
VARIATIONS OF TRAINING PROCESS IN
VANILLA RECURRENT NEURAL NETWORK

FRAMEWORK

D. Yi∗, I. Kim†, S. Bu‡

Abstract: Recurrent neural networks (RNNs) are capable of learning features and
long term dependencies from sequential and time series data and show outstanding
performance in sequential modeling tasks. However, training process in RNNs is
troubled by issues in learning processes such as slow inference, vanishing gradients
and difficulties in capturing long term dependencies. In this paper, we introduce a
new learning technique to update the weight set as we change the input sequence
which is shifted by certain amount of time in training process, instead of using
a traditional way to calculate one set of the weights and bias in training time
series with sequences shifted by certain amount of time series. We also consider an
algorithm for an evaluation process. In the traditional way, the evaluation process
is executed by using final weights and biases calculated in the training process.
Instead, during the testing process, the weights and biases are iteratively updated
in each sequence as done in the training process. Several numerical experiments
demonstrate the efficiency of the proposed techniques.

Key words: recurrent neural network, time series, machine learning, weight

Received: April 17, 2019 DOI: 10.14311/NNW.2024.34.005
Revised and accepted: April 22, 2024

1. Introduction

Recurrent neural network (RNN) has become the standard approach for machine
learning tasks involving sequential time series data. Such success has been enabled
by the appearance of larger datasets, more powerful computing resources and im-
proved architectures and training algorithms. The RNNs have a stack of non-linear
units where at least one connection between units form a directed cycle. Also RNN
is made from layers of connected units called neurons. As the number of layers in-
creases, the network becomes more complex. Many number of layers or recurrent
connections are increasing the depth of the network referred to as “deep learning”,
and it enables to represent more complex models. However, the complex models

∗Dokkyun Yi; DU University College, Daegu University, Kyungsan, Republic of Korea, E-mail:
dkyi@daegu.ac.kr,

†Inmi Kim; Mechatronics research center, Hongik University, Sejong, Republic of Korea, E-
mail: inmikim@gmail.com

‡Sunyoung Bu – Corresponding author; Department of liberal arts, Hongik University, Sejong,
Republic of Korea, E-mail: syboo@hongik.ac.kr

©CTU FTS 2024 73

mailto:dkyi@daegu.ac.kr
mailto:inmikim@gmail.com
mailto:syboo@hongik.ac.kr

Neural Network World 2/2024, 73–87

based on the many layers may produce many difficulties induced from abstract
representation of data at the higher layer, unwanted variabilities and complicated
back-propagation in the optimization process [4, 8, 9, 11, 14, 16, 17]. Note that to
avoid the unnecessary discussion of these complexities and difficulties, we restrict
our attention in this paper to a discrete time series with a single size as an input
data.

An efficient training is a major issue in RNN and there have been several ef-
forts to improve the efficiency of a training process in RNN, such as choosing a
proper initialization, selecting optimization algorithm, etc. These efforts are for
finding more appropriate weights and biases to minimize the training cost. In
other aspects, there are some difficulties on learning for long-term dependencies
with gradient descent. Previous researches [1,13] show that calculated parameters
are only suitable for sub-optimal solutions that take into account only short-term
dependencies but not long term on. Also, current back-propagations are not suffi-
ciently powerful enough to follow the whole behavior of long term time series data.
Several variations such as the long short-term memory (LSTM) [5,7] and the gated
recurrent unit (GRU) [2], etc, were designed to deal with the vanishing gradients
problems with long term dependencies, occurring in basic RNNs. These variation
models [3,6,10,12,15] have been widely used due to more efficient results in a variety
of tasks in machine translations, language modelings and speech recognitions, etc.

A purpose of this paper is to modify the basic RNN architectures to resolve
the learning of long-term dependencies by giving an alternative technique to find
the weights and biases in the basic vanilla RNN. In the traditional RNN, the
weights and biases are calculated at once in the whole training process. Instead of
calculating once for one whole time sequence, first we chopped the whole sequence
into several subsequence using an appropriate sequence length. A new technique is
to find the weights and biases in each subsequence with having the previous weights
and biases calculated in the previous subsequence during the training process.

For the testing process to evaluate the trained model on samples it has not
seen during training in order to evaluate its ability to generalize, the test data
set is the last part of the given time series. The testing process is executed to
predict a next value after the training data set, with having the weights and biases
calculated from the training process. Also, for predicting a sequence of test data
set, the training and evaluation processes are alternatively executed. That is, one
new predicted value obtained from each testing iteration is added as the last value
of training data set so it can make a new training data set. The new training data
set is trained again and calculated newly weights and biases. The testing process
predicts the next value and the value becomes the last value of training data set
again. These processes are iteratively repeated until a sequence of test data set is
fully predicted.

The paper is organized as follows. In Section 2.1, we briefly review RNN and its
properties and in Section 2.2, a new technique for RNN is introduced. Especially,
in Section 2.2, a new training process is described and its algorithm is introduced.
Additionally, evaluation algorithms used in this work are also described in Sec-
tion 2.3. Several numerical results are presented in Section 3 to show the efficiency
of the proposed techniques. Finally, in Section 4, a summary of the proposed
algorithms and some discussions are given.

74

Yi D., Kim I., Bu S.: Variations of Training Process in Vanilla Recurrent Neural. . .

2. Vanilla RNN and Modified RNN

RNN is a class of neural network where connections between units form a direct
cycle along a given sequence. This connection can show a dynamic temporal be-
havior for a time series. In this section, we briefly explain the basic vanilla RNN
and introduce a modification of the basic RNN.

2.1 Vanilla RNN

The basic model of the RNN can be written as follows:

ht = σ(whhht−1 + wxhxt + bh),

yt = whyht + by,
(1)

where whh, wxh, why, bh and by are weights and biases and σ denotes a sigmoidal
function tanh(·). In RNN, it uses one set of weights and biases, whh, wxh, why, bh
and by and many sequences created by shifting certain length of sequence by
one. That is, we use a sequence (x1, x2, . . . , xseq) to estimate xseq+1 and then
use (x2, x3, . . . , xseq+1) to estimate xseq+2 and so on. Here seq is the sequence
length. With size Nt of the training set, we have Nt − seq number of sequences to
put into the RNN system. In the basic RNN, the cost is calculated by the average
of squares of differences between the result y and the data x from seqth element,
as follows:

cost =
1

m

m∑
i=1

[
yseq+i−1 − xseq+i

]2
, (2)

where m = Nt − seq. The cost formula is used to do learning and get weights and
biases whh, wxh, why, bh and by by an appropriate optimizing process [14] such as
Adam optimization method [8]. Note that we only consider full back propagation
in the Adam optimization. That is, in the partial derivative of cost with respect
to each variables whh and wxh, it goes all the way down to the first input data and
uses them all as described below. Based on Eqs. (1) and (2),

∂

∂whh
cost =

∂

∂whh

(
1

m

m∑
i=1

[
yseq+i−1 − xseq+i

]2)

=
∂

∂whh

(
1

m

m∑
i=1

[
whyhseq+i−1 + by − xseq+i

]2)

=
∂

∂whh

(
1

m

m∑
i=1

[whyσ(whhhseq+i−2 + wxhxseq+i−1 + bh)

+by − xseq+i]
2

)

=
2

m

m∑
i=1

[
whyσ(·) + by − xseq+i

]
why

∂

∂whh
σ(·),

(3)

where σ(·) = σ(whhhseq+i−2 + wxhxseq+i−1 + bh) and m = Nt − seq.

75

Neural Network World 2/2024, 73–87

By the first equation in Eq. (1), σ(·) = σ(whhhseq+i−2 + wxhxseq+i−1 + bh) =
hseq+i−1, so Eq. (3) becomes

∂

∂whh
cost =

2

m

m∑
i=1

[
whyσ(·) + by − xseq+i

]
why

∂

∂whh
σ(·)

=
2

m

m∑
i=1

[
whyσ(·) + by − xseq+i

]
why

∂

∂whh
hseq+i−1.

(4)

For detail derivation of ∂
∂whh

hseq+i−1in Eq. (4), we need the following calculations:

∂

∂whh
hseq+i−1 =

∂

∂whh
σ(whhhseq+i−2 + wxhxseq+i−1 + bh)

=
(
1− h2

seq+i−1

)(
hseq+i−2 + whh

∂

∂whh
hseq+i−2

)
...

∂

∂whh
h1 =

∂

∂whh
σ(whhh0 + wxhx1 + bh)

=
(
1− h2

1

)(
h0 + whh

∂h0

∂whh

)
.

(5)

Similar calculation can be done for ∂
∂wxh

cost. Note that in both partial derivatives
∂

∂whh
cost and ∂

∂wxh
cost, every ∂ht

∂whh
and ∂ht

∂wxh
for t = 0, . . . , Nt − 2 are used, since

it is full back-propagation.

2.2 Modified RNN

In this subsection, we modify the traditional RNN training process by updating
weights and biases in each subsequence step based on the previous weights and
biases calculated in the previous subsequence. Additionally, for the testing process,
we present an evaluation technique to update the weights and biases calculated in
every processes. Algorithms for all new schemes are provided.

The modified RNN method considering the cost in each sequence has a learning
process to obtain optimized weights and bias in the sequence. After learning the
sequence of data, the weight and bias are tossed as the initial value of the next
sequence so that the next RNN system can use a better initial condition than the
basic RNN. Also, to avoid over-fitting issues, all calculated parameters are saved
and used for calculations at the next subsequence. In the modified RNN, the cost
is calculated in each sequence similar to Eq. 2 as follows:

cost(j) =
1

n

n∑
i=1

(
yi(j)− xi+1(j)

)2
, (6)

where xn+1(j) = yn(j) and n = seq, the length of each sequence. Then the cost is
calculated to get optimized weights and biases by Adam optimization. Note that

76

Yi D., Kim I., Bu S.: Variations of Training Process in Vanilla Recurrent Neural. . .

in this training, only s-length of back propagation is used. For example, for jth
sequence (xj , xj+1, . . . , xj+n−1) = (x1(j), x2(j), . . . , xn(j)),

∂

∂whh
cost =

2

n

n∑
i=1

(
yi(j)− xi+1(j)

) ∂

∂whh
hiwhy,

∂

∂whh
hi =

(
1− h2

i

)(
hi−1 + whh

∂

∂whh
hi−1

)
,

...

∂

∂whh
h1 =

(
1− h2

1

)(
h0 + whh

∂

∂whh
h0

)
,

(7)

where hi = σ(whhhi−1+wxhxi+bh) and h0 = h1(j−1) for j > 1. Note that initial
h0 in jth sequence is called from the first h, which is h1 in the previous sequence and
it is called as constant. Unlike the basic RNN which uses the full back propagation,
the modified RNN uses only sequence length-amount back propagations.

Based on above calculations, we obtain algorithm.

Algorithm 1 Algorithm for modified vanilla RNN.

1. Remark: The algorithm is designed to modify vanilla RNN.
Input: data with having aNd size vector, training set lengthNt, sequence length
seq, iteration number of optimising process times
Output: weight set (whh, wxh, why, bh, by) of basic RNN after learning, the last
htrain for testing the next element.
2. Take the training data with length Nt by chopping the data from the first
element.
3. Take the first data sequence of length seq from the first element of training
data and calculate the seqth element of ht (=hseq) by computing Eq. 1.
4. Perform the Adam optimization scheme with appropriate initial conditions
and given iteration number times. Note that in this learning scheme, the object
function is the cost function defined as

cost(whh, wxh, why, bh, by) =
1

seq

seq∑
i=1

(
yi(j)− xi+1(j)

)2
,

where xseq+1(j) = x1(j+1). Here, xi(j) means ith element of jth sequence data.
5. Calculate ht and yt for all indices t in current sequence in Eq. 1 with the
result of step 4.
6. Take the next sequence data taken by shifting by one and use the result of
step 5 as the initial conditions of weights and biases.
7. Repeat step 4, 5, and 6 until all the training data is used.
8. As changing an object sequence of data, repeat step 4 and 5 until use up all
the training data.

77

Neural Network World 2/2024, 73–87

2.3 Evaluation of Training Process

In this subsection, we present an algorithm for the testing process with the weights
and biases calculated in the training process. In the traditional evaluation pro-
cess, the test data set is only used for comparison with the expectations. For the
traditional testing method, the cost is defined as follows:

cost =
1

n

n−1∑
i=1

(
xi+1 − yi

)2
, (8)

where

yi = whyhi + by,

hi = σ(whhhi−1 + wxhyi−1 + bh).
(9)

Note that yi−1 is the calculated result from xi−1 which targets xi.
The algorithm for testing process used in this paper is a process to measure the

difference between real data and expectation by iteratively updating the weights
and biases during the testing process. For an evaluation of a training algorithm,
first we predict an expected value using weights and biases calculated in the training
process. After that, the expected value is added to the original training data. New
weights and biases are calculated for the updated training data. Using the new
weights and biases, we predict the next value, again. Note that the new weights
and biases are used for the initial condition for the next input training data. By
repeating this process, we have the expected evaluation data, and compare them
with testing data.

Based on the above calculations and explanations, we present the following
algorithm.

Algorithm 2 Evaluation algorithm for modified vanilla RNN.

1. Remark: The algorithm is designed to evaluate the proposed vanilla RNN.
2. Input: data with having a Nd size vector, training set length Nt, sequence
length seq, weight set (whh, wxh, why, bh, by) and the last h from learning process,
iteration number times for optimization.
Output: cost of testing data from given weights and biases and expected data
3. Take the testing data with size Nd −Nt by extracting the training data from
the whole data.
4. Get data of (seq − 1) amount before the testing data, and take an expected
value from the training process
5. Initiate h0 = h.
6. From the first sequence of data in step 4, perform the Adams optimization
scheme with appropriate initial conditions and given iteration number times with
the object function

costj(whh, wxh, why, bh, by) =
1

seq

seq∑
i=1

(
yi(j)− xi+1(j)

)2
,

where xseq+1(j) = x1(j+1). Here, xi(j) means ith element of jth sequence data.

78

Yi D., Kim I., Bu S.: Variations of Training Process in Vanilla Recurrent Neural. . .

7. Calculate ht and yt in Eq. 1 with the result of step 6 then calculate the
expected data yseq(j), the seqth element of yt in current sequence.
8. Take the next sequence of data by shifting by one and use the result of step
7 as the initial conditions of weights and biases. Here, the last element of the
sequence would be yseq(j).
9. Repeat step 6 and 7 until the expected data length is the same length as the
testing data.

3. Numerical Results

In this section, preliminary numerical results are presented to examine the efficiency
of the proposed scheme, compared to the basic RNN. For this experiment, there are
tests – stock data, virtual currency data and precipitation data in Korea. Although
these data has own units and values, these data should be rescaled from 0 to 1 by
own maximum and minimum values in each data set.

For the experiments, the initial conditions for all cases are given as follows
h0(1) = 0, (whh, wxh, why, bh, by) = (1, 1, 1, 0, 0). As mentioned above, the sig-
moidal function is set to a hyperbolic tangent tanh function.

3.1 Stock Data

For the first example, we test the proposed scheme on a time series data obtained
from a stock market. The data is composed of 744 values over time and divided
into two parts – one for training and the other for evaluation. The training data
length is set as 700 for convenience and the remaining 44 is automatically for the
testing. Here, a sequence length of 50 is used as default.

To show the efficiency of the proposed scheme, we calculate the cost used for
the learning process of the proposed scheme and compare it with that of the basic
RNN. The result is plotted in Fig. 1 by varying the iteration numbers from 1 to
3000, used for optimization. Fig. 1 shows that training cost of the basic RNN is
decreasing slower than the cost of the proposed scheme and the final training cost
is also greater than the proposed scheme.

0 500 1000 1500 2000 2500 3000

Iteration

10-4

10-3

10-2

10-1

100

C
os

t

simple RNN

Modified RNN

Fig. 1 Training error.

79

Neural Network World 2/2024, 73–87

After the learning process, we need to check if the learning process is working
reasonably by testing the learning results – weights and biases. Therefore, to
investigate the testing process, we plug the weights and biases obtained from the
last learning process back into Eq. 9 and examine how the results approach the
behaviors of real data. All conditions are the exact same as those used above. First,
we calculate a cost of a testing scheme and compare it to that of the real testing
data. All results are plotted in Fig. 2. As shown in Fig. 2, the expectation of the
proposed scheme result resembles a similar pattern to the real data, compared with
the results from the basic RNN. However, both results from the proposed and basic
RNN are insufficient in catching the details of the real data.

0 10 20 30 40

Testing data

0.4

0.45

0.5

0.55

0.6

0.65

0.7

R
es

ul
ts

Real data

Simple RNN

Modified RNN

Fig. 2 Comparison of traditional testing results of proposed RNN and basic RNN.

To avoid this drawback, we apply the proposed testing scheme to the proposed
RNN and compare it with that of the given real data set. For further comparison,
we also calculate the traditional testing scheme for the proposed RNN. All results
are plotted in Fig. 3. One can see that the proposed testing scheme follows the
pattern of the given data set, while the traditional testing scheme seems to generate
a linear pattern to fit the given real data.

0 10 20 30 40

Testing data

0.45

0.5

0.55

0.6

0.65

R
es

ul
ts

Real data

Traditional testing

Proposed testing

Fig. 3 Comparison of traditional testing scheme with proposed testing scheme.

To emphasize the effectiveness of the proposed testing process, we apply the
testing process into both the basic RNN and the proposed RNN to see the effect of

80

Yi D., Kim I., Bu S.: Variations of Training Process in Vanilla Recurrent Neural. . .

the proposed testing process according to testing methods. Fig. 4 shows that the
difference of real testing data and expectation data constructed by the proposed
scheme is much smaller than the difference from the basic RNN result.

0 10 20 30 40

Testing data

0.4

0.45

0.5

0.55

0.6

0.65

R
es

ul
ts

Real data

Simple RNN

Modified RNN

Fig. 4 Comparison of proposed testing result of proposed RNN and basic RNN.

Note that there are several flexible factors such as sequence length, iteration
numbers to control the optimising module, an appropriate portion of training data
and testing data among the given data set, etc. To investigate the effect of the
factors, we calculate the learning costs depending on the sequence length and plot
the results in Fig. 5(a). For further investigation, we plot the testing error in
Fig. 5(b). In Fig. 5(a), we can see that there are suitable sequence lengths for a
given data set. Additionally, through the comparison of Fig. 5(a) with Fig. 5(b),
one can see that the testing error also becomes quite high when we use unfavorable
sequence length which makes learning cost relatively high. Hence, from Fig. 5, one
can conclude that the most appropriate sequence length can be found depending
on the given data set, and the bigger the learning cost is, the higher the testing
error is.

0 100 200 300 400 500 600 700

Sequence length

0

0.002

0.004

0.006

0.008

0.01

F
in

a
l
le

a
rn

in
g

 c
o

s
t

0 100 200 300 400 500 600 700

Sequence length

0

0.1

0.2

0.3

0.4

0.5

F
ir
s
t

e
rr

o
r

(a) (b)

Fig. 5 (a) Final learning cost per sequence length and (b) testing error per sequence
length.

81

Neural Network World 2/2024, 73–87

In addition, to examine the relation between iteration numbers of the optimiser
and expectation ability, we calculate the learning cost and testing error according
to the iteration number of the optimiser and plot the results in Fig. 6. Fig. 6(a)
shows that using small iteration numbers results in high training costs. Also, after
using a certain amount of iteration numbers, the learning cost is stably reduced.
Similarly, in Fig. 6(b), one can see that testing error is also decreased after using a
sufficient number of iterations, although just a few exceptional iteration numbers
are observed to make the testing error high.

0 50 100 150 200

Iteration number

0

0.002

0.004

0.006

0.008

0.01

0.012

F
in

a
l
le

a
rn

in
g
 c

o
s
t

0 500 1000 1500 2000

Iteration number

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ir
s
t

e
rr

o
r

(a) (b)

Fig. 6 (a) Final learning cost per iteration number and (b) testing error per se-
quence length.

To examine the efficiency of the method combining proposed modified RNN
and proposed testing schemes, we compare it with the simple RNN with traditional
testing scheme, GRU and LSTM in Fig. 7. Time series data set obtained from Korea
Composite Stock Price Index (Kospi) during last 20 years is composed of 4146
data, and 4140 data and 6 data are used for training set and testing, respectively.
Iteration number is set to 5000 with 10 sequence length for all schemes.

Fig. 7 shows that the proposed scheme has good performance compared with
the existing schemes. Therefore, one can conclude that either the proposed training

1 2 3 4 5 6

Testing data

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
es

ul
ts

Real data

Modified RNN + Proposed testing

Simple RNN + traditional testing

GRU

LSTM

Fig. 7 Comparing proposed scheme with simple RNN and GRU.

82

Yi D., Kim I., Bu S.: Variations of Training Process in Vanilla Recurrent Neural. . .

scheme or the proposed testing scheme can increase the efficiency of the original
technique. Therefore, by applying this idea to existing schemes such as LSTM or
GRU, we infer that better performance is likely to be obtained.

3.2 Virtual Currency Data

As the second example, we apply the proposed scheme to a time series data ob-
tained from altcoin (Ripple) price fluctuation which was measured from March,
2017 to March, 2018. Each data point is the ripple price at noon of each day. For
the experiment, 330 data and 25 data are used for training and testing process,
respectively. Also the sequence length is set to 40.

First, the training cost is observed by varying iteration numbers used in opti-
mization module from 1 to 10000. The results are plotted in Fig. 8. Unlike the

0 2000 4000 6000 8000 10000

Iteration

10
-4

10
-3

10
-2

10
-1

10
0

C
os

t

Simple RNN

Modified RNN

Fig. 8 Training error for virtual currency data.

results of other experiments, the cost of the proposed RNN is not decreasing as
iteration numbers are increasing, while the cost of the basic RNN is quite reduced.

To show the comparison of training schemes, we plot the results of testing
process generated by the basic RNN and the proposed RNN and compare them
with the given real data set in Fig. 9.

0 5 10 15 20 25

Testing data

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
es

ul
ts

 Real data

 Simple RNN

 Modified RNN

Fig. 9 Comparison of testing result of proposed RNN and basic RNN for virtual
currency data.

83

Neural Network World 2/2024, 73–87

One can see that both schemes generate quite accurate results for the first
testing data point. However, both are not sufficient to catch the given data set,
but the proposed algorithm is much closer to the real data set.

To improve the results, we apply the proposed testing scheme to the proposed
RNN and compare it with the traditional testing scheme in the proposed RNN
framework. The results are plotted in Fig. 10(a). It shows that proposed testing
scheme can generate quite accurate results and catch the pattern of the give real
data. For a further investigation of the proposed testing scheme, the proposed
scheme is applied to both the basic RNN and the proposed RNN. Fig. 10(b) shows
the results of effectiveness for the proposed testing scheme. One can see that
using the proposed scheme can catch the pattern of the real data for both training
schemes. Therefore it can be concluded that the proposed testing scheme is quite
efficient in catching the pattern of the given real data.

0 5 10 15 20 25

Testing data

0.15

0.2

0.25

0.3

0.35

R
e

s
u

lt
s

 Real data

 Traditional testing

 Proposed testing

0 5 10 15 20 25

Testing data

0.15

0.2

0.25

0.3

0.35

R
e
s
u
lt
s

Real data

Simple RNN

Modified RNN

(a) (b)

Fig. 10 (a) Comparison testing results of proposed testing scheme and traditional
testing scheme in proposed training framework and (b) comparison of proposed
testing result of proposed RNN and basic RNN for virtual currency.

3.3 Precipitation

As the last example, we apply the proposed scheme to a time series data obtained
from the precipitation of Seoul, the capital of Republic of Korea, during the last
10 years. Each data represents the precipitation of each month. Similarly, we
calculate the learning cost and plot it in Fig. 11 by varying the iteration numbers
from 1 to 10000. For this experiment, of among 110 data, 100 data are used for the
training test. Since data is related to the month, the sequence length is set to 12.

Fig. 11 shows that the proposed scheme is much efficient than the basic RNN.
To examine the effectiveness of the calculated weights and biases from the test-

ing process, the testing results using the same parameters and conditions above
are calculated and plotted in Fig. 12. It shows that the results of the proposed
scheme are much closer to the real data, while those of the basic RNN have totally
different pattern, compared with the given real data. However, the results from
the proposed RNN cannot catch the peak of the given data.

To improve the results, the proposed testing scheme is applied to the proposed
RNN and compared to the traditional testing scheme in the proposed RNN. The

84

Yi D., Kim I., Bu S.: Variations of Training Process in Vanilla Recurrent Neural. . .

0 1000 2000 3000 4000 5000

Iteration

10-3

10-2

10-1

100

C
os

t

 Simple RNN

 Modified RNN

Fig. 11 Training error for precipitation data.

0 2 4 6 8 10 12

Testing data

0

0.2

0.4

0.6

0.8

1

R
es

ul
ts

 Real data

 Simple RNN

 Modified RNN

Fig. 12 Comparison testing result of proposed RNN and basic RNN for precipita-
tion data.

results are plotted in Fig. 13(a). One can see that the proposed testing algorithm
can catch the pattern of the given real data and provide more accurate results,
compared to the traditional testing scheme in the proposed RNN framework.

0 2 4 6 8 10 12

Testing data

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

s
u

lt
s

Real data

Traditional testing

Proposed testing

0 2 4 6 8 10 12

Testing data

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

s
u

lt
s

Real data

Simple RNN

Modified RNN

(a) (b)

Fig. 13 (a) Comparison testing results of proposed testing scheme and traditional
testing scheme in proposed training framework and (b) comparison of proposed
testing result of proposed RNN and basic RNN for precipitation data.

85

Neural Network World 2/2024, 73–87

To show the effect of the testing scheme, we apply the proposed scheme to the
basic RNN and plot the results in Fig. 13(b). The figure shows that the testing
scheme in the basic RNN also tries to catch the pattern of the real data but is
less accurate, compared with the result of the proposed RNN. Therefore, it can be
concluded that the proposed testing algorithm in the proposed RNN is superior to
the traditional methods.

4. Conclusion

New variations of learning and testing techniques are introduced in the RNN frame-
work. Unlike the basic RNN to calculate the weights and biases only once for the
whole sequence, the new technique updates the weights and biases in each subse-
quence by using the previous weights and biases calculated in previous sequence.
Also, for the testing process, we consider a traditional testing algorithm and intro-
duce another variation of the testing algorithm. Traditionally the testing scheme
is to test using weights and biases obtained from the training process, while the
proposed testing scheme is to test by updating weights and biases in each test data
set based on the previous weights biases calculated from the previous test data set.
Also we examine several factors effecting the efficiency of the proposed scheme,
such as sequence length and iteration number of the used optimiser.

Throughout the several numerical experiments, it is shown that the proposed
learning scheme is more efficient than the basic RNN learning process. Also, the
proposed testing process is much better than the traditional testing process in that
the proposed testing process iteratively calculates the weights and biases fitted to
the given data. Additionally, it is seen that depending on the sequence lengths and
iteration numbers, the learning error and testing error are changed. Therefore, the
most favorable sequence length and iteration numbers suited to the given data set
can be found.

Acknowledgement

This work was supported by basic science research program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (grant number NRF-2017R1E1A1A03070311). The corresponding
author Bu was supported by basic science research program through the National
Research Foundation of Korea (NRF) funded by the Korea government (MSIT)
(grant number NRF-2022R1A2C1004588).

References

[1] BENGIO Y., SIMARD P., FRASCONI P. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks. 1994, 5(2), pp. 157–166, doi: 10.
1109/72.279181.

[2] CHO K., MERRIENBOER B.V., GULCEHRE C., BAHDANAU D., BOUGARES F.,
SCHWENK H., BENGIO Y. Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation, 2014, arXiv:1406.1078

86

http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181

Yi D., Kim I., Bu S.: Variations of Training Process in Vanilla Recurrent Neural. . .

[3] CHO K., MERRIENBOER B.V., BAHDANAU D., BENGIO Y. On the Properties of Neural
Machine Translation: Encoder-Decoder Approaches. arXiv:1409.1259, 2014.

[4] ELMAN J.L. Finding structure in time Cognitive Science. 1990, 14(2), pp. 179–211, doi: 10.
1016/0364-0213(90)90002-E.

[5] GERS F.A., SCHRAUDOLPH N.N., SCHMIDHUBER J. Learning Precise Timing with
LSTM Recurrent Networks, The Journal of Machine Learning Research, 2002, 3, pp. 115–
143.

[6] GRAVES A., SCHMIDHUBER J. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures, Neural Networks, 2005, 18(5), pp. 602–610,
doi: 10.1016/j.neunet.2005.06.042.

[7] HOCHREITER S., SCHMIDHUBER J. Long Short-Term Memory, Neural Computation.
1997, 9(8), pp. 1735–1780, doi: 10.1162/neco.1997.9.8.1735.

[8] KINGMA D.P., BA Adam J.L. A Method for Stochastic Optimization. Proceedings of the
3rd International Conference for Learning Representations, ICLR, San Diego, USA, 2015.

[9] PASCANU R., MIKOLOV T., BENGIO Y. On the difficulty of training recurrent neural
networks. Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 2013, pp. 1310–1318.

[10] ROHWER R. The moving targets training algorithm. Advances in neural information pro-
cessing systems 2. Touretzky, Ed. San Matteo, CA: Morgan Kaufmann, 1990, pp. 558–565

[11] RUMELHART D.E., HINTON G.E., WILLIAMS R.J. Learning representations by back-
propagating errors. Nature, 1986, 323, pp. 533–536, doi: 10.1038/323533a0.

[12] SCHMIDHUBER J. A Local Learning Algorithm for Dynamic Feedforward and Recurrent
Networks, Connection Science, 1989, 1(4), pp. 403–412, doi: 10.1080/09540098908915650.

[13] SCHMIDHUBER J. A Fixed Size Storage O(n3) Time Complexity Learning Algorithm for
Fully Recurrent Continually Running Networks, Neural Computation, 1992, 4(2), pp. 243–
248, doi: 10.1162/neco.1992.4.2.243.

[14] WAN E.A., BEAUFAYS F. Diagrammatic derivation of gradient algorithms for neural net-
works, Neural Computation, 1996, 8, pp. 182–201, doi: 10.1162/neco.1996.8.1.182

[15] WERBOS P.J. Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks. 1988, 1(4), pp. 339–356, doi: 10.1016/0893-6080(88)90007-X.

[16] YI D., BU S., KIM I. An Enhanced Algorithm of RNN Using Trend in Time-Series, Sym-
metry, 2019, 11(7), 912, doi: 10.3390/sym11070912

[17] YI D., JI S., BU S. An Enhanced Optimization Scheme Based on Gradient Descent Methods
for Machine Learning. Symmetry, 2019, 11(7), 942, doi: 10.3390/sym11070942.

87

http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1080/09540098908915650
http://dx.doi.org/10.1162/neco.1992.4.2.243
http://dx.doi.org/10.1162/neco.1996.8.1.182
http://dx.doi.org/10.1016/0893-6080(88)90007-X
http://dx.doi.org/10.3390/sym11070912
http://dx.doi.org/10.3390/sym11070942

