects the most suitable
solution based not only on the quantitative performance of each alternative but
also on qualitative insights. This decision is often guided by a set of additional
criteria, which may include:

• Risk mitigation: The operator assesses the solutions for their resilience to
potential disruptions, such as road closures, traffic delays, or breakdowns,
and selects options that offer the best contingency plans.

• Flexibility: Some solutions may provide more flexibility in adjusting routes
or reallocating resources, a factor that becomes important when dealing with
dynamic changes in customer demand or product availability.

• Stakeholder preferences: The operator may consider customer or client pref-
erences, especially if certain clients have high priority due to contractual
obligations or service-level agreements.

• Operator familiarity: The operator’s experience with specific routes, vehicles,
or clients might influence the final decision, as familiarity with these elements
can improve operational efficiency.

• Safety and compliance: Regulatory or safety considerations that are not ex-
plicitly modeled but are critical in real-world operations are also weighed in
the final decision.
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Once the subjective evaluation is complete, the final solution is selected based
on the operator’s holistic understanding of the situation, balancing both the formal
optimization results and the practical realities of transportation. This solution is
often a compromise that seeks to meet all efficiency indicators while also ensuring
operational reliability under real-world constraints.

Moreover, the operator’s feedback is invaluable for improving the overall decision-
making framework. If deviations from the projected plan occur during implemen-
tation (such as delays due to unforeseen conditions), the lessons learned can be fed
back into the system, allowing for continuous improvement of the decision-making
process and the models used in earlier approximations. This iterative feedback
loop ensures that the system evolves to better handle the dynamic and uncertain
nature of transportation operations.

The third solutions approximation with SM provides the final layer of decision-
making, where quantitative and qualitative insights converge to produce a solution
that is not only optimal in theory but also viable and effective in practice.

3. Case Study and Results

A fuel marketing company, responsible for the supervision and wholesale as well
as retail distribution of fuels in a region with 18 customers, was selected as the
case scenario. The market segments served by this company include the industrial
sector, service center chains, domestic fuels, electricity generation, retail services,
deliveries to ships, and the service sector.

For the simulation and application of the proposed method, a general proce-
dure was followed (see Fig. 3). Four members were selected based on their roles
and representation of the company’s interests. These roles include top management
(responsible for decisions related to the company’s mission, vision, and strategic
objectives), the warehouse functional area (focusing on decisions related to prod-
ucts), the marketing functional area (focused on customer-related decisions), and
the transportation functional area (responsible for decisions related to the vehicle
fleet).

In the first planning period, gasoline and diesel were selected as the products
to be transported, as they were the most in demand during the simulation’s time
horizon. All products to be transported were compatible with the available fleet for
the first transportation period. Since these are unpackaged liquid products, each
product is only compatible with itself, ensuring no cross-contamination.

The fleet for the first iteration of transportation planning consists of seven ve-
hicles, each capable of distributing both white and dark products, depending on
compatibility. The vehicles have different capacities, with liters chosen as the unit
of measurement for capacity. In the economic component, variable cost coefficients
play a significant role, primarily depending on fuel consumption rates per kilome-
ter traveled. For the first iteration, it is assumed that all vehicles can serve all
customers.

The distances between the depot and the customers, as well as between cus-
tomers, are provided, along with the respective travel times of the vehicles. The
demand and customer service time windows (from 8:00 to 17:00) are known, as
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Fig. 3 Procedure for simulation and application of the multi-objective transporta-
tion model.

is the warehouse’s operational time (0:00 to 24:00), which represents the working
hours at each node.

During the first iteration, certain decisions were made a priori in the trans-
portation process. All clients were treated with equal importance in the initial
approximation. This assumption was made to simplify the modeling process and
focus on the primary objectives of minimizing total costs, transportation pollution,
and total time. Given that all clients belong to a uniform network of service centers
with similar operational roles, this approach allows for a generalized optimization
framework applicable across the network. Moreover, it ensures computational feasi-
bility by reducing the complexity of the model. While the equal treatment of clients
simplifies the analysis, it also provides a robust foundation for assessing the overall
performance of the proposed methodology without introducing additional variabil-
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ity from prioritization schemes. Exploring client-specific priority levels could be
considered in future work to capture nuanced logistical dynamics.

The transportation process also utilizes a heterogeneous fleet of vehicles with
varying capacities and cost components. These vehicles are required to make mul-
tiple trips, depending on customer demand, and must adhere to the time windows
established at each node.

3.1 First Solution Approximation: Multi-objective
Optimization of the Cargo Transportation

The following objectives were defined for optimization: total costs, total benefits,
total time, and total transportation pollution. These objectives were selected to
approximate the decision-makers’ preferences for logistical decisions. The charac-
teristics and conditions specified in model (19)–(40) were applied, using a hetero-
geneous fleet of vehicles with varying capacities and both fixed and variable costs.
The vehicles were required to make multiple trips depending on customer demand,
while adhering to the time windows established at each node.

An initial experimental optimization was conducted with a population size of
30 solutions. However, the results did not meet the conditions necessary to proceed
to the second approximation step. Consequently, the population size was increased
to 40, which allowed for condition satisfaction.

The experimental implementation and solution generation were carried out us-
ing Python on a PC equipped with an Intel® Core™ i5-7200 CPU @ 2.50 GHz
(4 CPUs), approximately 2.7GHz, and 8 GB of RAM. The algorithm was executed
10 times per instance, with the average runtime recorded. The dataset used was
based on real data from the unit of analysis. The experiment was also implemented
in Go (Golang), to compare the performance. The solution procedure was divided
into two approximation steps: generating feasible solutions using the ACO algo-
rithm, followed by selecting the best alternative using MCDM methods. The final
population of 40 solutions is illustrated in Fig. 4, representing the outcomes of the
iterative optimization process. The results depicted in Fig. 4 illustrate a clear linear
relationship between total costs, transportation pollution, and total time, with a
small number of outliers. These outliers likely arise from the interaction of hetero-
geneous fleet constraints, variable customer demands, and the stochastic nature of
the ACO algorithm, which explores diverse trade-offs during the iterative process.
The limited presence of outliers does not, however, diminish the robustness of the
observed trend or the applicability of the proposed methodology.

Each solution represents the route(s) of each vehicle over a day’s planning pe-
riod, based on customer demand and the vehicle’s available capacity to serve those
customers. The route consists of a sequence of nodes to be visited, starting and
ending at the depot. Throughout this process, a total population of 490 solutions
was generated.

Since the utility function evaluation involves a non-dimensional transformation
of the criteria used in this step, the validation of the pre-condition fulfillment must
be carried out in the next, second solutions approximation.
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3.2 Second Solutions Approximation: Selection of Criteria
to Evaluate the Alternatives

The criteria for evaluating transportation alternatives were defined using the PRO-
METHEE II method for global ranking. During this phase, the Visual PROME-
THEE software was employed, allowing for a more efficient and visual application
of the PROMETHEE method. Instead of relying solely on traditional evaluation
criteria, the process involved key decision-makers, including senior management,
the transportation department, the warehouse department, and the commercial
department. These decision-makers contributed to the definition and ranking of
the main indicators used to evaluate the solutions generated in the previous stage.

The criteria selected reflect the roles of these decision-makers and include indi-
cators associated with the dimensions of MOT. These indicators were ranked based
on their relevance to the decision problem. The main indicators selected were: to-
tal costs, total profits, total transportation time, total transportation pollution
(emissions), capacity utilization, total sales, total distance, and level of service.
Additionally, several sub-criteria were included, such as vehicle costs, maximum
route cost, number of vehicles, route balance, total routes, cargo balance, maxi-
mum time of the longest route, vehicle waiting time, and customer waiting time.

After determining the relevant criteria, the next step involved establishing the
weight of the four decision-makers in the criteria ranking process. Initially, equal
weights were assigned to each decision-maker. However, as the procedure pro-
gressed, these weights were adapted based on the results. The decision-makers’
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preferences were collected using a scale (1–5), which enabled an accurate assess-
ment of how they valued each alternative or indicator. Fig. 5A shows the results
obtained using interactive tools, where full ranking [1] was applied to illustrate the
ranking of alternatives.

To establish the importance of each criterion, the AHP method was employed,
where AHP decomposes the problem into a hierarchical structure consisting of a
main criterion (the trade-off between all dimensions of the transportation process),
sub-criteria (the transportation dimensions), and the alternatives (multi-objective
transport indicators). Decision-makers assigned preference values to each alterna-
tive in relation to the criteria and sub-criteria using numerical scales. A comparison
matrix was constructed to determine the weights of the criteria and sub-criteria,
and global priority values for the alternatives were calculated. The final step in-
volved performing a weighted sum of the priorities, resulting in the final classifica-
tion of alternatives. This procedure facilitated decision-making by considering the
preferences and priorities of all decision-makers.

The hierarchical model defined the trade-offs between the dimensions of MOT
at the highest level. At the second level, the transportation dimensions were de-

0.6250

0.5459

0.40630.2656

0.28130.1719

0.0781

0.0000

-0.0156

-0.1563

-0.2031-0.3125-0.6094

-0.4531 -0.2813

+1.0-1.0

-0.1569

Total costs

Transportation pollution

Total sales

Capacity utilizationTotal distance

Level of sevice

Customer waiting time

Maximum cost of a route

Maximum time of the longest routeTotal routes

Routes balance

Total time

Total profit

Cargo balance

Costs of vehicles

Normalized 
main eigenvector

33.38%

6.59%

14.07%

5.47%

6.25%

17.80%

2.70%

13.73%

1

2 3 4 5 6 7 81

2

3

4

5

6

7

8

1

1

1

1

1

1

1

1

5.48 5.48

5.48

5.486.48 3.87 3 3

3

3 5

0.5

0.5 5

0.5

4 4 2

0.25

1

0.33

0.184.47

4

4

0.2

0.33

0.170.294.470.41

2

3

0.25

1420.50.33

0.18

0.33

0.26

0.15

0.18

0.18

2.45

0.22

3.46

5.92

0.22 0.2

0.2

0.25

0.25

0.25 0.33

Total costs
Transportation 

pollution

Total sales

Capacity
utilization

Total profit

Total time

Total distance

-0.1875

Number of vehicles

Vehicle wainting time

Level of sevice

T
ot

al
 c

os
ts

T
ra

ns
po

rt
at

io
n

 
po

ll
ut

io
n

T
ot

al
 s

al
es

C
ap

ac
it

y
ut

il
iz

at
io

n

T
ot

al
 p
ro
fi
t

T
ot

al
 t

im
e

T
ot

al
 d

is
ta

n
ce

L
ev

el
 o

f 
se

v
ic

e

B

A

Fig. 5 Full ranking preference analysis processed by PROMETHEE II.
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scribed, and at the third level, the specific indicators related to each dimension
were identified. Pairwise comparisons were then collected and recorded in matrices
at each hierarchical level, using the Saaty scale to assess the relative importance of
the transportation dimensions and their respective indicators.

The normalized decision matrix was constructed based on the preferences pro-
vided, and the priority vector for each criterion was calculated by averaging the
row values. This vector represents the relative importance of each criterion in the
context of the transportation process. This approach provided a structured and
weighted evaluation of the criteria, enabling informed decisions to be made based
on the priorities of the decision-makers. The priority vector calculation produced
the relative weights of each criterion, as shown in Fig. 5B.

To ensure the consistency of the pairwise comparisons, the consistency index
and consistency ratio were calculated. With a consistency ratio below 0.1, the level
of inconsistency was deemed acceptable. After confirming the consistency of the
judgments, the group priority vector was determined by averaging the individual
judgment matrices of the decision-makers. This collective judgment matrix was
used to recalculate the group priority vector, assigning final judgment weights
for the group as a whole. This aggregation of individual priorities into a group
priority vector ensured that the final decision reflected the collective perspective of
the decision-makers.

Finally, the TOPSIS method was applied to identify the most suitable alterna-
tive (route) from a set of options, based on the criteria selected using PROMETHEE
and weighted by AHP.

Each alternative was evaluated against the criteria, and the values were nor-
malized to allow comparability. The distances of each alternative from the positive
ideal solution (the best) and the negative ideal solution (the worst) were calculated.
The alternative closest to the positive ideal solution and furthest from the negative
ideal solution was considered the best option.

In constructing the decision matrix, the attributes were transformed into non-
dimensional values to allow for comparison. The weighted normalized decision
matrix (see Tab. II) was created by incorporating the weights assigned by the
decision-makers to each criterion. Each column of the matrix was multiplied by
its corresponding weight, introducing the criteria’s weighting into the evaluation of
the alternatives. The positive ideal solution and the negative ideal solution were
identified by finding the maximum values for the benefit criteria and the minimum
values for the cost criteria (see Tab. II). These ideal solutions represent the optimal
characteristics an alternative should possess for each criterion.

Separation measures were calculated using the Euclidean distance between each
alternative and both the positive and negative ideal solutions. The proximity
of an alternative to the positive ideal solution was indicated by Si+, while Si−
measured the proximity to the negative ideal solution (Columns 10–11, Tab. III).
The relative proximity to the ideal solution was then calculated, with values closer
to 1 indicating greater similarity to the positive ideal solution (Column 12, Tab. III).

The alternatives were ranked based on their relative proximity to the ideal
solution, with the best alternative ranked highest (Column 13, Tab. III).

According to the TOPSIS method, Solution 38 achieved the highest score and
ranking, representing the alternative selected by the decision-makers. Information
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Solution # TC TP TPr CU TS TT TD SL

1 .052 .0102 .022 .009 .010 .028 .004 .022
2 .056 .0110 .022 .009 .010 .030 .005 .022
3 .050 .0099 .022 .009 .010 .027 .004 .022
4 .046 .0113 .022 .009 .010 .030 .005 .022
5 .049 .009 .022 .009 .010 .025 .004 .022

. . . . . . . . . . . . . . . . . . . . . . . . . . .
40 .053 .0106 .022 .009 .010 .029 .004 .022

A+ .042 .008 .022 .009 .010 .024 .003 .022
A– .061 .012 .022 .009 .010 .032 .005 .022

TC – Total costs, TP – Transportation pollution, TPr – Total profit, CU –
Capacity utilisation, TS – Total saves, TT – Total time, TD – Total distance,
SL – Level of service

Tab. II Weighed normalized decisions matrix with positive (A+) and negative (A-)
ideal solutions by criterion.

regarding Solution 38’s performance, including its fitness in relation to the decision-
makers’ preferences, is presented in Tab. III. It was confirmed that this solution
met the criteria zi < zsup

i , with αi = (zsup
i − zinfi )∀i = 1, . . . , r, and therefore

U(z1(x), . . . , zr(x)) = minU(z1(x)+α1, . . . , zr(x)+αr). Consequently, solution 38
(from Tab. III) can be considered the optimal one from the population generated
in the first step.

In comparison to the other solutions, Solution 38 demonstrated the shortest
travel distance and balanced performance across the fitness functions, validating
its selection as the best alternative.

3.3 Third Solutions Approximation: Selection by the Sys-
tem Operator Based on Real Operative Conditions

Real-world operational conditions in transportation systems frequently introduce
disruptions that need to be addressed. For instance, after using the TOPSIS
method to generate the ordered decision matrix shown in Tab. III and communi-
cating it to the system operator, suppose an accident occurs on the route between
nodes 0 and 7.

In this case, the “optimal” Solution 38 must be replaced with another feasible
solution. Solutions 23 and 37 also involve traveling on the road from 0 to 7, but
Solution 11 avoids this route. Therefore, Solution 11 is selected for implementation.

In this iteration, the system operator’s experience in dealing with real-life sit-
uations is taken into account. Solution 11, whose details are shown in Tab. III,
can be applied because it avoids the problematic route. As a result, the decision
adopted by the operator is depicted in Fig. 6.

This solution also satisfies the conditions and can be considered optimal within
the solutions population generated in the first approximation step. There are var-
ious reasons that may require selecting a solution other than the first one in the
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S. TC E TP CU TS TT TD SL Si+ Si− Ci+ R

38 .042 .008 .022 .008 .009 .024 .003 .021 .000 .020 1.00 1
23 .043 .008 .022 .008 .009 .024 .003 .021 .001 .019 .934 2
37 .046 .009 .022 .008 .009 .025 .003 .021 .004 .016 .774 3
11 .048 .009 .022 .008 .009 .026 .004 .021 .007 .013 .664 4
5 .049 .009 .022 .008 .009 .025 .003 .021 .007 .014 .658 5
4 .046 .011 .022 .008 .009 .029 .004 .021 .007 .015 .656 6
35 .049 .009 .022 .008 .009 .026 .004 .021 .007 .013 .647 7
12 .049 .009 .022 .008 .009 .027 .004 .021 .007 .013 .638 8
27 .049 .009 .022 .008 .009 .027 .004 .021 .008 .013 .619 9
6 .050 .009 .022 .008 .009 .026 .004 .021 .008 .012 .594 10
3 .050 .009 .022 .008 .009 .027 .004 .021 .008 .012 .593 11
34 .050 .010 .022 .008 .009 .027 .004 .021 .009 .011 .560 12
28 .050 .010 .022 .008 .009 .027 .004 .021 .009 .011 .558 13
15 .050 .010 .022 .008 .009 .027 .004 .021 .009 .011 .555 14
36 .050 .010 .022 .008 .009 .027 .004 .021 .009 .011 .546 15
18 .051 .010 .022 .008 .009 .027 .004 .021 .009 .011 .536 16
19 .051 .010 .022 .008 .009 .027 .004 .021 .009 .011 .535 17
26 .051 .010 .022 .008 .009 .027 .004 .021 .010 .010 .522 18
24 .051 .010 .022 .008 .009 .027 .004 .021 .010 .010 .511 19
21 .051 .010 .022 .008 .009 .027 .004 .021 .010 .010 .509 20
22 .052 .010 .022 .008 .009 .027 .004 .021 .010 .010 .485 21
1 .052 .010 .022 .008 .009 .027 .004 .021 .010 .010 .478 22
31 .052 .010 .022 .008 .009 .028 .004 .021 .011 .009 .472 23
25 .052 .010 .022 .008 .009 .028 .004 .021 .011 .009 .462 24
30 .052 .010 .022 .008 .009 .028 .004 .021 .011 .009 .448 25
16 .053 .010 .022 .008 .009 .028 .004 .021 .012 .008 .415 26
7 .054 .009 .022 .008 .009 .026 .003 .021 .012 .008 .413 27
40 .053 .010 .022 .008 .009 .028 .004 .021 .012 .008 .392 28
17 .055 .011 .022 .008 .009 .029 .004 .021 .014 .006 .312 29
39 .055 .011 .022 .008 .009 .029 .004 .021 .014 .006 .301 30
13 .056 .011 .022 .008 .009 .029 .004 .021 .015 .005 .275 31
2 .056 .011 .022 .008 .010 .029 .004 .021 .015 .005 .242 32
8 .057 .010 .022 .008 .010 .029 .004 .021 .016 .004 .218 33
9 .057 .011 .022 .008 .010 .030 .004 .021 .016 .004 .214 34
29 .058 .011 .022 .008 .010 .030 .004 .021 .017 .003 .146 35
33 .058 .011 .022 .008 .010 .030 .004 .021 .018 .003 .141 36
20 .059 .011 .022 .008 .010 .030 .004 .021 .018 .002 .118 37
10 .059 .011 .022 .008 .010 .030 .004 .021 .018 .002 .115 38
14 .059 .011 .022 .008 .010 .030 .004 .021 .019 .001 .091 39
32 .061 .012 .022 .008 .010 .031 .005 .021 .020 .000 .000 40

zsupi .061 .012 .022 .008 .010 .031 .005 .021 – – – –
S. – Solution, TC – Total costs, TP – Transportation pollution, TPr – Total
profit, CU – Capacity utilisation, TS – Total saves, TT – Total time, TD –
Total Distance, SL – Level of service, R – Rank

Tab. III Decisions matrix based on the technique for order of preference by simi-
larity to ideal solution (TOPSIS).
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decision matrix. For example, the daily transportation plan might need to be
altered due to vehicle breakdowns or other unforeseen circumstances.
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Fig. 6 Graph of the solution 11.

4. Discussion
The intricate landscape of transportation logistics and VRPs has grown increas-
ingly important in the context of global industrialization and trade. This research
underscores the multifaceted nature of VRPs and emphasizes the need for a robust
MOT model that effectively integrates decision-makers’ preferences with mathe-
matical formulations and hybrid optimization strategies.

This study’s exploration of various optimization dimensions—economic, spatial,
temporal, and environmental—aligns closely with previous research findings. The
economic dimension, as highlighted by Li et al. [26], X. Wang et al. [41], Yin [43],
Zarouk et al. [44], and Zhou and Zhao [49], includes critical factors such as total
costs, driver remuneration, and overall profitability, all of which are essential for
evaluating the financial viability of transportation strategies. The spatial dimen-
sion, which focuses on metrics such as distance traveled and vehicle utilization,
resonates with the observations of Molano et al. [31], H. Wang et al. [39], and
W. Zhang et al. [48], who emphasize the importance of optimizing route efficiency
to improve service levels.
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The temporal dimension, centered on customer satisfaction and service levels,
has become increasingly significant as organizations strive to meet the demands
of a fast-paced and dynamic marketplace. Studies by Ghannadpour et al. [13],
Zhang and Wang [46], and Chavez et al. [6] underscore the importance of incor-
porating time constraints into routing decisions to enhance service delivery and
customer engagement. This reinforces the need for decision-making frameworks
that account for temporal variables.

Environmental considerations also play a crucial role in transportation opti-
mization. This study highlights the limitations of existing literature, particularly
regarding emissions modeling beyond CO2. While focusing on total emissions is
a valuable step, as noted by Dutta et al. [9], H. Wang et al [39], and Yin [43],
future research should strive to encompass a broader range of pollutants and their
impacts on sustainability. Expanding the environmental dimension would offer a
more nuanced understanding of transportation’s ecological footprint.

The review of methodologies used to address multi-objective vehicle routing
problems reveals a variety of approaches. Although many studies have focused on
deterministic models, a shift toward stochastic frameworks is becoming more preva-
lent, as seen in the works of Tan et al. [36], Ghannadpour et al. [13], Gee et al. [12],
and Men et al. [28]. This shift is critical for addressing the uncertainties that
arise in real-world transportation scenarios, thereby improving the robustness of
proposed solutions.

Despite advancements in solution methodologies, a significant gap remains in
the systematic incorporation of decision-maker preferences within the optimiza-
tion process. The exclusion of subjective criteria from multi-objective frameworks
limits their practical applicability and contradicts the essence of multi-objective
optimization. Future research should focus on developing frameworks that inte-
grate preference structures effectively, ensuring that the outcomes align with the
strategic objectives of stakeholders.

The study also highlights the importance of hybrid optimization strategies, as
demonstrated in the works of J. Wang et al. [40], Dutta et al. [9], H. Zhang et al. [45],
and W. Zhang et al. [48]. Hybrid strategies combine the strengths of various
algorithms to address the complexities of multi-objective decision-making. This
approach not only enhances the robustness of solutions but also provides a more
tailored response to the specific characteristics of each routing problem.

While substantial progress has been made in modeling and solving multi-objective
vehicle routing problems, challenges remain in developing universally applicable
frameworks. This research advances transportation optimization methodologies
by deepening the understanding of the interplay between mathematical modeling,
solution strategies, and decision-maker preferences.

The proposed MOT model offers substantial strengths, particularly in optimiz-
ing complex vehicle routing problems while accommodating real-world constraints.
The integration of approximate-combinatorial methods and hybrid optimization
techniques, such as ant colony optimization and evolutionary algorithms, ensures
robust and efficient handling of the combinatorial complexity inherent in VRPs.
This is particularly crucial for scenarios involving spatial, temporal, and capacity
constraints, as demonstrated in the case study focusing on fuel distribution.
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One of the key strengths of the model is its ability to integrate decision-makers’
preferences directly into the optimization framework. By employing MCDM meth-
ods, including PROMETHEE II, AHP, and TOPSIS, the model not only generates
multiple feasible solutions but also refines them to align with organizational prior-
ities and objectives. This enables decision-makers to achieve a balanced trade-off
among competing objectives, such as minimizing costs, transportation time, and
environmental impact while maximizing service levels and operational efficiency.

The robustness of the model is further underscored by its scalability and adapt-
ability to various operational contexts. The case study involving a heterogeneous
fleet and 18 customers illustrates its practical application in addressing real-world
logistics challenges. The optimization results highlight the model’s capacity to
significantly reduce transportation costs and emissions while maintaining high ser-
vice quality. Notably, Solution 38, identified as the optimal alternative using the
TOPSIS method, demonstrated the model’s effectiveness in balancing multiple con-
flicting objectives.

Additionally, the model’s ability to integrate subjective decision-making factors
into the optimization process enhances its resilience to dynamic and uncertain oper-
ational conditions. By allowing system operators to incorporate their expertise and
situational awareness, the model bridges the gap between theoretical optimization
and practical decision-making. This was evident in the scenario where real-world
disruptions, such as an accident on a planned route, necessitated the selection of
an alternative solution. The model’s flexibility to adapt to such unforeseen events
underscores its practicality and reliability in operational settings.

The proposed model addresses theoretical complexities while showing promising
potential for practical application. By incorporating decision-makers’ preferences
and employing hybrid optimization techniques, it provides a structured approach
to managing complex transportation logistics. For instance, the case study on fuel
distribution illustrates its capability to optimize routes for a heterogeneous fleet,
contributing to improvements in cost-efficiency, operational effectiveness, and en-
vironmental sustainability. These initial findings suggest that the model could be
valuable in various areas of transportation logistics, including supply chain man-
agement and urban delivery systems.

The model’s ability to combine qualitative insights with quantitative optimiza-
tion also supports its adaptability to operational uncertainties. For example, its
flexibility in responding to dynamic conditions, such as route disruptions or fluctu-
ating demand, enhances its practical utility. While these attributes are promising,
further research and testing across diverse scenarios are necessary to confirm the
model’s broader applicability and robustness. Exploring advanced predictive ana-
lytics could also enhance its ability to anticipate and respond to emerging challenges
in transportation systems.

This study provides an initial step toward integrating theoretical optimization
approaches with practical decision-making in transportation logistics. While the
findings are encouraging, additional work is needed to fully realize the model’s
potential and to refine its application in diverse and complex operational contexts.
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5. Conclusion
The findings of this research demonstrate the potential to optimize decision-making
under multiple criteria by incorporating MCDM procedures as models of decision-
makers’ subjective evaluations in complex systems. The approximate-combinatori-
al method provides a viable approach for optimizing utility functions through suc-
cessive approximations.

Decision-makers require flexibility in transitioning between structured MODO
models and MCDM models to achieve quantitative precision when handling con-
tinuous and discrete challenges. Simultaneously, the SM adds a crucial qualitative
layer that captures the human-centric aspects of decision-making, accounting for
real-world complexities that structured models may overlook.

In this context, the proposed model for optimizing the operation of transporta-
tion systems has proven to be an effective tool for informed and balanced decision-
making. The integration of hybrid optimization methods enhances both flexibility
and speed, underscoring the importance of adopting advanced decision-making
approaches in complex business environments. This approach—combining multi-
objective and multi-criteria methods—not only offers a competitive advantage but
also provides valuable insights for companies facing similar challenges in managing
their transportation processes.

By demonstrating how mathematical models, decision-making preferences, and
hybrid optimization methods can be effectively integrated, this research contributes
to the advancement of transportation logistics. Future studies should focus on
refining these methodologies while addressing the practical challenges faced by
decision-makers in dynamic, real-world environments. The continued development
of these approaches will ensure that companies can meet their operational goals
while balancing efficiency, sustainability, and customer satisfaction.

Abbreviations

ACO Ant colony optimization
AHP Analytic hierarchy process
CO2 Carbon dioxide (used for emissions measurement)
MCDM Multi-criteria decision-making
MODO Multi-objective decision optimization
MOT Multi-objective transportation
MoVRP Multi-objective VRP
NP Nondeterministic polynomial time
PROMETHEE Preference ranking organization method for enrich-

ment evaluation
SL Service level
SM Subjective models
TC Total cost
TP Transportation pollution
TPr Total profit loss of transportation
TD Total distance
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TOPSIS Technique for order preference by similarity to ideal
solution

TS Total sales
TT Total transportation time
VRP Vehicle routing problem
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