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Abstract: The article deals with a numerical and analytical approach to solving
the equations of motion, which enables to treat the considered problems with the
change of system structure or number of degrees of freedom without interrupting
the numerical integration process. The described methodology allows effectively
incorporate switchable constraints in the systems in accordance with their flexible
structures. The crucial idea is based on the formulation of the resulting differential-
algebraic equations into a saddle point system, where the switchable constraints
are represented by a sign matrix with variable rank. In connection with this prop-
erty, a pseudoinversion is applied to eliminate algebraic variables and transform the
problem to the first order system of ordinary differential equations. Moreover, the
time independent case leads to linear autonomous systems with non-diagonalizable
matrices, as is proved. The relevant numerical scheme is based on Runge-Kutta
methods, that correspond to the power series of the resulting matrix exponen-
tial for time independent problems. The methodology presented is illustrated on
the idealized two-mass oscillator with a switchable constraint. The numerical ex-
periments performed range from initial stages, through simple transient cases to
damped intentional control. The advanced applications can be found in robotics,
active and controlled systems, and in the simulations of complex systems in biology
and related areas. Moreover, the methodology can also be applied in the simula-
tion of transport systems, especially in relation to vehicle technology, a quarter car
suspension system, a vibration control mechanism, a torsion system with a clutch,
and machine balancing and storage should to be highlighted.
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1. Introduction

Current technology requires simulation capabilities to fluently calculate systems
with inherent or intentional nonlinearities, for example, static and dynamic fric-
tion, changed structure, or nonlinear control [24]. Therefore, correct simulation of
nonlinearities type friction with the change of the number of degrees of freedom,
with the continuous integration process, is generally important in a number of
engineering applications, especially in robotics, vehicles, and mechanical systems.
Autonomous transportation systems suppose flexible connection of transportation
means. Hybrid cars have complex traction systems with flexible roles of driven
units. The demand for the correct design of digital twins amplifies the requirement
for flexible calculation approaches.

Parallel to the above, another feature of the simulation approach should be
the possibility of solving the singular cases of the system. More precisely, cases
where the system itself decides on the continuous internal dynamics — the way is
just to let run the integration with the locked joints responsible for the singular
position and, after sufficient time steps, to unlock them again in a new and reg-
ular position. The applications can be found in various fields, including robotics,
active and controlled systems, as well as in the simulations of complex biological
systems and related areas [24]. The simulation of the transport systems can utilize
the presented methodology as well. Concerning the vehicle technology emphasize
at least a quarter car suspension system [21], a vibration devourer, a torsion sys-
tem with a clutch and machine balancing and storage, see [14] and from a wider
perspective [9].

From the theoretical point of view, we deal with a constrained mechanical sys-
tem, defined by ordinary differential equations (ODEs) subjected to additional
algebraic equations. In other words, the governing equations of a such mechani-
cal system form a system of differential-algebraic equations (DAEs). Since DAE
involves both differentiation and integration processes, which may additionally be
intertwined, DAE is more challenging to solve than ODE, as presented in [2]. The
complexity is proportional to an index of DAEs, see [6]. A widely used approach
consists of a reformulation of DAEs into an equivalent system of ODEs via the
elimination of algebraic variables (i.e., the associated Lagrange multipliers) un-
der an appropriate choice of generalized coordinates, for a comprehensive overview
of classical and contemporary techniques, see [3, 17] and references cited therein.
From the recently published literature, mention at least a paper [18], where model
reduction is applied.

In this work, we follow the theory of DAE systems and develop a methodology
incorporating switchable linear constraints, represented by a (0,±1)-matrix with
variable rank, thereby enabling rigorous analysis of the resulting saddle point sys-
tems. We also provide a numerical simulation in the MATLAB platform, arising
from this methodology, focused on the simplest benchmark. The core of this paper
consists of three sections. We introduce the methodological concept in Section 2
and present the approach on a two-mass oscillator with a switchable constraint
in detail in Section 3. Then, the attention is paid to numerical simulations in
Section 4. Finally, we give a brief conclusion.
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2. Methodology

The advantage of powerful processors and large available memory enable to create
of an efficient mathematical model of the mechanical system on the basis of the
equation of motion formalism, which includes the possibility of including the flexible
structure of the described system.

The mechanical system studied is assembled of n rigid bodies, localized by gen-
eralized position coordinates s = (s1, . . . , sn)

T. In order to avoid ambiguity, the one
dimensional spatial scenario is considered, i.e., a position of the jth mass element
at time t > 0 coincides with the function sj(t), j = 1, . . . , n. This specification
does not lose any generality and makes the description as clear as possible.

In line with classical mechanics [1], the movement of these rigid bodies is defined
by kinematics, subjected to m holonomic constraints gk(t, s) = 0, k = 1, . . . ,m. We
assume thatm < n and the constraints form a non-redundant set. Derivation of the
resulting equations of motion is based on the well-known Lagrangean principle [8]
and leads to the following system:

d

dt

∂K
∂ṡj

− ∂K
∂sj

= Qj +

m∑
k=1

λk
∂gk
∂sj

, j = 1, . . . , n, (1)

where ṡ = (ṡ1, . . . , ṡn)
T are the generalized velocities, K = K(t, s, ṡ) denotes ki-

netic energy, Qj = Qj(t, s, ṡ), j = 1, . . . , n are general forces, and λk = λk(s, ṡ),
k = 1, . . . ,m, Lagrange multiplier functions. More precisely, quantity Qj can be
decomposed into

Qj = Qj −
∂V
∂sj

− ∂D
∂ṡj

, (2)

where V = V(t, s, ṡ) is potential energy, D = D(t, s, ṡ) dissipative function and
Qj = Qj(t, s, ṡ) remaining external forces, respectively.

In the standard design of the equations of motion, the Lagrange multipliers are
the linear combination of the internal forces and do not have any direct physical
meaning. In contrast, within this approach, the constraints identical to the selected
coordinates produce the internal forces acting in the kinematic joint or constraints
directly. Precisely, the advantageous definition of constraints is crucial for the
functionality of the algorithm.

In other words, since all members on the right-hand side of (1) are forces, the

special case, when
∣∣∣∂gk∂sj

∣∣∣ = 1 for some j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, implies

that the Lagrange multipliers are directly forces acting along selected coordinates.
To achieve this effect, suitable coordinates are used to describe the system. Then,
each kinematic joint under interest should be described in the meaning of inde-
pendent coordinates of the system. In the limit case, all kinematic joints are
disconnected and the Lagrange equations can be derived together with constraint
equations. After performing all the steps of the Lagrange algorithm, system (1)
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with (2) can be rewritten in the matrix form as follows (see [25]):

m11 m12 · · · m1n g11 g21 · · · gm1

m21 m22 · · · m2n g12 g22 · · · gm2

...
...

. . .
...

...
...

. . .
...

mn1 mn2 · · · mnn g1n g2n · · · gmn

g11 g12 · · · g1n 0 0 · · · 0
g21 g22 · · · g2n 0 0 · · · 0
... g12 · · ·

...
...

...
. . .

...
gm1 gm2 · · · gmn 0 0 · · · 0





s̈1
s̈2
...
s̈n
−λ1

−λ2

...
−λm


=



Q1

Q2

...
Qn

0
0
...
0


, (3)

where

mij =
∂2K

∂ṡj∂ṡi
, gkj =

∂gk
∂sj

i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m}.

The size of the differential-algebraic problem (3) (i.e., number of equations) grows
rapidly with the complexity of the mechanical system, and the matrix form pro-
duces block structure, see [7]. Solving the problem (3) requires proper matrix
organization and allows a very flexible approach, see [20].

Under this framework, gkj ∈ {−1, 0, 1}, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, where
the value 0 means no link between coordinates (i.e., they are free and independent)
and the value ±1 creates the constraint (i.e., related coordinates are fixed together
and firmly connected). The key idea of the methodology presented is that it is
possible to switch between these zero and non-zero values during the simulation
process without interrupting it. As a result, we are able to incorporate a switchable
constraint in this way and treat it as the rheonomic one in general. On the other
hand, the fixed (active) constraint, i.e., |gkj | = 1 for at least one j ∈ {1, . . . , n},
can be considered scleronomic. In practice, representative examples are the situa-
tions when the number of degrees of freedom changes. It is a loss of mobility (i.e.,
ankylosis) due to the friction, and intervention of the active element, but even sim-
ple situations like the engagement/disengagement of the vehicle clutch, freewheel
lock/unlock, etc., see [23].

The switching on and off of constraints introduces strong nonlinearities into the
whole system and thus it makes the simulation process complex and expensive.
While switching off (1 → 0 or −1 → 0) can be done anytime on the basis of
external requirement (i.e., control input) or on the basis of the defined condition
(i.e., external forces exceed the static friction and the joint starts the relative
movement), switching on (0 → 1 or 0 → −1) means the connection of bodies or the
lock of the kinematic joint and it can only be done under certain circumstances,
e.g., when the relative velocity of the monitored kinematic joint is zero. Therefore,
it is necessary to identify such proper time instants in a passive way or apply
a control strategy to achieve the required kinematic condition.

The advantage of the methodology presented is that these steps do not influence
the integration of equations of motion in any case and the simulation (meaning
numerical) process can continue in spite of the structural changes of the mechanism.
This can be considered the main benefit of this approach, since is not necessary to
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stop the integration process due to the change in the number of degrees of freedom
during movement (done by friction, active system, singular case, etc.). In contrast,
stopping integration leads to a new definition of initial conditions, shortening of
the integration step, etc. The consequence is a loss of continuity, more extended
time of simulation process, and inconsistent results in the very beginning phase of
simulation. These phenomena are eliminated by the presented approach, which is
stable, reliable, and time-effective.

2.1 Non-switchable Constraints

As the first scenario assume that constraints are non-switchable, from the mathe-
matical point of view we study the second-order ODE system subjected to m linear
constraints

gk(s) = gk1s1 + · · ·+ gknsn = dk, k = 1, . . . ,m, (4)

where dk ∈ R. According to [2] this mechanical system forms a Hessenberg DAE of
index-3. In other words, since this ODE system describes Newton’s second law of
motion relating generalized accelerations s̈ (i.e., second derivatives of generalized
positions) to forces, two differentiations of constraints (4) with respect to time t
leads to saddle point system (3).

Further, let us denote M = (mij) ∈ Rn×n as a symmetric positive definite
generalized mass matrix and matrix G = (gkj) ∈ {−1, 0, 1}m×n with entries of
value −1, 0 or 1, assumed to have full row rank, i.e., the constraints (4) are linearly
independent. Then the system (3) for unknown differential variables s and unknown
algebraic variables λ = (−λ1, . . . ,−λm)T can be written in a more transparent way
as (see, e.g., [18]) [

M GT

G Om

]
︸ ︷︷ ︸

:=A

[
s̈
λ

]
=

[
q
om

]
, (5)

where Om ∈ Rm×m is a zero matrix, q = (Q1, . . . ,Qn)
T a vector of general forces

and om ∈ Rm a zero vector, respectively.

Note. In order to make further analysis clearer, at this point we emphasize again
to the readers that the positive integer m denotes the number of constraints, while
the functions mij represent the elements of the generalized mass matrix M. The
relevant notations are therefore not related to each other.

Following classical results on the saddle point systems [22], we are able to
eliminate algebraic variables λ and reformulate DAE (5) as an ODE system of size
2n in closed form. Specifically, according to algebraic properties of the saddle point
matrices [5], one can explicitly express the inverse of A from (5) as

A−1 =

[
M−1 +M−1GTS−1GM−1 −M−1GTS−1

−S−1GM−1 S−1

]
, (6)

where S = −GM−1GT ∈ Rm×m is the Schur complement of M in A. Recall
that A is non-singular if and only if S is non-singular, which is guaranteed by the
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positive definiteness of M and the full row rank property of G, see, e.g., [16]. Next,
left-multiplication of (5) by A−1 leads to[

s̈
λ

]
=

[
M−1q+M−1GTS−1GM−1q

−S−1GM−1q

]
, (7)

and elimination of algebraic variables λ results into the following second order ODE
system

s̈ = Bq, with B = (I−Π)M−1, (8)

where I ∈ Rn×n is a unit matrix and Π = −M−1GTS−1G is a projection matrix,
i.e., it satisfies an idempotent property

Π2 = −M−1GTS−1G(−M−1)GTS−1G = −M−1GTS−1SS−1G = Π. (9)

In other words, the differential component of (7) can be written as s̈ = (I −Π)ü,
where ü denotes the generalized accelerations of u = (u1, . . . , un)

T, representing
the solution (i.e., generalized position coordinates) of the unconstrained problem
Mü = q.

Subsequently, the standard substitution

z1 = s1, . . . , zn = sn, zn+1 = ṡ1, . . . , z2n = ṡn

transforms (8) to the first order ODE system of size 2n. In general case, if B =
B(t, s, ṡ) and q = q(t, s, ṡ) we obtain

ż = f(t, z), (10)

where z = (z1, . . . , z2n)
T are unknown generalized body positions and their veloc-

ities with the corresponding mapping f : R2n+1 → R2n, defined with the aid of B
and q. However, when M depends only on time t; and applied forces q are linear
with respect to s and ṡ, the system (10) becomes linear. More precisely, let

q = Vs+Dṡ, for V = V(t), D = D(t) ∈ Rn×n, (11)

then f(t, z) = Hz, where H = H(t) ∈ R2n×2n is defined as

H =

[
On I
BV BD

]
. (12)

Furthermore, the time independent case leads to the first order ODE system with
constant coefficients, i.e.,

ż = Cz, (13)

where the constant matrix C ∈ R2n×2n is defined as (12) and its spectral properties
are described below, cf. [4].

Theorem 1. Let M, V, D ∈ Rn×n and G ∈ Rm×n be constant matrices. More-
over, let M, V be non-singular and rank(G) = m, 0 < m < n. Then the matrix C
from (13), defined as (12), is non-diagonalizable. More precisely, zero is eigenvalue
of C that occurs with algebraic multiplicity 2m, while its geometric multiplicity, i.e.,
the dimension of the nullspace of C, is m.
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Proof. At first we show that rank(B) = n − m, where B is defined in (8). From
rank(G) = m we get that Schur complement S from (6) is non-singular. Then,
the full-rank factorization property implies that rank(Π) = m in (8). Since Π is
a projection matrix, (I−Π) is also a projection matrix and rank(I−Π) = n−m.
The desired property follows from

rank(B) = rank((I−Π)M−1) = rank(I−Π).

Since V is non-singular, rank(BV) = rank(B), then a simple rearrangement of
rows in C (see below)

C =

[
On I
BV BD

]
∼
[
BV BD
On I

]
implies that rank(C) = n −m + n = 2n −m, i.e., zero is eigenvalue of C having
geometric multiplicity 2n− rank(C) = m.

Further, in order to prove that the zero eigenvalue has algebraic multiplicity 2m,
it is sufficient to show that there exist m generalized eigenvectors corresponding
to this eigenvalue. In other words, we need to prove that rank(C2) = rank(C3) =
2n− 2m. Indeed, we have

C2 =

[
On I
BV BD

] [
On I
BV BD

]
=

[
BV BD

BDBV BV +BDBD

]
,

and left-multiplication by a lower triangular matrix with ones on the diagonal
preserves the nullspace of C2, i.e.,[

I On

−BD I

] [
BV BD

BDBV BV +BDBD

]
=

[
BV BD
On BV

]
.

The last matrix in the equation above can be decomposed into a following product[
BV BD
On BV

]
=

[
B On

On B

] [
V D
On V

]
,

where the first factor is a block-diagonal matrix with blocks having rank of n−m
and the second factor is a non-singular matrix under rank(V) = n. Hence, one
concludes that rank(C2) = 2(n−m) = 2n− 2m.

Using the similar steps for C3, we find that[
I On

−BD I

] [
On I
BV BD

]3
︸ ︷︷ ︸

C3

=

[
BDBV BV +BDBD
BVBV BVBD

]
=

[
BV BDB
On BVB

]
︸ ︷︷ ︸

W

[
On I
V D

]
,

and since the last matrix in the equation above is non-singular, it remains to prove
that rank(W) = 2n− 2m. To cope with this, we proceed as follows.

Let Q ∈ Rn×n be a transformation matrix that performs elementary steps of
the Gaussian elimination procedure to obtain a row echelon form of matrix B, i.e.,

QB =

[
B̃
OB

]
,
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where B̃ ∈ R(n−m)×n is a reduced row echelon variant and OB ∈ Rm×n is a zero
matrix. By the definition, Q is non-singular and its multiplying by blocks BV and
BDB leads to

QBV =

[
B̃
OB

]
V =

[
B̃V
OB

]
, QBDB =

[
B̃
OB

]
DB =

[
B̃DB
OB

]
,

and

W ∼

B̃V B̃DB
OB OB

On BVB

 .

Since V is non-singular, B̃V has full row rank and it remains to show that
rank(BVB) = n−m.

Let R ∈ Rn×n be a transformation matrix that performs elementary steps of
the Gaussian elimination procedure to obtain a row echelon form of matrix BT,
i.e.,

(RBT)T = BRT =
[
B̂ OT

B

]
,

where B̂ ∈ Rn×(n−m) is a reduced column echelon variant. By the definition, RT

is non-singular and it holds that rank(BVB) = rank(QBVBRT). Next, a simple
calculation leads to

QBVBRT =

[
B̃
OB

]
V
[
B̂ OT

B

]
=

[
B̃VB̂ O(n−m)×m

Om×(n−m) Om

]
,

where O(n−m)×m, Om×(n−m) are zero matrices of given sizes. Since V is non-

singular, B̃VB̂ ∈ R(n−m)×(n−m) is non-singular and one can easily find that
rank(QBVBRT) = rank(B̃VB̂) = n − m. This completes that rank(C3) =
2n− 2m.

Finally, taking into account that C has zero eigenvalue, whose algebraic and
geometric multiplicities are different, the matrix C is non-diagonalizable.

In line with the theory of linear autonomous ODE systems, the (exact) general
solution of (13) is given by a matrix exponential as

z(t) = c · exp(Ct), t > 0, (14)

where c ∈ Rn is an arbitrary vector. The non-diagonalizable property of C makes
the calculation of exp(Ct) more challenging. In this case, we decompose the ma-
trix C as a sum J+N, where J is diagonalizable, N is nilpotent, and JN = NJ,
see Jordan–Chevalley decomposition in [10]. Then, one can write

exp(Ct) = exp((J+N)t) = exp(Jt) · exp(Nt), t > 0. (15)

Since N is nilpotent, the series for exp(Nt) is finite. Nevertheless, the construc-
tion of this decomposition still remains the challenging for systems of large size.
Therefore, a numerical approach for solving of such ODE problems is common, see
Subsection 3.2 for the particular case.
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2.2 Switchable Constraints

In the second scenario (with predefined settings), switchable constraints are in-
cluded. More precisely, we assume that l constraints are switched off, 1 ≤ l ≤ m,
it means that matrix G has l zero rows on appropriate places corresponding to the
order of the disabled constraints. Since rank(G) = m− l, the Schur complement S
of M in A from (5) is not invertible. However, we can follow the same algorithm
using Moore-Penrose inverse (i.e., a pseudoinverse).

Definition 1 (see [11]). Let X ∈ Rr×s, a pseudoinverse of X is defined as a matrix
X+ ∈ Rs×r satisfying all of the following four criteria, known as the Moore–Penrose
conditions:

(i) XX+X = X,

(ii) X+XX+ = X+,

(iii) (XX+)T = XX+,

(iv) (X+X)T = X+X.

This generalization of the inverse matrix produces a matrix that is close to the
inverse matrix in some sense, but is computed for matrices that are not invertible.
Moreover, for any matrix X there is one and only one pseudoinverse X+, see [11].

Accordingly, such a pseudoinverse of S is defined as a matrix S+ satisfying the
above Moore–Penrose conditions. As a result of that, this approach preserves the
matrix block-wise calculations as in the non-singular case of the Schur comple-
ment S and allows us to proceed through the same steps (6)–(9) with matrix S+

instead of S−1. In accordance with the above, similarly to Theorem 1, we are able
to formulate its extension to the case of l (selected) disabled constraints.

Corollary. If rank(G) = m − l and l < m, then the statements of Theorem 1
remain valid with the difference that the zero eigenvalue of C has the algebraic
multiplicity 2(m− l) and the geometric multiplicity m− l.

Remark. For unconstrained problem (i.e., l = m) zero is not eigenvalue ofC and the
(eventual) non-diagonalizable property is driven by spectral properties of matrices
V and D. However, it goes beyond the scope of the related issue.

The methodology presented above will be illustrated on the idealized two-mass
oscillator with a switchable constraint (between two masses) that represents the
simplest, deeply known, scenario to highlight the functionality of this methodology.
With respect to the practical point of view, this problem reminds the quarter car
model with friction or the lock spring-damper element.

3. Two-mass Oscillator with Switchable Constraint

Accordingly the notation introduced, we set n = 2, m = 1 and consider that the
mechanical system is described by its kinetic and potential energy as follows

K(ṡ) =
1

2
m1ṡ

2
1 +

1

2
m2ṡ

2
2, (16)

V(s) =
1

2
k1s

2
1 +

1

2
k2s

2
2, (17)
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where positive constants m1, m2 are masses of the rigid bodies and positive con-
stants k1, k2 represent corresponding stiffness. Moreover, to be as clear as possible,
we omit external forces and dissipative components (e.g., dumping), i.e., Q = 0 and
D = 0, respectively. Furthermore, we consider a simple condition that both rigid
bodies of the mechanical system are distant (from each other) by a fixed length for
the entire time that the constraint is active.

Taking these assumptions into account, the motion of such mechanical system
is described by the following ODE system

m1s̈1(t) = −k1s1(t), (18)

m2s̈2(t) = −k2s2(t), (19)

subjected to the linear constraint

s1(t)− s2(t) = d1, d1 ∈ R. (20)

Double differentiation of the constraint (20) yields a constraint on the acceler-
ation level

s̈1(t)− s̈2(t) = 0, (21)

and using the approach of Lagrange multipliers we rewrite (18)–(20) as the well-
known saddle point system [

M GT

G 0

] [
s̈
−λ

]
=

[
Vs
0

]
, (22)

where

M =

[
m1 0
0 m2

]
, V =

[
−k1 0
0 −k2

]
, G =

[
1 −1

]
(23)

and λ ∈ R is the Lagrange multiplier.

To uniquely solve the problem (22)–(23), it is necessary to add a couple of initial
conditions. The setting of initial conditions to determine the particular solution of
DAEs is a delicate issue. By default, we need to prescribe 2n independent initial
conditions for the second ODE system (18)–(19) in the form

s1(0) = α, s2(0) = β, ṡ1(0) = γ, ṡ2(0) = δ, α, β, γ, δ ∈ R. (24)

On the other hand, from constraint (20), one can deduce that conditions (24) have
to be consistent. Therefore, it is necessary to prescribe only n conditions

s1(0) = α, ṡ1(0) = γ, (25)

and the constraint (20) and its differentiation lead to

s2(0) = s1(0)− d1, ṡ2(0) = ṡ1(0). (26)

Within the forthcoming Subsections 3.1–3.2 we present analytical and numerical
approach to solve the unconstrained and constrained ODE system (18)–(19).
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3.1 Quantitative Properties and ODE Analysis

At first, we consider the unconstrained system, represented by separated ODEs
(18) and (19), rewritten as

s̈j(t) +
kj
mj

sj(t) = 0, j = 1, 2. (27)

Following the theory of the second order ODEs with constant coefficients [13], one
can express the exact solutions of (27) in the following forms

s1(t) = c1 cos

(√
k1
m1

· t

)
+ c3 sin

(√
k1
m1

· t

)
, (28)

s2(t) = c2 cos

(√
k2
m2

· t

)
+ c4 sin

(√
k2
m2

· t

)
, (29)

where constants c1, . . . , c4 depend on initial states (24). Specifically,

c1 = α, c2 = β, c3 = γ

√
m1

k1
, c4 = δ

√
m2

k2
. (30)

Note, while the initial states affect the magnitude of an amplitude of (28) and (29),

the ratio kj : mj controls the corresponding frequency fj = 1
2π

√
kj

mj
, j = 1, 2, see

Subsection 4.1 for the particular case.
Secondly, we consider the constrained system (27) with (20), represented in

line with the presented methodology by the first order system (13), rewritten
component-wise as follows

ż1(t)
ż2(t)
ż3(t)
ż4(t)

 =


0 0 1 0
0 0 0 1

−b11k1 −b12k2 0 0
−b21k1 −b22k2 0 0


︸ ︷︷ ︸

:=C


z1(t)
z2(t)
z3(t)
z4(t)

 , (31)

where B = (bij) ∈ R2×2 is given by (8) and rank(B) = 1.
Following the theory of the systems of first order ODEs with constant coeffi-

cients [13], the general solution of (31) can be expressed as a linear combination of
fundamental solutions, i.e.,

z(t) = c1ψ1(t) + c2ψ2(t) + c3ψ3(t) + c4ψ4(t), c1, . . . , c4 ∈ R, (32)

where vector-valued functions ψj(t), j = 1, . . . , 4 are linearly independent. In
order to construct these fundamental solutions, we compute the eigenvalues and
the corresponding eigenvectors of the system matrix C from (31), i.e.,

ℓ1,2 = ±i

√
k1 + k2
m1 +m2

, ℓ3,4 = 0, w1,2 =


1
1

±i
√

m1+m2

k1+k2

±i
√

m1+m2

k1+k2

 , w3 =


k2
−k1
0
0

 . (33)
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According to Theorem 1, the system matrix C is non-diagonalizable and the eigen-
value ℓ3,4 = 0 occurs with algebraic multiplicity 2, but for it there are not 2 linearly
independent eigenvectors. Therefore, we append a generalized eigenvector w4 as
a solution of Cw4 = w3 to ensure the validity of the terms C2w4 = (0, 0, 0, 0)T

and Cw4 ̸= (0, 0, 0, 0)T. Simple calculations lead to w4 = (0, 0, k2,−k1)
T. Then

taking into account a complex conjugate property (i.e., ℓ2 = ℓ1 and w2 = w1) and
multiple eigenvalue (ℓ3,4 = 0), we obtain

ψ1(t) = ℜ (exp(ℓ1t)w1) , ψ2(t) = ℑ (exp(ℓ1t)w1) , (34)

ψ3(t) = w3, ψ4(t) = t ·w3 +w4.

Next, we insert (34) into (32), then the constrained solutions s1(t) = z1(t) and
s2(t) = z2(t) have the following form

s1(t) = c1 cos

(√
k1 + k2
m1 +m2

· t

)
+ c2 sin

(√
k1 + k2
m1 +m2

· t

)
+ (c3 + c4t)k2, (35)

s2(t) = c1 cos

(√
k1 + k2
m1 +m2

· t

)
+ c2 sin

(√
k1 + k2
m1 +m2

· t

)
− (c3 + c4t)k1. (36)

One can easily resolve that both solutions (35)–(36) have the same frequency f1 =

f2 = 1
2π

√
k1+k2

m1+m2
. Concerning the constants c1, . . . , c4 in (35)–(36), from (20) and

its differentiation (i.e., ṡ1(t) = ṡ2(t)) we get

c3 =
d1

k1 + k2
, c4 = 0. (37)

Finally, the condition (25) results to

c1 = α− c3k2 = α− d1 + c3k1, c2 = γ

√
m1 +m2

k1 + k2
. (38)

Remark. The result (35)–(36) can be alternatively obtained by summing the equa-
tions (27) and using (20) to obtain the one ODE of the second order with the
non-homogeneous right-hand side. It is left to the interested reader to find a solu-
tion this way.

3.2 Numerical Approach

The simplest numerical methods for solving DAEs are variants of well-known time
integration schemes for ODEs that are more or less directly applied. However, this
approach are not successful in general, see [12].

Regarding the illustrative experiment it is possible to use a direct time inte-
gration, for which responses of displacements and velocities are calculated using
step-by-step integration in time without modifications to the equations of motion
as long as switchable constraints remain unchanged. In particular, explicit schemes
have become one of the most widely used classes of direct methods, especially for
the analysis of transient phenomena such as switching constraints. Nevertheless,
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the disadvantage of the explicit treatment is that the resulting schemes are condi-
tionally stable, i.e., the time step size has to be below a critical value, see [2].

Among the explicit schemes, Runge-Kutta methods are very popular. These
single-step methods use a series of iterative calculations to approximate the solu-
tion at each time level within a prespecified time interval [0, T ], with higher-order
techniques to provide more accurate results while cost the per time step is small.

In what follows, we present the solution to (31) with the given initial state
(25)–(26) using a particular Runge-Kutta scheme. Consider the following time
partition

0 = t0 < t1 < t2 < · · · < tr−1 < tr = T (39)

with fixed time step τ = ti+1 − ti (for simplicity). However, it is also possible to
use an adaptive time step, and a simple generalization of the procedure below is
left to the interested reader. Then the single-step procedure of problem (31) reads:
Find z(i+1) ≈ z(ti+1) such as

ż = Cz, with z(ti) = z(i). (40)

Next, we recall the classic Runge-Kutta (fourth-order) method [12], defined by
recurrent formulae related to (40), i.e.,

r1 = Cz(i), r2 = C
(
z(i) +

τ

2
r1

)
,

r3 = C
(
z(i) +

τ

2
r2

)
, r4 = C

(
z(i) + τr3

)
,

(41)

and
z(i+1) =

τ

6
(r1 + 2r2 + 2r3 + r4) . (42)

Putting (41) into (42), then after a simple rearrangement, we get

z(i+1) = z(i) + τCz(i) +
1

2
τ2C2z(i) +

1

6
τ3C3z(i) +

1

24
τ4C4z(i). (43)

In other words, since the general solution is given by a matrix exponential (14), the
exact solution to (40) takes the form z(i+1) = z(i) exp(Cτ) and the first five terms of
the corresponding power series give (43). Therefore, to improve the classic Runge-
Kutta scheme, one can use the approximation of the pth order of the corresponding
matrix exponential as

z(i+1) =

p∑
j=0

τ j

j!
Cjz(i), (44)

or directly compute the matrix exponential exp(Cτ) as such itself.
Finally, note that for the time dependent case C = C(t), one has to rely on

numerical scheme, e.g., (42) where (41) take the following forms, i.e.,

r1 = C(ti)z
(i), r2 = C

(
ti +

τ

2

)(
z(i) +

τ

2
r1

)
,

r3 = C
(
ti +

τ

2

)(
z(i) +

τ

2
r2

)
, r4 = C (ti + τ)

(
z(i) + τr3

)
.

(45)

Remark. We proceed through the same steps above also for the unconstrained case,
where B = M−1 in (31).

123



Neural Network World 2/2024, 111–134

4. Numerical Simulations

In this section, we present numerical experiments on selected scenarios of two-mass
oscillator with a switchable constraint (18)–(20) in order to verify the validity of
the presented methodology and illustrate its usage. This two-mass model is used
for the most straightforward simulation of a quarter car suspension system. In
our case, the suspension element includes dry friction or active control capable of
locking the suspension movement.

In the beginning, we deal with the single stage (i.e., the constrained or the un-
constrained system), representing the initial setting. Secondly, to provide a brief
insight to the transient behavior, we investigate constraint violation as well as its
activation in the two-phase case. Furthermore, from the practical point of view, we
perform an intentional control as a repeated (de-)activation of a switchable con-
straint. Finally, we extend simulations to the damped case of intentional control.

To be consistent in all cases, we consider fixed mass and stiffness data

m1 = 10, m2 = 1, k1 = 10, k2 = 5. (46)

The used numerical scheme (44) is implemented through the MATLAB platform
with p = 4 and τ = 0.01. Note that these parameters seem to be appropriately cho-
sen for the experimental study considered and taking a higher order p or a smaller
time step τ will not improve the results significantly.

4.1 Initial Stage

We start with the unconstrained system (18)–(19) subjected to the following initial
conditions

s1(0) = 0.5, s2(0) = 0, ṡ1(0) = 0, ṡ2(0) = 1. (47)

The (time) development of the corresponding components of positions, velocities
and accelerations is depicted in Fig. 1. One can easily observe the different frequen-
cies in graphs of position, velocity and acceleration components. More precisely,
application of (28)–(30) leads to

s1(t) = 0.5 · cos(t), s2(t) =

√
5

5
· sin

(√
5 · t

)
, t > 0, (48)

with the different frequencies f1 = 1
2π and f2 =

√
5

2π .
Secondly, we consider the constrained system (18)–(20) with the following data

s1(0) = 0.5, ṡ1(0) = 0, d1 = 0.5. (49)

From Fig. 2 one can recognize the identical graphs of velocity and acceleration
components and shifted graphs (by d1) of position components. These observations
are in a good agreement with analytical solutions (35)–(38), i.e.,

s1(t) =
1

3
cos

(√
15

11
· t

)
+

1

6
, s2(t) =

1

3
cos

(√
15

11
· t

)
− 1

3
, t > 0, (50)

with the same frequencies f1 = f2 = 1
2π

√
15
11 .
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Fig. 1 Initial stage: Position, velocity and acceleration components of the uncon-
strained two-mass oscillator.

4.2 Two-phase Case

As the first scenario we take the constrained system (18)–(20) with data (49), where
the constraint (20) is violated at fixed time instant t = TD > 0. This situation can
be represented incorporating the piecewise constant matrix (in general)

G = G(t) =

{ [
1 −1

]
, if 0 ≤ t ≤ TD,[

0 0
]
, if t > TD.

(51)

Since (51) is not differentiable at t = TD, we divide the whole system in two
subproblems linked via smoothing conditions

lim
t→TD−

s(t) = s(TD) = lim
t→TD+

s(t), lim
t→TD−

ṡ(t) = ṡ(TD) = lim
t→TD+

ṡ(t), (52)

and treat both subproblems (separately) in sequential order. This approach leads
to a discontinuity in s̈(t) at t = TD. More precisely, from (8) and (51) we get
one-sided limits

lim
t→TD−

s̈(t) = (I−Π)M−1Vs(TD), (53)

lim
t→TD+

s̈(t) = M−1Vs(TD), (54)

which are not equal in general.
The particular scenario for (49) and TD = 12 is shown in Fig. 3. The behavior

during the first phase is identical to Fig. 2. However, at the decoupling time t = TD,
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Fig. 2 Initial stage: Position, velocity and acceleration components of the con-
strained two-mass oscillator.

the discontinuity in both acceleration components is well resolved, while position
and velocity components remain continuous throughout the simulation. Moreover,
this disconnection brings a change in frequencies.

Compared to the decoupling scenario the issue of a constraint activation is
more delicate. The reason is that the connection is possible only at certain time
instants, when the velocity components of both rigid bodies are equal. To find
the intersections of both velocity graphs, we define a relative velocity ṡrel(t) =
ṡ1(t)− ṡ2(t) and localize its zero nodes, i.e.,

ṡrel(t) = 0 ⇐⇒ ṡ1(t) = ṡ2(t). (55)

Since ṡrel is evaluated in a discrete way during the simulation procedure, we sim-
ply identify the changing signs and use an t-intercept of the corresponding linear
interpolant to precise the value of TC, for which (55) holds.

In what follows, consider an unconstrained system (18)–(19), i.e., with G =
[0 0], and let T rel

D be a (minimal) user-defined relevant time of the first (discon-
nected) phase, then we find TC > T rel

D as small as possible to satisfy (55). Next, we
redefine G = [1 −1] for all t > TC and introduce the constrained system (18)–(20)
with

d1 = lim
t→TC−

s1(t)− s2(t). (56)

Similarly as in (52), we require the continuity of s(t) and ṡ(t) at t = TC. Again,
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Fig. 3 Decoupling: Position, velocity and acceleration components of the two-mass
oscillator with a violated constraint.

we obtain a discontinuity in s̈(t) at t = TC, because one-sided limits

lim
t→TC−

s̈(t) = M−1Vs(TC), (57)

lim
t→TC+

s̈(t) = (I−Π)M−1Vs(TC) (58)

are not equal in general.

The particular scenario for (47) and T rel
D = 10 is captured in Fig. 4. The value

of TC was set approximately as 10.76. As expected, the behavior is completely
reversed as in Fig. 3. Specifically, the first phase is identical to Fig. 1 and, for
t > TC, the frequencies of all components are the same and the difference of position
components is constant (i.e., the relative velocity is zero).

4.3 Intentional Control

The following experiment extends the two-phase case in terms of artificial control.
Consider the system (18)–(19) with repeated activation and violation of the con-
straint (20). Without loss of generality, we start from the unconstrained system.
Relevant changes of the constraint (20) are driven by parameters T rel

D and T rel
C ,

where the first one represents a (minimal) user-defined relevant period of the dis-
connected phase and the second one an (exact) user-defined relevant period of the
connected phase. Further, following the approach from Subsection 4.2 with only
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Fig. 4 Coupling: Position, velocity and acceleration components of the two-mass
oscillator with an activated constraint.

one transient level, we obtain sets {T (i)
C } and {T (i)

D } satisfying

T
(i)
C >= T

(i−1)
D + T rel

D , T
(i)
D = T

(i)
C + T rel

C , i = 1, 2, . . . , (59)

where T
(0)
D = 0 and T

(i)
C is as small as possible to satisfy the relation above

and (55). Basically, the time instants (59) determine the intentional control of
the constraint (20) and as a result the entire oscillator. The behavior of such
oscillator with a switchable constraint subjected to the intentional control with
T rel
D = T rel

C = 1 and data (47) is depicted in Fig. 5. At first glance the time devel-
opment of the position components may seem random, however, graphs of velocity
and acceleration components clearly identify transient levels and different phases,
see Fig. 5 (upper). This behavior is much more apparent from the relative values
as constant and non-constant phases in Fig. 5 (bottom).

From a technical point of view, as a quarter car suspension system is concerned,
the locking or unlocking can be done by the intervention of an active system,
which is particularly useful in various practical situations where a vehicle has to
respect specific requirements. The detection of the lock state can be performed
by the accelerometers on the sprung/unsprung masses, and the derived vertical
velocities of these components are identical. Conversely, the unlock state results
in different vertical velocities. Potential applications can be found in commercial,
experimental, heavy terrain, and military vehicles.
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Fig. 5 Intentional control: Position, velocity and acceleration components of the
two-mass oscillator (upper) and the corresponding differences of these components
(bottom).
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4.4 Extension to Damped Case

Friction (or damping) is a factor that suppresses the movement of oscillators in
a real-world environment. The motion of the damped system is gradually reduced
due to the presence of a dissipative function D. More precisely, we consider that
the dissipative force is proportional to the velocity components of all the bodies of
the system. As for the studied two-mass oscillator, we have

D(ṡ) =
1

2
b1ṡ

2
1 +

1

2
b2ṡ

2
2, (60)

where positive constants b1, b2 are damping coefficients. Similarly to steps (18)–
(21) we change the saddle point system (22) to[

M GT

G 0

] [
s̈
−λ

]
=

[
Vs
0

]
+

[
Dṡ
0

]
, where D =

[
−b1 0
0 −b2

]
. (61)

In the similar way we modify (31) and apply numerical approach from Subsec-
tion 3.2.

In what follows we extend the intentional control from Subsection 4.3 to the
damped case with b1 = 1 and b2 = 0.5 under the same relevant periods of given
phases and data (47). Fig. 6 captures the so-called underdamped system whose
components oscillate through the zero equilibrium position.

Remark. The behavior of the system is essentially determined by the mass, stiff-
ness and damping parameters, resulting to the classification of the system as over-
damped (with exponential decay), critically damped (moving as fast as possible to
equilibrium) or underdamped. The detailed numerical analysis of such a system
and estimation of the critical damping ratio are beyond the scope of this study and
is left for future research.

Technically speaking, the complex quarter car model contains the spring force,
damping force and friction element. The friction element can change the number
of degrees of freedom and is modelled by the combination of static friction (occur-
ring when the relative velocity of sprung/unsprung masses is zero) and dynamic
friction (representing relative movement). Static friction can lock relative move-
ment (i.e., cause ankylosis) until external forces exceed the friction capacity of the
static friction in this element. Then the relative movement is activated again. This
phenomenon can be observed especially by gentle mechanisms, such as observation
equipment carriers, etc.

The presented methodology can be used for systems of any complexity, as the
main idea is to identify the regular part of the system matrix. This part enables
solving the system dynamics in any situation; the remaining part has a meaning
of the kinematic constraints. The main value of the approach is done in the cor-
rect modeling of the friction when the locked kinematic joint is in this approach
described as a restraint in the equations of motion. The friction simulation is not
based on some alternative approach, such as adding a high-stiffness spring and
damper. The approach with additional force elements is still frequently used in
the multibody simulation systems. The presented approach is suitable even for the
simulation of the singular cases of mechanical systems.
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Fig. 6 Damping: Position, velocity and acceleration components of the damped
two-mass oscillator (upper) and the corresponding differences of these components
(bottom).
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5. Conclusion

The aim of the paper is to present an advanced methodological concept to treat with
mechanical systems subjected to switchable linear constraints, describing mecha-
nism with flexible structures. The cornerstone is the choice of an appropriate
coordinate system that allows the constraint to be represented as a linear function
with respect to the position components. The studied problem is described using
the Lagrangian formalism, leading to DAEs represented by a saddle point problem.
From the mathematical point of view, the subsequent elimination of algebraic vari-
ables with suitable transformation reformulates the problem to the first order ODE
system for unknown position and velocity components. Since saddle point matrices
are not invertible in the classical sense due to switchable constraints, a pseudoin-
verse has to be incorporated. In addition, the time independent scenario simplifies
the resulting ODE system to the linear autonomous one.

Special attention is paid to a two-mass oscillator with a switchable constraint to
demonstrate functionality. The relevant numerical treatment arises from the time
discretization of the differential equations with the aid of Runge-Kutta schemes.
The portfolio of numerical experiments produces satisfactory results and illustrates
the potency of the presented concept, especially for transient behavior within
(damped) intentional control. Moreover, the results obtained reflect the mean-
ingful relevance and can be easily interpreted and subsequently used in a broad
spectrum of applications.

Aware that this concept is illustrated under the simplest scenario of a two-
mass oscillator, the presented methodology is generally applicable in the computer
simulations of the constrained mechanical systems in case of a variable number of
degrees of freedom due to blocking or releasing of some kinematic joint, usually
indicated as ankylosis. This situation is typical for kinematic joints with friction,
where kinematic and static friction coefficients are considered. The systems with
the change of structure can be effectively simulated in the case of active systems,
where the control system and active elements influence the number of degrees of
freedom. The active force elements are integrated into the joints and control the
moveability of the mechanism. These situations appear in robotics frequently. The
approach helps to solve even the singular cases in the mechanics. The method-
ology enables the lock of the (unsure) joint, lets the numerical integration make
a few steps, and releases the joint just after the singular position when the mecha-
nism continues its movement. Definitely, there is an open possibility to utilize the
methodology in applied mechanics, biomechanics, production technology, automo-
tive, and many other disciplines, where mechanical systems play an essential role
in the simulations and in the design of digital twins.

Last but not least, let us add from a relevant point of view that the chosen
exact approach, in contrast to the currently frequently used modeling using various
types of deep neural networks, see e.g., [19,26], gives priority to clear interpretation,
stability, exact (and discrete) time solutions and their derivatives (e.g., velocities
or accelerations) together with subsequent post-processing in a large number of
technical applications, including advanced optimization strategies [15] or systems
with nonlinearities/singularities [23].
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