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Abstract: This paper deals with the analysis of the relationship between locations
and types of crime observed in the Czech Republic. Cluster analysis of crime data
based on the recursive Bayesian mixture estimation algorithm is used to identify
crime hotspots and estimate local models of crime type. The experiments report
that the 2D configuration of the algorithm allows the detection of crime hotspots
online. The 3D configuration provides 29% more accurate crime type models than
2D clustering and alternative data mining algorithms. For the data set used, it was
determined in which crime hotspots the most serious and most frequent types of
crime can be expected to occur with the highest probability. The limitation of the
study is the artificial support of the 3D clusters by the fully continuous data vector
with the recoded values of the crime type. The potential use of the algorithm
is expected in online web applications for sharing information on criminal offenses
managed by the Police of the Czech Republic with the public and local government
entities in the Czech Republic.
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1. Introduction

The paper deals with the analysis of crime data recorded over a period of time in the
Czech Republic. The available records of criminal activity to be analyzed include
locations and types of crime, and the main focus of the study is to model the rela-
tionship between them. The crime records are multimodal in nature, which means
that they naturally form clusters. Cluster analysis of crime data is a powerful tool
for detecting crime hotspots, comparing crime trends over time within and between
local regions, and predicting crime. It plays an important role in government crime
prevention programs and helps improve the quality of life for citizens. Examining
the behavior of the data within detected clusters helps to assess whether types of
criminal activity differ between clusters. The well-interpretable crime type model
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is expected to help identify locations with significant levels of crime severity or
frequency. Records of criminal activity are both continuous and discrete in nature,
making the task of constructing a model that explains the naturally non-linear
dependencies between them challenging.

In exploring the state of the art in this area, it was found that recent surveys of
crime data analysis and prediction [10, 14,50, 58] mention a significant number of
studies based on data mining and machine learning techniques. These include, but
are not limited to, the naive Bayes classifier [44,60]; clustering algorithms such as k-
means [21,63], fuzzy c-means [51], DBSCAN [5,40] and hierarchical clustering [7];
k-nearest neighbors predictor [17,36]; decision trees and random forests [23,49];
support vector machines [1,35] and various hybrid approaches.

Deep learning algorithms represent a powerful extension of machine learning
and have attracted increasing attention in recent years in the field of crime analy-
sis and prediction, see, e.g., [18,29,30,43,48,61,62], etc. The popularity of machine
learning, and the growing attractiveness of deep learning algorithms, is under-
standable given the high predictive accuracy that these methods offer in various
application areas [6,13,37,59]. However, the poor interpretability and the high
computational cost are known to be their disadvantages [37]. In contrast, statisti-
cal approaches used for crime analysis and prediction, such as, e.g., [2,4,27], offer
good interpretability of results along with low computational complexity at the
cost of relatively lower accuracy.

This paper focuses on statistical cluster analysis of crime data. The model-based
clustering tools of the recursive Bayesian mixture estimation theory [33,34,41] are
applied here to the task of detecting hotspots with high levels of criminal activity.
The possibility of one-pass recursive estimation, free from iterative computations
and increasing computational complexity during algorithm execution, is a key fea-
ture of the methodology adopted [33]. Its specific extensions have been successfully
applied in various practical fields such as fuel consumption minimization [52], driv-
ing style recognition [53,54], car accident prediction [32], transport demand pre-
diction [47], commodity price prediction [16], etc. This paper will use the benefits
of the above theory and its extension to specific crime data to demonstrate how
crime hotspots can be identified in real time using actual measured data.

The specific goals of the study are:

e construct data-based models of clusters that mark crime hotspots,
e explore the types of crime in each cluster,

e construct the model describing the relationship between location and crime
types,

e and validate the model on real data.
The layout of the paper is as follows: Section 2 specifies a problem and provides
the theoretical background of the proposed solution. Section 3 demonstrates the

application of the described algorithms to the analysis of crime data. Conclusions
can be found in Section 4.
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2. Theoretical Background

2.1 Problem Formulation

Consider the following records of criminal activity, marked with the time index
t={1,2,...,T}, representing the date of the crime:

e the two-dimensional continuous column data vector y;, whose entries are the
anonymized X and Y coordinates of the crime location,

e and the discrete variable z;, which is the type of crime with a set of possible
values {1,2,..., N} sorted in ascending order according to the severity of
the crime.

The behavior of the observed variables changes, switching between locations where
crimes are reported with different frequencies and severities, and creating clusters
of values that belong to a crime hotspot. The number of these hotspots is denoted
by N.

The appropriate tool to describe the behavior of such data is a mixture of NV
models, known as the universal approximation [22] of the multimodal relationships
between the modeled variables. Fundamental approaches existing in the field of
mixture estimation are based on: (i) the iterative expectation maximization (EM)
algorithm [26], (ii) variational Bayes methods [25, 38, 55], (iii) numerical iterative
techniques based on Markov chain Monte Carlo methods [11,15,19,20], and (iv)
recursive Bayesian mixture estimation [33,34,41] used in this paper. Bayesian
mixture models have been used to analyze crime data [24,39,56], but to the best of
our knowledge not with the recursive mixture estimation methodology mentioned
above.

According to the methodology used, the mixture model of the crime data to be
analyzed consists of N components, each in the form of a conditional probability
density function (PDF) denoted by f(:]). In general, the ith component Vi €
{1,2,..., N} is the PDF describing the behavior of the data in the ith crime hotspot

f(data;|©, ¢, = i), (1)

where data; is the vector of crime records marked by the time index ¢, and © is a
collection of unknown parameters of the mixture model. ¢; is a pointer [34] whose
value indicates the active component to which the data with the current index ¢
belong. The role of the pointer ¢; in this study is to mark the actual crime hotspot,
while the hotspots are modeled by the components.

With the mixture model introduced, the task verbally formulated in Section 1
is specified as follows:

e identify the components describing the crime hotspots, i.e., recursively esti-
mate the mixture parameters using past data and real-time observations,

e determine the pointer estimate pointing to the hotspot at each time ¢,
e construct and estimate the crime type model for each hotspot,
e validate the model.

The theoretical background to the solution of this problem is given below.
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2.2 Recursive Bayesian Mixture-based Clustering

Within the framework of the adopted approach [33,34,41], the posterior PDF
of the unknown parameters © and the pointer c¢; is obtained using the mixture
estimation algorithm based on the following general scheme using the Bayes rule
and decomposition via the chain rule [46]:

f(©,c; = il{data;}1 ) o f(data;,©,c; =il{data;}; ")
posterior PDF joint PDF
= f(data;|0,c; =) f(©|{data,}/;")
component (1) conjugate prior PDF
f(er = il{data,}, ), (2)

pointer distribution

X

which is simplified here by the unparameterized pointer distribution, and where
{data;}]_, denotes the entire set of criminal activity records marked by indices ¢
from ¢t =0 to t =T with datagy as prior knowledge.

2.2.1 Parameter Estimation with Continuous Crime Locations

Applying the scheme (2) only to the continuous vector of crime locations yy, i.e., for
the case where data; = y; and {data,}]_, = {y:}]_,, assuming normality of its
entries in clusters, the component (1) is the two-variate static normal distribution
with the mean vector 6 and the covariance matrix 3. This means that the unknown
parameters of each component are only © = {6,X}. The entries of the mean vector
express the centers of the components describing crime hotspots. The conjugate
prior PDF used in (2) for this case is the Gauss-inverse-Wischart (GiW) distribution
[34,46,57]. The standard recursive update of GiW statistics based on currently
observed crime activity is simplified by the use of static components as follows:

S =Si-1+yt, ke =ke—1+1, R=Ri_1+yys, (3)

where Sy, ko and Ry are initial statistics, ’ denotes the transposition, and which
leads to a recursive recomputation of the point estimates of the mean vector # and
the covariance matrix %

T
é_%EZtZOYt’ it:m_&<&)/. (4)

=
Kt T Kt KRt K¢

The computations (3) and (4) are performed at each time index ¢ for each com-
ponent denoting the ith crime hotspot with i € {1,2,...,N}. See details in
[33,34,41,46,57] and derivations in Appendix A.

2.2.2 Parameter Estimation with Discrete Crime Type

In the case of applying the scheme (2) only to the type of crime z, i.e., with data; =
z and {data;}!_, = {2}, the component (1) is the (1 x N,)-dimensional cate-
gorical distribution of probabilities 8 = {Bj};-v:zl = O corresponding to the type of
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crime z; = j, Vj = {1,2,..., N, }. The conjugate prior PDF used in (2) to estimate
B is the Dirichlet distribution [33]. The recursive update of the Dirichlet statistics
is fulfilled according to [33] as the stepwise construction of the (1 x N, )-dimensional
contingency table v; as follows:

Vjy = Vjy—1 + 1 for j = z, measured at time index ¢, (5)

where vy = [V1,0, V2,0, ..., VnN.:0] is zero or random initial statistics. The recom-

putation of the point estimates of the probabilities 5 of crime types is obtained by

normalizing the updated statistics [33]

Vit
N. :

D1 Vist

Similar to the previous section, the recursive computations (5) and (6) are per-
formed for each component denoting the ith crime hotspot with ¢ € {1,2,..., N}.

Biw = (6)

2.2.3 Active Crime Hotspot Estimation

The above formulas (3) and (4) for the crime locations or (5) and (6) for the crime
type are valid for the recursive estimation of the mixture parameters, if it is known
from which hotspot the crime records originate. In reality, the currently active
crime hotspot has to be estimated. Here it is determined by the point estimate of
the pointer c¢;.

As mentioned above, the scheme (2) includes the unparameterized pointer dis-
tribution f(c; = i|{data,}/_;'). Tt is the weighting vector w; = [wiy, ..., Wy’
obtained via the proximity function [31,41,42], which gives the approximate dis-
tance between the current crime record and each hotspot expressed by the compo-
nent. The (1 x N)-dimensional proximity vector m; is obtained at each time ¢ by
substituting the parameter point estimates available from the previous time index
t — 1 and the currently measured data into each ith component (1)

mi;t:f(datat|(:)t_1,ct=i), 1€ {1,2,...,N}, (7)

which is either the normal distribution with y; and point estimates ét—l and f]t_l or
the categorical distribution with z; and §;_1. The resulting vector m; is normalized
to obtain the weights
w o Myt
it = SN
Zl:l mist
that belong to the weighting vector and represent the probabilities of crime hotspots.
The crime hotspot with the highest probability among the weights is declared ac-
tive at time index ¢, meaning that current records of crime activity belong to this
hotspot. Formally, this is provided by the point estimate of the pointer ¢; [34]

(®)

6 = argie{rf?,%N} Wy (9)

The resulting weights (8) are used in the updates (3) and (5) of the ith component
to multiply the data measured at time index ¢. In this way, general key steps of
recognition of active crime hotspot using the given calculations are:
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1. Initialize the number of components N and the initial statistics Sy, kg, Ro
or vy for each component.

2. Compute the initial point estimates of all parameters of all components using

(4) or (6).

) Measure the actual datay.
) Compute the proximity vector m; via (7).
(¢) Compute the weighting vector w; using (8).
)

Determine the point estimate of the pointer ¢; via (9) to classify the
data to the active crime hotspot.

(e) Update the statistics with the help of (3) and (5) using the weighted
data.

(f) Recompute the point estimates of all parameters of all components using
(4) and (6).

(g) Go to step (a).

Note that the time loop formally runs until ¢ = T', depending on the size of the
data set used. However, due to the one-pass nature of the algorithm, the time
t is not limited, allowing the algorithm to be applied online in real time as the
actual crime records are received and analyzed. To demonstrate this, the algorithm
was implemented in the free and open source programming environment Scilab
(www.scilab.org) and the programming language Python 3 (www.python.org). In
the next section, various configurations of the algorithm are compared and the
results of crime hotspot detection are presented.

3. Application to Crime Data Analysis

3.1 Data

The records from the public database provided by the crime map web application at
https://kriminalita.policie.cz are used under the terms of the general license stated
on the web page. The application was created by the Police of the Czech Republic
for the purpose of sharing information about the location and type of criminal
activity with local government entities. The records are regularly updated on a
monthly basis. This paper uses the actual data set as of August 2022. The raw
data set contained 57.630 records of criminal activities observed on the territory of
the Czech Republic for the month, including traffic accidents and property crimes,
which were sorted out. After sorting, the data set contains 6.945 records of the
anonymized coordinates of the crime location y; and the crime type z; (see Section
2.1). The following seven types of crimes remained in the data set after sorting:
z¢ = 1 — general dangerous crime, z; = 2 — dangerous drugs, z; = 3 — extremism,
zt = 4 — theft, z; = 5 — burglary, z; = 6 — weapons, z; = 7 — violent crime.
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3.2 Results

The mixture initialization was performed using the k-means clustering algorithm
[28,45] to find the initial centers of the crime hotspots. The number of hotspots
was initialized to 14, corresponding to the number of regions in the Czech Repub-
lic. Then, the initial statistics and point estimates of the component parameters
were computed using shuffled prior values from the initialized clusters. A different
number of hotspots can be selected for initialization depending on multimodality
of data sets to be analyzed.

The goal of the experiments was to apply the discussed algorithm to (i) online
detection of crime hotspots based on actual measured data and (ii) estimation of
the model of the type of crime in the detected hotspots.

3.2.1 Online Crime Hotspot Detection

During the time loop of the one-pass algorithm, the crime hotspots were detected
online using the currently measured data for each time index ¢. The clustered
two-dimensional data space of crime locations is shown in Fig. 1.

Fig. 1a shows the scatter plot of all coordinates of the crime locations in the
form of a silhouette of the map of the Czech Republic. Denser clusters in the data
space indicate locations with more intense criminal activity. Some of the clusters
are not as dense, but the algorithm detected them as well. 14 black dots show
centers of detected clusters of criminal activity. The centers are determined as the
point estimates of the component parameters 6 according to (4) and step (f) of the
algorithm presented in Section 2.2.3. Meanwhile, the active hotspot is detected for
each time index via the point estimate of the pointer ¢; given by (9) and step (d)
of the algorithm. Since the parameter point estimates represent the mean values of
the crime coordinates during online clustering, they naturally exhibit deviations at
each time index. This explains the presence of multiple black dots at each center
in Fig. la.

In Fig. 1Db, these clusters are marked with different colors along with the centers.
They express the detected actual crime hotspots. Note that the boundaries of the
hotspots do not necessarily correspond to the regions of the Czech Republic from
which they were initialized, and some of them (4, 5 and 12) overlap. This is a
natural result of the calculation of hotspot weights. An important remark is that
the clusters captured are insignificantly different from those detected by centroid-
based clustering methods (such as k-means used in the crime map web application
at https://kriminalita.policie.cz), but the difference lies in the one-pass approach
to estimating hotspot centers in the online mode. The algorithm is used to identify
the actual crime hotspots in real time, providing information about the cluster to
which the current crime record belongs, despite its geographic (here anonymized)
coordinates.

During online clustering, all components expressing crime hotspots should be
represented to verify that the model is correctly initialized. Fig. 2 shows a fragment
of the evolution of 500 values of weights of hotspots at the beginning of the time
loop of the algorithm execution. Note that the weights of all hotspots show their
activity, i.e., the model choice is adequate, and the initialization was successful.
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Fig. 1 Crime hotspots detected online. Note that hotspots create locations in the
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(b) 14 recognized crime hotspots.

shape of a Czech Republic map silhouette.

3.2.2 3D Local Crime Type Models Based on Crime Hotspot Detection

The correlation between crime location and crime type is low: the Spearman’s
rank correlation coefficient and p-value between X coordinates and crime type
z¢ are 0.238 and 0.0471, respectively, and they are -0.0413 and 5.7296e-04 for Y
coordinates and crime type, respectively. The use of weak dependence between
the variables directly for constructing a model will lead to inaccurate model and
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Fig. 2 A fragment of 500 time indices (x-axis) of the online evolution of crime
hotspot weights. Note that the weights of all 14 crime hotspots take on wvalues
between 0 and 1 (y-azxis) as the algorithm runs. This indicates that all of the
detected hotspots are reqularly active.

low accuracy in predicting the type of crime based on the locations. In order to
address this problem, this section constructs local models of crime type that allow
the relationship between variables to be captured in locations defined by crime
hotspots. The individual components describing crime hotspots serve as locations
of criminal activity. Using the detected locations, the local models of the type of
crime have been estimated.

In this section, in order to construct the local models, the values of the crime
type z; from the data set were first reordered and recoded in the following way:
1 — 3,3 = 1,6 - 7,7 — 6. The reason for the recoding is as follows. The
comparison of the raw and reordered values is given in Fig. 3. Note that while the
histogram shape of the raw data in Fig. 3a corresponds to a categorical probability
distribution of 7 crime types, the histogram of the recoded crime type values in
Fig. 3b has a normal distribution shape due to the auxiliary reordering of the values.
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Simply using the categorical distribution from Fig. 3a to predict the type of crime
by maximum probability would only predict the value z; = 4, which is theft, and
never z; = 3 (extremism). However, this auxiliary rearrangement gives us a way
to deal with the recoded crime type values as continuous during computations.

Raw crime type histogram
3500 4
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T
4
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(a) Histogram of raw crime type values with categorical distribution shape

Recoded crime type histogram
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(b) Histogram of recoded crime type values with normal distribution shape.

Fig. 3 Comparison of histograms of crime type before and after recoding. Note
that the values 1 and 3, and 6 and 7 have been swapped.

This trivial recoding allows us to find 3D clusters of criminal activity in the con-
tinuous data space. Here, this is done by treating the fully continuous data vector
data;, which contains both the crime coordinates and the recoded crime type z;.
The recoding is used only for computational reasons to obtain the proximity vector
(see formula (7) in Section 2.2.3) from the three-variate normal components, but
later the values of the crime type are decoded back to the raw data. Experiments
have shown that using 3D clusters of crime hotspots yields more accurate local
models of crime type. This is demonstrated below.
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For model validation, during each run of the algorithm’s time loop, the data set
was randomly split into training (80%) and testing (20%) data containing 5.556 and
1.389 shuffled crime records, respectively. The 3D clustering of the fully continuous
crime data space obtained with the training data is shown in Fig. 4. Fig. 4a
shows the 3D space of crime locations and types, with the centers of 14 crime
hotspots marked, some of which overlap or are close to each other in the data
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shown in Fig. 1a.
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(b) 14 recognized 3D crime hotspots. Note that the layers of the 3D clusters now correspond
to the type of crime. It can be seen, for example, that the clusters around the value 4 (theft)
are denser than the clusters corresponding to the recoded value 1 of extremism.

Fig. 4 3D clustering of fully continuous crime data space.
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space considered. The centers detected are different from those in Fig. la, even
though it is the same data space, but extended by crime type. Visually bounded
3D crime hotspots with layers corresponding to individual crime types, depending
on the frequency of crime types in the hotspots, are shown in Fig. 4b. It can be
seen in this figure that the layers of the 3D clusters correspond to the type of crime.
This explains, for example, why the clusters around the value 4 (theft) are denser
than the clusters corresponding to the recoded value 1 of extremism: there are
significantly higher numbers of locations in the dataset where theft was recorded
than for extremism.

The obtained 3D clusters are used as new 3D crime hotspots on which the
local categorical crime type models are constructed and estimated according to
Section 2.2.2. Each local crime type model is the 7-dimensional probability func-
tion that exists for each of the 14 hotspots and is estimated using training data.
The significant contribution of the proposed approach is clearly seen in the com-
parison with the local models estimated on trivial 2D crime hotspots detected in
the previous Section 3.2.1.

The comparison is shown in the form of histograms in Fig. 5. Fig. ba displays
the local histograms of crime type obtained on 2D crime hotspots from Fig. 1b.
It is not difficult to see that, despite insignificant differences, the local crime type
models in all these hotspots in Fig. 5a have a maximum probability of z, = 4
(theft) and a negligible probability of z; = 3 (extremism). This result is similar
to the categorical distribution of crime type shown in Fig. 3a, and suggests that
prediction with these local crime type models will lead to a dominance of 4 (theft)
and no chance of predicting 3 (extremism).

However, the 3D local crime type models shown in Fig. 5b give a completely
different result. Each 3D crime hotspot provides from one to three dominant crime
types with the highest probabilities differing across the hotspots, while the remain-
ing types have negligible probabilities. To validate whether the 3D local models
from Fig. 5b provide a more accurate description of the type of crime at the loca-
tions under consideration, the prediction of crime type obtained on the detected
2D and 3D crime hotspots was compared with the testing data.

Tab. I shows the comparison of the prediction accuracy defined as

e number of correct precllic.tions « 100% (10)
total number of predictions

averaged across 10 random splits of training and testing data. The table also
provides the average prediction accuracy obtained using alternative data mining
algorithms implemented in Python and KNIME (www.knime.com). The methods
used for the comparison were naive Bayes (NB) [8], k-nearest neighbors (kNN)
[3,9,12], decision trees (DT) [9,45], random forests (RF) [9,45], support vector
machines (SVM) [9], and neural networks (NN) [9,45]. In Tab. I, A represents
the average accuracy, while o4 indicates its standard deviation. As can be seen in
Tab. I, the local models based on 3D crime hotspots show significant improvements
in prediction accuracy compared to 2D and other methods. This validates the
approach discussed and confirms the functionality of the crime type models.

In addition, a fragment of the visual validation of the 3D local models is shown
in Fig. 6, where the evolution of the real values is compared with the obtained
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all of these local models provide the highest probabilities of different crime types. Their
number is also different. The probabilities of the remaining types are negligible.

Fig. 5 Comparison of local crime type models estimated on 2D and 3D hotspots.
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2D 3D NB kNN DT RF SVM NN

A(%) 47230 88.216 46.731 58.445 52.599 52.117 19.928 47.098
oa(%) 0.104 0.795 1.097 1.121 1.098 1.172 9.814  1.158

Tab. I Average crime type prediction accuracy comparison

predictions of the crime type. The values after decoding back to raw data are used.
Due to the use of the fully continuous data vector, the crime type predictions can
also be computed from the normal components on the active 3D hotspots, as shown
in Fig. 6. Both categorical and continuous predictions follow the real values in the
figure. The root mean square error (RMSE) of the continuous predictions averaged
over 10 random splits was 0.307 with a standard deviation of 0.0099. The predic-
tions obtained using 2D hotspots and other methods compared are concentrated
around the value of 4 (theft), so there is no point in visualizing them.

Fragment of crime type prediction from 3D hotspots
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Fig. 6 Visual comparison of real crime types and their predictions based on 3D
hotspots. For better visualization, a fragment of 100 time indices from a random
training set is shown. Note that both categorical and continuous predictions corre-
spond to real values.

The validated 3D local models describe the relationship between locations and
crime types, which is the main focus of the study. The main potential of the models
is seen in the search for hotspots with the most serious and/or most frequent types
of crime. Fig. 7 compares the search for such crime hotspots between 2D and 3D
clustering. Fig. 7a plots the type of crime against the number of all crimes in
trivial 2D locations. It allows us to see that most crimes of all types are located in
hotspot 4, which is around Prague in Fig. 1b, which has the shape of a map of the
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Type vs count of crimes in 14 2D hotspots

2200 f f Y f f :
| . . . . . ...ZD hotspot 1
2000 - . A H B B B ' 20 hotspot 2
‘ﬁ 2D hotspot 3
M oo
i otspot
1600 ”‘ZD hotspot 6
I 4420 hotspat 7
4 A 420 hotspot 8
2 1400 I 2D hotspot 9
c 2D hotspot 10
3 1200 2Dh ot
8 W ¥ W20 hotspot 11
P 1 2D hotspot 12
£ lo00 <l - <zD hotspot 13
s A A A3 hotspot 14
800 L
Yo s -
200 v
o i i i i i i
o 1 2 El 4 5 6 7 8

Crime type

(a) Note that from this plot it can be concluded that the highest counts of all crime types
are in hotspot 4 around Prague (see legend of Fig. 1b). The second highest counts of all
types except 8 (extremism) are observed in hotspot 2 in the Moravian-Silesian region. The
two hotspots 2 and 4 are also the densest in Fig. 1a.

Type vs count of crimes in 14 3D hotspots
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(b) In contrast, this plot shows that the most frequent types of crime are 4 (theft) in
3D hotspot 2 in the Moravian-Silesian region and 5 (burglary) in 3D hotspot 8 in the
Karlovy Vary region. The most serious crime type 7 (violent) is reported more frequently,
in descending order, in hotspot 1 in the Usti nad Labem region, hotspot 9 in the Liberec
region, hotspot 4 in Prague, and hotspot 12 in the Central Bohemia region.

Fig. 7 Comparison of crime types and counts in 2D and 3D crime hotspots. Note
that the color of each hotspot is the same as in Fig. 1b, but the shapes have been
changed for better visibility.
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Czech Republic (see the legend of Fig. 1b). However, the counts of all crimes are
similarly distributed across the types and hotspots, which also corresponds to the
histograms in Fig. 5a.

In contrast, Fig. 7b shows specific counts of crime types in each of the 3D
hotspots, allowing us to see the hotspots of the most serious crime type 7 (violent).
The detailed description is given below Fig. 7b.

3.3 Discussion

The main goal of the study was to find a model that describes the relationship
between crime locations and the type of crime reported in those locations. Given
the weak correlation between the variables, this task was not trivial. However, it
can be stated that the specific goals of the work defined in Section 1 were success-
fully achieved using online 3D mixture-based clustering of the crime data space.
The experimental part of the study reports that the identified 3D local models
accurately describe the behavior of the crime type in the detected crime hotspots
in comparison to 2D local models and selected alternative well-known algorithms.
The compared methods were not able to extract knowledge about the relation-
ship between location and crime type from the raw data or from the detected 2D
clusters representing crime hotspots, which explains the low prediction accuracy
in validation experiments. However, the use of 3D clustering, supported by the
auxiliary reordering of the crime type data, allowed the local dependencies of the
variables to be captured.

Another important contribution of this approach is the online detection of crime
hotspots, which applies to both 2D and 3D configurations. In fact, the application
of centroid-based clustering algorithms such as k-means used for mixture initializa-
tion yields clusters insignificantly different from the discussed algorithm. However,
together with the compared data mining methods, they focus more on classification
problems and cross-sectional data. In contrast, the applied recursive mixture esti-
mation is aimed more at time-series data by computing the proximity for real-time
clustering and updating the weights of the distributions representing the crime
hotspots.

In addition, the analysis of crime type data in 3D hotspots made it possible to
search for crime hotspots with the most serious/frequent crimes, a feature that can
be tailored to specific needs during data analysis.

The weakness of the approach found in the experimental part is the artificial
support of 3D clusters by the fully continuous data vector with the recoded values
of the crime type. This has both advantages and disadvantages. The positive side
is the possibility of updating and analyzing the crime hotspot online in real time,
choosing the time indices as needed. However, the online prediction of the type
of crime cannot be used with the models and data considered and serves only to
validate the models. A different composition of the data set will probably mitigate
this shortcoming. Another possibility is to explore a dynamic model of the type of
crime, which will be the subject of publication elsewhere.

The potential use of the algorithm is expected in online web applications for
sharing information on criminal offenses managed by the Police of the Czech Repub-
lic with the public and local government entities in the Czech Republic, exactly in
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line with the objective of the original application at https://kriminalita.policie.cz,
which inspired the creation of this study. Due to the contributions of the algorithm
discussed above, the shared content can be enriched by the analysis of individual
crime hotspots detected online.

Another direction of potential use involves monitoring the development of the
crime index in hotspots of criminal activity, such as, e.g., the web application
www.mapakriminality.cz, whose aim is to facilitate public orientation in the crime
data regularly published by the Police of the Czech Republic.

Due to the specificity of the data used, Czech applications are mentioned. How-
ever, it should be emphasized that the data-driven approach used is not limited by
data or application domain, as mentioned in Section 1.

4. Conclusion

The study dealt with a model describing the relationship between locations and
types of crime in a data set observed in the Czech Republic. For the modeling,
the recursive Bayesian mixture estimation algorithms were used, which have found
application in many fields. The experiments conducted reported that 2D and 3D re-
cursive clustering can be used to estimate local models of crime type corresponding
to hotspots of criminal activity detected in real time, with the resulting probabili-
ties of crime type from 2D and 3D clusters being different. The trivial 2D approach
is suitable for online detection of actual crime hotspots, while the contribution of
3D local models lies in the ability to analyze the behavior of crime type in hotspots.
For the data set used, it has been determined in which crime hotspots the most
serious and most frequent types of crime can be expected to occur with the highest
probability.

To summarize the main contributions of the proposed approach, they are: (i)
online detection of crime hotspots in both 2D and 3D configurations, (ii) more
accurate local models of crime type compared to alternative algorithms, and (iii)
detection of hotspots with the most serious/frequent crimes.

Among the open problems that remain uncovered in the study, it is worth men-
tioning (i) the dynamic prediction of the type of crime, which may find a potential
solution using dynamic mixtures of categorical distributions focusing on time series
data, (ii) modeling the time evolution of crime counts in hotspots, which may be
solved using local Poisson regressions, and (iii) predicting the status of criminal
investigations. Addressing these challenges within the adopted theory of recursive
Bayesian mixture estimation, which allows real-time analysis of actual measured
data, will hopefully make a positive contribution to intelligent information systems
to assist law enforcement agencies in identifying patterns and trends that can help
prevent and analyze crimes.
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Appendix A

According to [33,34,41,46,57], the relations (3) and (4) can be derived as follows.
With a multivariate normal static regression model as a single component, the
regression vector has the form

/
WP = [ }it } , and the data matrix is ¥’ = { y;zlt }1t } ) (11)

The updated information matrix takes the form

T
Zt 13’th Zt:1Yt

v —
Et 1Y T

(12)

where T is the number of data for which the update is running. The partition of
the information matrix V is thus

_ 1
Vy = Zytha yp — Zth Vp =T, V T (13)
t=1

The recomputation of the point estimate of the mean vector 6 is obtained as

O =V, 'V, = Zyt i, (14)
and the point estimate of the covariance matrix ¥ is recomputed as
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p

t T - T
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