
SOFTWARE RELIABILITY ANALYSIS BY
USING THE BIDIRECTIONAL ATTENTION
BASED ZEILER-FERGUS CONVOLUTIONAL

NEURAL NETWORK

D. Sudharson∗, R. Gomathi†, L. Selvam‡

Abstract: Software quality assurance relies heavily on software reliability as one
of its primary metrics. Numerous studies have been conducted to identify the
software reliability. Improved software dependability may be studied using a trian-
gular approach that includes software modeling, measurement, and improvement.
Each of these steps is critical to the development of a solid software system. Im-
proved accuracy in calculating dependability is critical to managing the quality of
software. It has been discovered that deep learning algorithms are excellent meth-
ods of assessing many aspects of software dependability. Software systems contain
distinct characteristics that can be addressed using deep learning techniques. In
this study, a deep-learning-based bidirectional attention-based Zeiler-Fergus con-
volutional neural network (BA-ZFCNN) technique has been suggested to assess
software dependability. In the beginning, the data were standardized by using the
scalable error splash method. This approach was then used to extract the software
fault-related characteristics using hypertuned evolutionary salp swarm optimiza-
tion (HESSO). Finally, the Zeiler-Fergus convolutional neural network based on
bidirectional attention (BA-ZFCNN) may be used to assess software dependabil-
ity. The suggested method is used to forecast how many defects or failures there
are in a software product. AR1 software defect data is widely used to test the
effectiveness of deep learning and traditional machine learning methods. The ex-
perimental results reveal that the proposed method’s accuracy (96.7%) is higher
than the current techniques’ accuracy.

Key words: software reliability, scalable error splash technique, hypertuned evolu-
tionary salp swarm optimization, bidirectional attention based Zeiler-
Fergus convolutional neural network

Received: December 6, 2022 DOI: 10.14311/NNW.2024.34.001

Revised and accepted: February 19, 2024

∗Sudharson Dorai Samy – Corresponding author; Department of AI & DS, Kumaraguru College
of Technology, Coimbatore, Tamilnadu, India, E-mail: dsudharsonresearch@gmail.com

†Gomathi Ramalingam; Department of Electronics and Communication Engineering, Anna
University Regional Campus Coimbatore, Tamilnadu, India, E-mail: rgomathi@aurcc.ac.in

‡Selvam Lakshmanan; Department of CSE, Karpagam Academy of Higher Education, Coim-
batore, Tamilnadu, India, E-mail: umaselvam_35@yahoo.com

©CTU FTS 2024 1

mailto:dsudharsonresearch@gmail.com
mailto:rgomathi@aurcc.ac.in
mailto:umaselvam_35@yahoo.com

Neural Network World 1/2024, 1–25

1. Introduction

The dependability of the software is one of the most critical factors in the over-
all reliability of the system. Additionally, there is the possibility that software
will function properly for a certain amount of time. Reliability is defined as the
program’s ability to fulfill its desired function under certain conditions over a set
period of time in the IEEE Standard Glossary of Software Engineering Terminology
(Standards Coordinating Committee of the IEEE Computer Society, 1991).

In order to have bug-free modules in the software, all of these steps must be
properly synchronized. The mean time to failure of software reliability assessment
using deep learning and cumulative fault count between intervals may be estimated
with the use of SRGM. For software failure prediction, DL approaches have been
shown to be more accurate than statistical methods in forecasting better outcomes.
These solutions need considerably fewer assumptions and leverage previous failure
data as input for software with complicated phenomena. Systems may learn and
adapt on their own by using historical and current failure data to infer future
system behavior using a technique called deep learning (DL).

Using cumulative data, we compared the accuracy of reliability prediction and
found that the latter is always preferred over the former. Cumulative data show
a strong positive linear correlation between the actual and expected values for
reliability prediction when looking at the correlation coefficient. The contribution
of the paper can be listed below: to classify software faults and continuously learn
to improve the accuracy of deep learning. We first use hypertuned evolutionary
salp swarm optimization to analyze the source code and isolate the faulty features.

In the classification part, we use bidirectional attention-based Zeiler-Fergus con-
volutional neural network for classifying the code faults to check the software re-
liability. Software fault localization and maintainability are defined as a software
system or modules that could be adapted to correct faults, improve performance,
system testing, use software development techniques, or be modified for a changed
platform. A software defect predictive model enables organizations to reduce the
maintenance effort, time, and overall cost of a software project. To ensure the
quality of good software, it must be reliable, and can tolerate a smaller number of
failures during the software’s runtime.

Hence, the classification of defects in software modules has a large impact on
the software development process. The real scenario would become hard when
a developer changes his program inside an application and it is related to other
modules, including the failure of the updated version of this application. There-
fore, it is very possible for the software to become faulty and not be stable. The
number of studies in software fault proneness is increasing day by day due to the
demand for automated services that can be depicted in Section 2. Section 3 ex-
plains the problem statement and existing methodology for software prediction.
The proposed software defect predictive development model using deep learning
techniques to enable the software to continue its projected task is elaborated in
Section 4. Moreover, we have used different prominent evaluation benchmarks to
evaluate the model’s performance, which is illustrated in Section 5.

2

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

2. Related Works

In this section, we provide research on software metrics, classification and regression
models for defect detection, and deep learning and its applications.

2.1 Software Metrics

Nested stacking, heterogeneous feature selection [1], and a correlation-based mod-
ified long short-term memory network approach [2] have been frequently used in
software fault prediction. Combinations of complicated measures may be used to
anticipate errors, according to [3]. It was decided to make the Eclipse datasets
accessible for anyone to utilize in developing defect prediction algorithms. A thor-
ough review of software defect prediction studies using various metrics, approaches,
and datasets was conducted in [4]. In the prior study on defect prediction, they
discovered that measurements at the method level were mostly used as metrics.
When it comes to defect detection, class-level metrics should be used more often
since they may help forecast problems in the design phase of the project. In [5],
the author illustrates a variety of indicators (such as source code churn, source
code entropy, and process metrics) and develops a variety of classification models
for defect prediction. In order to simplify defect prediction for unlabeled datasets,
CLA and CLAMI [6] introduced two unique ways for labelling unlabeled datasets
automatically using the magnitudes of metric values. Using process-based software
metrics, [7] performed a trend analysis of early software defect prediction. Cross-
project defect prediction was not handled by heterogeneous metric sets, hence, [8]
presented heterogeneous defect prediction using matching metrics. More and more
software metrics-based defect prediction algorithms have been suggested [9–13].
Supervised defect prediction methods and unsupervised defect prediction methods
are two distinct categories of this sort of methodology. When developing a model
for supervised defect prediction, historical datasets are used to train the algorithm.
Software dependability growth models were constructed by using the pseudo inverse
learning method and the stacking generalisation approach [14, 15]. Additionally,
they used a support vector machine (SVM) to make predictions about software
quality. A model for predicting software defects at the method level was devel-
oped by [16,17] using an RF algorithm that was based on historical measurements
at the method level. Unsupervised defect prediction methods may predict fault
proneness without the need for a defect dataset. When a training dataset is either
inadequate or unavailable, this method might be implemented. The raw value of
each change metric’s reciprocal [18] offered an unsupervised method for ranking
the change metrics in decreasing order.

2.2 Software Defect and Reliability Prediction Classification
Models

Classification and regression models may be used to assist engineers in detecting
and fixing software faults more quickly and with less effort. The most frequent
kind of fault prediction model is a classification model. Categorization models
from the NASA metrics data collection were empirically compared on a wider

3

Neural Network World 1/2024, 1–25

scale with 10 public datasets. [19] established a framework for comparing software
defect classification predictions. [20] used a variety of classification approaches to
create a variety of classification models, which the authors then evaluated on three
distinct datasets. According to their findings, the performance of defect prediction
models varies greatly across various classification methods. A total of 24 distinct
classifier techniques were replicated [21] (e.g., logistic regression, C4.5 decision
tree, RF, etc.). When it came to forecasting software that is prone to errors,
the logistic regression model performed best. The just-in-time defect prediction
technique for the prediction of commits that introduce defects and the identification
of lines that are linked with these defects are described in [22] (i.e., defective lines).
According to [23], the KTSVMs are proposed to execute domain adaptation (DA) in
order to fit the training data distributions for various applications. Additionally,
the CPDP model uses KTSVMs with DA functions (known as DA-KTSVMs).
Using a dictionary learning method, [24] suggests that software problems may be
anticipated. An unsupervised classifier, based on connectedness, was used to solve
this problem [25]. [26] showed that fault classification was enhanced using feature
selection and ensemble learning. Choosing your features with care is essential if we
want reliable classification models. Caret, an automated parameter optimization
tool, was used in the study of classifier model performance [27]. Classifiers trained
using caret were found to be as stable as those trained using the default parameters
and to perform better than those taught using just the default settings. Defect
prediction models’ performance may be greatly affected by parameter adjustments.
To better understand how defect classification models function, [23] looked at how
feature selection strategies affect their performance. Classification models for defect
prediction should include feature selection strategies, they said. Defect predictors
may be built both inside and between projects by employing a simpler metric set, as
was shown in the study by [28]. Research by [29] was the first to use online change
categorization to enhance fault prediction. Many composite methods integrating
different machine learning classifiers for defect prediction were researched by [30]
in order to increase the performance of cross-project defect prediction.

2.3 Software Reliability Prediction Using Regression
Models

The use of regression models to predict defects has been studied less thoroughly
than the use of categorization models to forecast defects. Regression models are
used to identify possible problems in a systematic manner. Flaw-prone modules
are ranked higher than those that are defect-free. The number of bugs in software
modules is difficult to estimate with any degree of certainty. A proper regression
model is essential in this case. To forecast software failures, [31] used a linear
regression model on a change-level dataset. An effort-aware defect prediction model
was developed using linear regression on a dataset of change measurements by the
researchers at [32,33].

The Alberg diagram may be used to quantify regression model performance.
In order to enhance the ranking model’s performance measure, [34] proposed a
learning-to-rank technique. Module failure rates of 20% or more are used to assess
models, as are fault-percentile averages (FPA) and module failure rates (MFR).

4

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

Defect acceleration predictor factors were used in a MACLI approach established
in [35] to estimate the amount of defects in a prospective product release and to
evaluate each predictor variable’s connection with defects and there is a strong
correlation between the average defect velocity and the actual number of defects.
SVM was initially proposed in [36]. SVM’s theoretical underpinnings are based on
a concept known as structured risk minimization (SRM). The SVM was created to
address classification difficulties.

Linear and nonlinear regression issues may be solved with the help of SVR,
an extension of SVM. It was shown that utilising FSVR to predict the quantity
of software defects improved performance by 7%. [37] Fuzziness in the regression
approach may be used to deal with unbalanced datasets. C4.5 and RF decision
trees were used to build a cost-sensitive software quality prediction model.

Using decision tree regression (DTR), [38,39] a model for fault count was built
(i.e., within- and cross-project defect scenarios). Predicting defects both inside and
between projects was not a problem for the defect prediction algorithms that were
tested. The DTR was used to anticipate defects both during and after release. [40] A
recent empirical study [41] focused on defect prediction models that could anticipate
the number of faults that would be found in a product. Based on average absolute
error, average relative error, and level-l metrics, the DTR model was shown to be
the most accurate prediction model.

2.4 Deep Learning and Its Applications

Deep learning approaches include convolutional neural networks (CNN), recurrent
neural networks (RNN), and long-short term memory (LSTM). Deep learning has
been used in speech recognition, natural language processing, and picture process-
ing. Deep learning is increasingly being used by software developers. [42] discovered
that the functional similarity of code may be assessed using a new approach called
DeepSim. After embedding code in a matrix, they used a DNN model to learn fea-
tures from the matrix and perform a binary classification. In [43], an autonomous
neural network debugging approach called MODE was introduced. This method
was used to identify problems in the models and to pick training inputs, like regres-
sion testing and software debugging. MODE has the ability to detect and rectify
model faults very rapidly.

A feed-forward network and an RNN deep learning software language model
were used to provide programming code suggestions. [44] Deep software language
models were also used to predict software engineering activity. Deep learning al-
gorithms may be applied to source code files to build high-quality models, as illus-
trated by the use of a Java project corpus. The salp swarm algorithm (SSA) and
backpropagation neural network (BPNN) are used by [45].

A combination of lexical and programmatic structural information was used in
the search for flaws so that unified features could be learned from both natural
language and source code. They used CNN to get both comprehensive and seman-
tic information. [48]’s deep learning method may be used to identify code clones.
Using this strategy, the source code is automatically searched for unique features.
There was a suggestion that all of the source code’s phrases and fragments may be
used to identify clones. In order to anticipate semantically connected knowledge

5

Neural Network World 1/2024, 1–25

units, [49] proposed using deep learning. Instead of using binary classification, they
used a multi-layer classification model. Knowledge units are represented by word
embeddings and a CNN at the word and document level.

Compared to a naive Bayes model, the ensemble model performed substantially
better, according to the authors. One ensemble model and a few NASA datasets
were used by the authors. In [54], a similar study, three SFP cost-sensitive boosting
strategies were presented and evaluated. According to the author’s results, one
threshold-updating and two weight-adjusting algorithms were used to analyse four
NASA datasets. When it came to SFP, the approach based on the neural network’s
threshold update was found to be more effective. In [55], an investigation into
the use of classifier ensembles to predict software flaws was described. As the
primary learner among the ensemble techniques, bagging, boosting, random trees,
and random forests were all examined together with stacking and voting, random
subspace, and naive Bayes.

A series of tests, including several NASA datasets, showed that voting and ran-
dom forest were superior to other alternatives. On average, ensemble techniques
beat single classifiers. [56] developed a failure prediction model based on an en-
semble method for a large-scale software system. According to the author, ensem-
ble tactics based on decision trees outperformed other approaches and generated
greater accuracy. The cost-sensitive analytic techniques CSForest and CSVoting
were recently presented in [57]. To reduce the classification cost, the investigated
ensemble approaches first constructed a collection of decision trees and then inte-
grated these trees.

The level of knowledge needed by algorithms to categorize and choose the neces-
sary quality characteristics for software fault prediction is usually low. This affects
the overall efficiency of software fault prediction. Performance assessment measures
are inconsistent with one another, which makes it difficult to determine which per-
formance metrics to use. As a consequence, there is no information that can clearly
characterize the application of any particular methodology to any particular sort
of dataset in order to produce high performance outcomes. Thus, deep learning
techniques are effectively utilized for assessing distinct characteristics of software
systems. This novel approach will help to increase the efficiency of dependency de-
tection, which in turn uncovers flaws in software that may lead to software defects
or failures.

3. Proposed Methodology

Software reliability is an essential characteristic that is typically taken into account
while trying to improve the quality of software. Reliability in software is concerned
with the presence of flaws in the system. In most cases, a bug in the code is to
blame for a system failure, although one bug might trigger a slew of them. The
process of improving the system’s quality by identifying and correcting flaws is
known as “enhancing software dependability”.

The dependability of software may be assessed using several analytical models,
known as “software reliability growth models”. LOC, a basic static code measure,
has been shown to be an effective predictor of software problems. Furthermore,
there is enough data to train any prediction model using these basic criteria. As

6

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

long as there are enough training models, it doesn’t matter whether a simplified
(or even minimal) feature subset works well both inside and between projects. The
Ar1 dataset was obtained through publicly accessible embedded software written
in the C programming language, as shown in Fig. 1.

The proposed methodology uses a preprocessing scheme where uncertainties in
the dataset are determined by the error splash technique. Redundant risk data
were identified and removed, and the dataset was normalized. The SSA and PSO
algorithms are combined into a new algorithm known as hyper-tuned evolutionary
salp swarm optimization (HESSO), which has been used for feature selection. Fi-
nally, we have used bidirectional attention-based Zeiler Fergus convolutional neural
network (BA-ZFCNN) and HESSO to build a deep learning model that is capable
of making accurate predictions.

So�ware
dataset

Data
normaliza�on

Bidirec�onal
a�en�on based

Zeiler-Fergus CNN
Classifica�on

Error
removal

Data
organiza�on

Fault
features

Feature
selec�on

Evolu�onary salp
swarm op�miza�on

Selected
features

Performance
analysis

Fig. 1 Schematic representation of the suggested architecture.

3.1 Dataset

The proposed system uses the AR1 dataset, which is available as open source for
testing the effectiveness of deep learning techniques. In this data, ar1.arff files have
defect information in a discrete manner (whether there is a bug or not), whereas
ar1 numericdefects.arff files have the bug count associated with the defectives.

3.2 Obtaining Spatial and Temporal Dependence

A preprocessing model calculated the uncertainty of the obtained data using the
error splash technique. Estimating variance is done using the variance of the con-
ditional distribution N(k|v, w), where v and w represent events. The uncertainty
is described using a Gaussian distribution N .

N(k | v, w) = N(k;µ(v, w), σ2(v, w)), (1)

7

Neural Network World 1/2024, 1–25

where N(k | v, w) represents conditional probability of event k occurring given that
events v and events w have occurred, µ(v, w) represents expected risk and σ2(v, w)
is the variance.

Here µ(v, w) and σ2(v, w) whose expectation equals the calculated aleatoric
uncertainty δx(k). Negative log-likelihood (NLL) was used as a loss function and
the variance with respect to events v and w was calculated using the formula,
σ2(v, w). As an indicator of the level of risk, an error count may be used. There
have been L trainings of the network, each using a randomized training set, with
random parameterization. Using uniform mixing model, L trainings of the networks
were normalized by obtaining {e}Ll=1, where e represents a set of events.

The variance of the expected error risk provides the uncertainty δe. Eqs. (2)
and (3) may be used to get the final predictive uncertainty, which is equal to the
mean of the projected errors.

σ2(k) = δ2x(k) + δ2e(k), (2)

µ̂(x) =
1

O

∑
l

µ(x,wl), (3)

δ̂2x(k) =
1

O

∑
l

σ2(x,wl). (4)

Here δ̂2x represents the variance of a data population, µ̂ represents the overall
mean of the data population.

It can be rewritten as follows:

δ̂2x(k) =
1

O

∑
l

µ2(x,wl)− µ̂2(x), (5)

where δ̂2x(k) represents variation or change, O is number of multiplicative observa-
tions, µ denotes a mean, x is a random variable, wl represents different weights or
factors.

There were distinct model parameters due to the differing scales δ̂ of in the
network design. To address this issue, we proposed the C(a, k) confidence matrix.

C(a, k) = N
(
k; µ̂(a), δ̂(k)

)
=

1
√
2πδ̂(k)

e
− (y−µ̂(a))2

2δ̂2(b) , (6)

where a, b are real numbers, y is the data coefficients (a, k) – probability density
function which describes a normal (Gaussian) distribution N with a random event
k being normally distributed around the mean µ̂(a) with a standard deviation of

δ̂(k).
We propagate uncertainty by calculating the final quantity’s probability dis-

tribution. To calculate the uncertainty of an expression directly, we can use the
general form of summation in quadrature,

f(x, y, . . . , n) =

√(
∂f

∂x
δx

)2

+

(
∂f

∂y
δy

)2

+ · · ·+
(
∂f

∂n
δn

)2

, (7)

8

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

where x, y are random variables, ∂f is the absolute error in f(x, y, . . . , n) resulting
from errors δx, δy, . . . , δn.

The following formula may be used to remove redundant risk data from the
newly processed data.

Dup =
Non− empty records

Number of all records
, (8)

Unq = 1− Number of attribute duplicate value

Number of all records
, (9)

whereDup represents the identified duplicate records, Unq represents unique records.

Error value =


1 2 4
1/2 1 3
1/4 1/3 1
1/5 1/4 1/3
1/6 1/5 1/2

 . (10)

Following is a description of how the error value is calculated,

Error value = 1− Number of time− Series check error

Total number of records
. (11)

Finally, the errors in the dataset can be eliminated.

3.3 Feature Selection

In this part, the algorithm’s structure is laid out. The SSA and PSO algorithms are
combined in a new method known as HESSO. The SSA algorithm’s fundamental
structure is altered by enhancing the population’s position update phase. The
PSO’s update mechanism is now part of the SSA’s primary structure thanks to
this change. This integration allows the SSA to explore the population with more
freedom, increase its variety, and rapidly arrive at the ideal value. In general, the
HESSO algorithm’s primary component is shown in Fig. 2. First, the suggested
HESSO generates a population that represents a collection of possible solutions
to the issue at hand (feature selection). Once the fitness functions for all of the
solutions have been computed, the best solution may be selected.

Once a fitness function has been established, the HESSO method’s next step
is to apply either the SSA or PSO algorithm to update the current population
(measured by its probability). PSO and SSA are utilised if the fitness function has
a probability greater than 0.5, respectively. An updated population of solutions is
used to determine the optimum fitness function for each one, and the best one is
then selected. Stop conditions are checked to verify whether they have been fulfilled
before the optimum solution may be returned; if not, repeat the preceding stages
from probability computation through completion. More information on each of
these processes may be found in the sections that follow. First, the SSA and PSO
parameters are set, and then the HESSO method uses these values to create a
random population c of size M in dimension F , before using SSA to determine the
food fitness of each solution co, o = 1, 2, . . . ,M .

9

Neural Network World 1/2024, 1–25

Start

Define ini�al
parameters of SSA

Ini�al popula�on
genera�on

Calculate the fitness
value of the ini�al

popula�on

Obtain best
results and end

Calculate the fitness
value and save

the best fitness so far

Use PSO to
update swarm

posi�on

Use PSO to
update swarm

posi�on

Random
value > 0.5

Stop condi�on
reached?

Fig. 2 Process of optimization.

The following equation is used to transform each solution co to a binary vector
(consisting exclusively of 1 s and 0 s) based on a random threshold V ∈ [0, 1] before
calculating the objective function:

co(y + 1) =

{
1, if 1

1+e−co(y) > V

0, otherwise,
(12)

represents the logistic function used for sigmoid activation function. It transforms
the variable co(y) using the logistic (sigmoid) function to produce a value between
0 and 1.

As a result, only co components with a value of 1 are used to reflect the chosen
qualities (as well as the other components, which reflect unnecessary traits, are
omitted). The goal function in Eq. (13) has now been calculated for each entity:

g(co(y)) = ξRco(y) + (1− ξ)

(
|co (y)|
|v|

)
. (13)

10

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

g(co(y)) – goal function of co(y), Rco(y) – number of features representing mistakes
in data processing parameter ξ∈ [0, 1] – used to balance between classification error
and feature selection. For example, the parameter ξ∈ [0, 1] is implemented in order
to maintain a proper balance between classification error and feature selection. The
probability of each fitness function Proo is then calculated as:

Proo =
go∑M
o=1 go

. (14)

Current solution will be updated by either the SSA or PSO, depending on the Proo
value.

Assume that g1, . . . , gu are observations, and that each observation is repre-
sented by an n-by-n row vector in order to calculate (the number of attributes).
So, the dataset may be summarized in the form of the matrix Gb×n = 1/(b · g).
The standard deviation of an observation from the average is given by the formula
µ = 1

b g. The data set’s sample covariance matrix is:

X =
1

b

n∑
b=1

(gb − µ)(gb − µ)T. (15)

We choose eigenvectors with the largest eigenvalues. Within this “signal” subspace,
only the first initial vectors of large dimensions are packed with information, while
the rest are typically filled with noise. The following formula may be used to
quickly determine how many dimensions k has:

k =

∑j
u=1 λu∑n
u=1 λu

, (16)

where λ is the ratio between the subspace’s variation and the overall space’s vari-
ation. The j eigenvectors are represented as columns in a (n × j) (usually j ≪ n
for data reduction) of matrix Y. According to ESSO’s guidelines, data is projected
onto the j-dimensional subspace as follows:

Tu = (Zu − µ)Y = ϕY. (17)

Here, Tu represents the variation in the subspace, ϕ is subspace constant, and Zu

represents overall variation observed with the variance of mean µ.

3.4 Classification

There are three layers of the network in the proposed model BA-ZFCNN: the
network is made up of two step mappings, which may be recast as nested functions.
Here, the input and output layer nodes are all linked to the hidden layer. 1)
In the feed forward network, feedback from output nodes is ignored. These are
the two most essential phases of feed forward neural network architecture. 2)
Error propagation from the output layer is back propagated. The input vector is
transferred from the input layer to the hidden layer, as shown in Fig. 3.

For each pair of input patterns, the error is backpropagated. As a result, the
weights have been revised every time a mistake is found. There are nodes yj that
receive external inputs after the failure interval of [j, 1]. Let’s assume that yj = 0

11

Neural Network World 1/2024, 1–25

IN
PU

T
 L

A
Y

E
R

H
ID

D
E

N
 L

A
Y

E
R

O
U

T
PU

T
 L

A
Y

E
R

𝑥ֆ = 𝑏(ℎֆ)

ℎֆ = ం 𝑤ֆՎ֔Վ

ֈ

ք=φ

+ 𝜃ք

𝑧օ = 𝑏ि𝑒օी

𝑒օ = ం 𝐕օՐ
𝑥ֆ + 𝜃ֆ

։

ֆ=φ

Fig. 3 A simple architecture of feed-forward neural network.

for nodes that aren’t inputs and cj is the intended output for the jth unit’s desired
state. Eq. (18) is used to calculate the hidden layer’s output after accepting the
net input.

xk = b(hk),

where

hk =

m∑
i=1

wkiyi
+ θi, (18)

where m is the the number of input nodes, wki is the weight link between the ith
input layer and the kth hidden layer node, and b is an activation function that
must be continuous, differentiable, and not decrease over layers. The total number
of cumulative failures is calculated using Eq. (19). The updated weight Vjk is
computed for each network copy summated with inputs. After that, the weights
are fine-tuned one by one. ej describes the error function.

ej =

n∑
k=1

Vjkxk + θk. (19)

The number of “hidden” nodes is indicated by the letter n in the formula above.
Vjk is the weight matrix, and θk is the bias (connecting kth to jth nodes).

Assume that the networks can be trained using j data points. Initial findings
are based on observations made up to (j + 1) data points prior to this step. The
following is the order in which the data on software failure time is created for
training purposes. Eq. (20) must be applied to the cost function to calculate the
MSE (mean square error).

MSE =
1

n

n∑
l=1

(cl − zl)
2 =

1

n

n∑
l=1

M2
l . (20)

Here,

Ml =

{
cl − zl, for lth output node,
0, otherwise.

12

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

There are nodes in Ml that represent the summation ranges of all output units
as a training sequence matrix index. cl represents the desired cumulative failures,
while zl represents the predicted failures. The formula in Eq. (21) explains how to
minimize the total error while training the network. Weight change gradients may
be recorded using Eqs. (21) and (22).

∆vjk = η(cj − zj)b
′
(ej)xk, (21)

∆wki = η

n∑
j=1

[
(cj − zj) b

′
(ej)vjk

]
b
′
(hk)yi, (22)

where η determines how quickly adjustments are made; this is known as the “learn-
ing rate” scalar parameter and b′ is the derivative of b. hk defines the learning
parameter.

Algorithm 1 Classification process model.

Step 1: Data initialization
Set the X and Y weight matrices and the neuronal thresholds to values
within the range (0, . . . , 0.5). In this case, the number of patterns and the error
are both set to zero.

Step 2: Set tolerable error
Specify the maximum amount of mistake that may be tolerated Fmax.
Consider the precision of the error as Fmax = 0.005.

Step 3: Provide input
Pairs {y(1), c(1)}, {y(2), c(2)}, . . . , {y(q), c(q)} may be used to feed the input.
The cumulative execution time is represented by y(j), while the target
failure number is represented by c(j).

Step 4: Exercise routine
To the input layer y, apply the lth input pattern (l).

Step 5: Propagation
Calculate the expected outputs z1, z2, . . . , zn (i.e., next failure number)

Step 6: Calculate error
Equation is used to calculate the errors Mj for each output node zj

Step 7: Reverse error weight updating and propagation
The weight of faulty code should be updated.

Step 8: Manage the training environment
if l = q then

go to Step 9;
else
update l = l+ 1 and proceed to Step 4;

end if
Step 9: Compare errors
if Fmax is true then
go to Step 10;

else
put M = 0, l = 1, and proceed to Step 4;

end if

13

Neural Network World 1/2024, 1–25

Step 10: Print the final weights value analysis
Step 11: Calculate the result
Calculate the failures that follow.

Step 12: Predictive measures computation.

The network parameters and layer weights are built up in Step 1 of our method.
The maximum permissible MSE value is established in step 2. The inputs to this
network are organized in Step 3. In Step 4, the network is trained, and in Step
5, the network’s output is computed. The MSE is defined in Step 6 and used
to compare predicted and actual error levels. The weights must be calculated
and adjusted until the MSE value falls below a particular threshold. Based on
this halting condition, the network is propagated back to the hidden layer. Back-
propagation learning is used to train the network in Step 7, and the weights are
adjusted accordingly. To guarantee that the process is functioning smoothly, the
maximum allowed error is compared to the MSE after each epoch.

At this stage, the final tally is calculated. At the end of the procedure, the final
weights are established and the output is recorded for the next cumulative failure in
Step 11. All of the prediction criteria in Step 12 are calculated using formulas. The
buried layer is thought to have a huge number of neurons. Even if the number of
hidden layers is as large as intended, the findings show that increasing the number
of hidden layers has no discernible effect on performance. Rather, the training
causes a decrease in performance. Neurons in the input layer are not subjected
to error calculation. Starting with a random set of weights and adjusting them in
proportion to their contribution to inaccuracy in the first period is usual practice.

The error is estimated in the output layer, and the difference between the actual
and intended output values is calculated. For cross-validation, the whole represen-
tative data set is split into two sets: a training set for training the network and a
test set for forecasting the system’s dependability. The data set was partitioned
in the following way: 80% of the cash is spent on training, whereas only 20% is
spent on testing. The data sets are normalized to their maximum values before
being analyzed. When the interval is closer to [0,1], the model performs better for
all data sets. The training inputs to the network and the network’s target outputs
make up the training pair.

For the training data, there are two-dimensional arrays (input-output): (J1, P1),
(J2, P2), . . . , (Jj , Pj), . . . , and (Jm, Pm), where Jj and Pj represent the input
values (i.e., cumulative execution time) and intended output values, respectively,
in the form of a two-dimensional array: (J1, P1). The number of failures may
be calculated using the entire execution time. The weights are stored in two-
dimensional data arrays (i.e., input-to-hidden layer and hidden-to-output layer).
The logistic function used in this work is the binomial sigmoidal g(y) = 1/(1+e−y),
where y is the cumulative execution time. The binary sigmoidal function may
be used to reduce the computational weight of training. g(y) is a monotonically
increasing function. At each learning level, the steepness parameter is shown. This
logistic function may be used with a range of zero to one.

To project the incoming vector r, which represents a test sample, the j -dimensio-
nal subspace of normal behavior was pointed. The distance is the difference between
the mean-adjusted input data vector Φ = r−µ and the test data vector’s subspace
reconstruction.

14

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

Φt = (r− µ)Y Y r = ΦY Y r (23)

If the test data vector is normal, that is, if the test data vector is very near to the
training vectors corresponding to normal behavior, the gap between the test data
vector and its reconstruction will be low. In the experiments, the distance between
these two vectors is calculated using the squared Euclidean distance:

ε = ∥Φ− Φe∥2 . (24)

The anomaly index ε is a measure of the degree to which something is out of
the ordinary. Φ and Φe defines the data output model parameter with numerical
index e. If it falls below a specific threshold, the vector is deemed normal. If it is
not, it is considered as an outlier.

3.4.1 Case of High Severity of Detected Fault

When a high-severity problem is discovered, the reliability growth model may be
modeled as follows:

d

dr
ns1(r) = a1(r) [q1(r)− ns1(r)] , (25)

where
a1(r) = v1(r) (δ1(r) + σ1γ(r)) . (26)

ns1(r) is the cumulative number of high severity faults identified, q1(r) defines the
software’s fault content function, and a1(r) provides the proportionality factor,
which has been explicitly stated as the product of δ1(r) and v1(r) in Eq. (25). For
high-severity faults, the rate of δ1(r) corresponds to the severity rate, and the rate
of v1(r) relates to the rate of fault detection in this specific scenario. The severity
of a defect is based on the premise that it is random. According to Eq. (25), a
normalized Gaussian white noise represents the rate of fault severity High severity
failures may lead to unpredictable swings in the system’s output. q(r) is defined as
follows: q1(r) = qw1+α1ns1(r), where α1 represents the initial number of software
faults, w1 represents the fraction of high severity software faults, and ns1 refers to
the rate at which new software faults are added.

3.4.2 Case of Low Severity of Detected Fault

If a failure of low severity is identified, the reliability growth model may be described
as follows based on assumptions:

d

dr
ns2(r) = a2(r) [q2(r)− ns2(r)] , (27)

where
a2(r) = v2(r) (δ2(r) + α2γ(r)) . (28)

For example, in Eq. (27) above, the cumulative number of low severity faults
detected is equal to ns2(r), and the fault content function for low severity faults
is defined by q2(r). In addition, a2(r) specifies the proportionality factor, which is

15

Neural Network World 1/2024, 1–25

explicitly defined in Eq. (27) as the product of δ2(r) and v2(r). Eq. (28) shows that
δ2(r) is used to describe the severity of low-severity defects, whereas v2(r) reflects
the rate at which these defects are detected. The assumption states that the severity
of a defect is randomized. As a result, in Eq. (28), the rate of fault severity relates
to a standardized Gaussian white noise δ2(r). In case of mild severity faults, δ2
indicating the amount of erratic fluctuations q2(r) may be calculated using the
following equation: q2(r) = qw2 + α2ns2(r) = a2(r) [q2(r)− ns2(r)], where w2

indicates the percentage of low-severity faults in the program, and ns2 refers to the
rate at which faults are introduced into the system.

If we assume that v1(r) is the constant function, then the detection functions
for high and low severity faults (i.e., v1(r) and v2(r) are both constant functions).
In addition, it is assumed that V1(r) has a value of 1 and V2(r) that has a value of
2. In x1(r), the unpredictability is related to v1(r) As a result, substituting 1 for 3
in x1(r) is a rational way to reduce the amount of unpredictability. Furthermore,
unpredictability in x2(r) may be traced back to X2(r). This means that 4 may be
substituted with 2 as the magnitude of irregular fluctuations with x2(r). For the

full model, the total number of errors is calculated as ns(r) =
∑2

u=1 nsu(r) and

that for fixed errors as nsu as nx(r) =
∑2

u=1 nxu
(r).

Thereby ns(r) takes the form as follows:

ns(r) =
qw1

1− α1

{
1− e−((1−α1)vδ1r−(1

2 v
2σ2

1r))
}

+
qw2

1− α2

{
1− e−((1−α2)vδ2r−(1

2 v
2σ2

2r))
}
, (29)

and nx(r) assumes the form

nx(r) =

((
qw1

x1 (1− α1)

)(
1− e−((1−α1)vδ1r−(1

2 v
2σ2

1r))
)

(
1− e

−
((

e1
δ1

r
)
−(1

2σ
2
1r)

)))
+

((
qw2

x2 (1− α2)

)(
1− e−((1−α2)vδ2r−(1

2 v
2σ2

2r))
))

+

(
1− e

−
((

e2
δ2

r
)
−(1

2σ
2
2r)

))
. (30)

The section above wraps up the model building framework with providing as-
sumptions for the model formulation. Finally, the fault of high and low severity
can be classified.

Algorithm 2 BA-ZFCNN.

Input: d – processed dataset, l – dataset true labels,
Output: classified code
Initialise the swarm of salps zu (u = 1, 2, . . . , N)
Evaluate the fitness of each salp
Select the best salp zu from the salp swarm
Initialize the maximum number of iterations rmax and loop counter r = 0

16

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

Main loop:
while (r < tmax) do
for each salp zu do
if gu ∼ leading salp then
update the position of leading salp

else if gu ∼ followers then
update the position of leading salp

end if
check and repair salp swarm if crossed the search boundaries
update the best salp
r = t+ 1

end for
end while
let f be the feature set
for i in dataset do
let fi be the matrix features
for j in i do

vj ← value vectorization (j,w)
alter vj to fj
adjust fi to f
ftrain, ftest, Itrain, Itest ← split features and train it
M← ZFCNN(ftrain, Itrain)
Score ← evaluation (i, Itest, M)
return
score value
classify features (test)

end for
end for

4. Results and Discussion

It is difficult to measure the trustworthiness of current software since it is produced
in a variety of sizes and functionalities.. We developed the HESSO BA-ZFCNN
model using deep learning which can reliably forecast outcomes. This deep learning
model can adapt to capture the training parameters of a given dataset as well as
deepen the layer levels. A detailed examination and feature extraction demonstrate
the model’s potential for prediction. A deep learning model is used in this work to
estimate software dependability and forecast the number of errors in the program.

Classification over dangerous software codes and trustworthy codes projected
rates is shown in Fig. 4. Code characteristics were ranked before categorization in
order to determine the most significant elements. The HESSO BA-ZFCNN model
may also anticipate dangerous code, depending on the trust rank value. The actual
positive and negative readings will show how much positive prediction there is in a
given situation. The proposed method’s positive prediction rate is higher than the
genuine negative rate in this case.

Fig. 5 shows that the proposed detection model varies from the actual dataset.
There was a considerable discrepancy in the suggested method for fault prediction.

17

Neural Network World 1/2024, 1–25

D. Sudharson , R. Gomathi , L. Selvam: SOFTWARE RELIABILITY ANALYSIS…

 19

Fig. 34 Training features vs. predicted rate.

Classification over dangerous software codes and trustworthy codes projected
rates is shown in Figure 4. Code characteristics were ranked before categorization
in order to determine the most significant elements. The HESSO BA-ZFCNN
model may also anticipate dangerous code, depending on the trust rank value. The
actual positive and negative readings will show how much positive prediction there
is in a given situation. The proposed method's positive prediction rate is higher
than the genuine negative rate in this case.

Naformátováno: Písmo: Tučné, Neprovádět kontrolu
pravopisu ani gramatiky

Fig. 4 Training features vs. predicted rate.

Neural Network World ?/2023, ?–?

20

Fig. 45 Time vs. cumulative number of detected faults.

 Fig. 5 shows that the proposed detection model varies from the actual dataset.
There was a considerable discrepancy in the suggested method for fault prediction.
So many evaluation criteria are being used in this research, including specificity
and accuracy as well as the area under the receiver operating characteristic (ROC)
or AUC curve. When evaluating a predictor or classifier, the default cut-off value
for the estimated probability of defect occurrences is not the required cut-off value
of 0.5. Each of the following evaluation standards has been met:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃
, ሺ30ሻ

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
, ሺ31ሻ

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
, ሺ32ሻ

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 ൌ 1 െ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
. ሺ33ሻ

Here TP represents number of true positives, FN represents number of false
negatives, TN represents number of true negatives, FP represents false positives.

Naformátováno: Písmo: Tučné, Neprovádět kontrolu
pravopisu ani gramatiky

Naformátováno: není zvýrazněné
Naformátováno: není zvýrazněné
Naformátováno: není zvýrazněné
Naformátováno: není zvýrazněné

Fig. 5 Time vs. cumulative number of detected faults.

So many evaluation criteria are being used in this research, including specificity
and accuracy as well as the area under the receiver operating characteristic (ROC)
or AUC curve. When evaluating a predictor or classifier, the default cut-off value
for the estimated probability of defect occurrences is not the required cut-off value
of 0.5. Each of the following evaluation standards has been met:

Specificity =
TN

TN + FP
, (31)

Sensitivity =
TP

TP + FN
, (32)

Accuracy =
TP + TN

TP + TN + FP + FN
, (33)

18

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

Error rate = 1− TP + TN

TP + TN + FP + FN
. (34)

Here TP represents number of true positives, FN represents number of false neg-
atives, TN represents number of true negatives, FP represents false positives.

The number of software codes that can be correctly classified may be calculated.
It determines how close the results are to what was predicted. Divide the total
of actual positives and true negatives by the number of projected positives and
negatives. In contrast, the proposed method’s accuracy (96.7%) is higher than the
current techniques’ accuracy (see Fig. 6).

The extent to which a classifier can accurately identify all codes that do not
have an issue with their condition is referred to as their specificity. In this case,
as shown in Fig. 7, the recommended procedures had a large range of specificity
(90%), which was quite high in comparison to other already existing mechanisms.

Fig. 6 Comparison of accuracy with traditional and proposed method.

D. Sudharson , R. Gomathi , L. Selvam: SOFTWARE RELIABILITY ANALYSIS…

 21

Fig. 56 Comparison of accuracy with traditional and proposed method.

 The number of software codes that can be correctly classified may be calculated.
It determines how close the results are to what was predicted. Divide the total of
actual positives and true negatives by the number of projected positives and
negatives. In contrast, the proposed method's accuracy (96.7%) is higher than the
current techniques' accuracy (see Figure 6).

Fig. 67 File size vs. specificity.

 The extent to which a classifier can accurately identify all codes that do not
have an issue with their condition is referred to as their specificity. In this case, as
shown in figure 7, the recommended procedures had a large range of specificity
(90%), which was quite high in comparison to other already existing mechanisms.
 The faulty condition prediction capability of a proposed system is shown
graphically by an AUC curve. When compared to other existing mechanisms, the
AUC range of the proposed mechanism has a very high AUC (99%), as shown in
figure 8.

Naformátováno: Písmo: Tučné, Neprovádět kontrolu
pravopisu ani gramatiky

Naformátováno: Písmo: Tučné, Neprovádět kontrolu
pravopisu ani gramatikyFig. 7 File size vs. specificity.

19

Neural Network World 1/2024, 1–25

The faulty condition prediction capability of a proposed system is shown graph-
ically by an AUC curve. When compared to other existing mechanisms, the AUC
range of the proposed mechanism has a very high AUC (99%), as shown in Fig. 8.

To correctly determine all codes with a faulty condition, or if 100% accurate,
to identify all codes with a faulty condition using BA-ZFCNN. Fig. 9 shows that
the proposed approach’s sensitivity (100%) was quite high when compared to other
existing mechanisms.

D. Sudharson , R. Gomathi , L. Selvam: SOFTWARE RELIABILITY ANALYSIS…

 21

Fig. 7 File size vs. AUC.

Fig. 8 File size vs. sensitivity.

 To correctly determine all codes with a faulty condition, or if 100% accurate,
to identify all codes with a faulty condition using BA-ZFCNN. Figure 9 shows that
the proposed approach's sensitivity (100%) was quite high when compared to other
existing mechanisms.

Fig. 9 File size vs. ER.

 Figure 10 shows the error rate was less (0.03%) for the suggested methodology
when compared to other existing mechanisms.

Fig. 8 File size vs. AUC.

D. Sudharson , R. Gomathi , L. Selvam: SOFTWARE RELIABILITY ANALYSIS…

 21

Fig. 7 File size vs. AUC.

Fig. 8 File size vs. sensitivity.

 To correctly determine all codes with a faulty condition, or if 100% accurate,
to identify all codes with a faulty condition using BA-ZFCNN. Figure 9 shows that
the proposed approach's sensitivity (100%) was quite high when compared to other
existing mechanisms.

Fig. 9 File size vs. ER.

 Figure 10 shows the error rate was less (0.03%) for the suggested methodology
when compared to other existing mechanisms.

Fig. 9 File size vs. sensitivity.

Fig. 10 shows the error rate was less (0.03%) for the suggested methodology
when compared to other existing mechanisms.

From the results of the above analysis, it was revealed that the suggested
methodology expresses better results than other existing mechanisms. The deep
learning technique BA-ZFCNN proposed in this research work can be used by the
software developers to determine the dependability of the software systems, which
leads to software defects or failures more accurately. Hence, this work can serve
as a vital tool in software reliability performance assessment. Therefore, software
defects and failures can be effectively minimized and reliability can be achieved
with optimal efforts.

20

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

D. Sudharson , R. Gomathi , L. Selvam: SOFTWARE RELIABILITY ANALYSIS…

 21

Fig. 7 File size vs. AUC.

Fig. 8 File size vs. sensitivity.

 To correctly determine all codes with a faulty condition, or if 100% accurate,
to identify all codes with a faulty condition using BA-ZFCNN. Figure 9 shows that
the proposed approach's sensitivity (100%) was quite high when compared to other
existing mechanisms.

Fig. 9 File size vs. ER.

 Figure 10 shows the error rate was less (0.03%) for the suggested methodology
when compared to other existing mechanisms.

Fig. 10 File size vs. ER.

Model for Optimal time Reliability Cost of
release time T∗ to release achieved at development at AE RE
computation software (week) T∗ (week) T∗ (dollar)

IT2 FN-based
model [46] 63.27 0.82 506,919.00 10.27 0.19

Optimal release time
determination using
type-1 fuzzy sets 0.12× 10−3 0.12× 10−4 141,393.70 52.99 0.99
(Kapur et al. 2011b)
[46]

Bi-criteria release
time determination 22.00 0.80 165,432.60 31.00 0.58
problem (Kapur et al.
1994) [46]

Proposed 30.00 0.87 32,788.90 9.55 0.01

Tab. I Performability comparison, absolute error (AB), relative error (RE).

5. Conclusion

Using the HESSO and the BA-ZFCNN, this research provided a solution to soft-
ware reliability prediction difficulties. HESSO is used to determine the best BPNN
parameters in this hybrid model, resulting in improved prediction accuracy. BA-
ZFCNN was tested on a range of software failure prediction issue datasets to see
whether it was effective. The PROMISE repository provided these datasets. AUC,
sensitivity, specificity, accuracy, and error rate were used as performance indica-
tors to assess the proposed method. HESSO with the BA-ZFCNN outperformed
all other available techniques. Data sets and performance measures were all beaten
by this algorithm. There are several advantages of using BA-ZFCNN as a tool for
tackling software engineering challenges, including better prediction accuracy for a
broad variety of SFP problems, as well as better resolution and lower error rates

21

Neural Network World 1/2024, 1–25

than previous SFP approaches. SFP challenge success has led to the recommenda-
tion of the BA-ZFCNN for use in further prediction issues. For most datasets, the
proposed method needs a significant amount of processing time. Consequently, fu-
ture studies might create a new technique for optimizing the algorithm’s computing
cost.

References

[1] CHEN L.Q., WANG C., SONG S.-L. Software defect prediction based on nested-stacking
and heterogeneous feature selection, Complex & Intelligent Systems, 2022, pp. 1–16.

[2] PEMMADA S.K., BEHERA H., NAYAK J., NAIK B. Correlation-based modified long short-
term memory network approach for software defect prediction, Evolving Systems, pp. 1–19,
2022.

[3] QIAO L., LI X., UMER Q., GUO P. Deep learning based software defect prediction, Neuro-
computing, 2020, 385, pp. 100–110.

[4] AKMEL F., BIRIHANU E., SIRAJ B. A literature review study of software defect prediction
using machine learning techniques, Int. J. Emerg. Res. Manag. Technol, 2017, 6, pp. 300–306.

[5] ULAN M., LÖWE W., ERICSSON M., WINGKVIST A. Weighted software metrics aggre-
gation and its application to defect prediction, Empirical Software Engineering, 2021, 26,
pp. 1–34.

[6] NAM J., KIM S. Clami: Defect prediction on unlabeled datasets (t). In: 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2015, pp. 452–463.

[7] PANDEY S.K., MISHRA R.B., TRIPATHI A.K. Machine learning based methods for soft-
ware fault prediction: A survey, Expert Systems with Applications, 2021, 172, p. 114595.

[8] ZHONG Y., SONG K., LV S., HE P. An Empirical Study of Software Metrics Diversity for
Cross-Project Defect Prediction, Mathematical Problems in Engineering, 2021.

[9] FENG S., KEUNG J., YU X., XIAO Y., ZHANG M. Investigation on the stability of
SMOTE-based oversampling techniques in software defect prediction, Information and Soft-
ware Technology, 2021, 139, p. 106662.

[10] FENG S., KEUNG J., YU X., XIAO Y., BENNIN K.E., KABIR M.A. COSTE: Complexity-
based Over Sampling Technique to alleviate the class imbalance problem in software defect
prediction, Information and Software Technology, 2021, 129, p. 106432.

[11] ZHU K., YING S., ZHANGN., ZHU D. Software defect prediction based on enhanced meta-
heuristic feature selection optimization and a hybrid deep neural network, Journal of Systems
and Software, 2021, 180, p. 111026.

[12] BALOGUN A.O., BASRI S., MAHAMAD S., ABDULKADIR S.J., CAPRETZ L.F., IMAM
A.A. Empirical analysis of rank aggregation-based multi-filter feature selection methods in
software defect prediction, Electronics, 2021, 10, p. 179.

[13] SINGH P.D., CHUG A. Software defect prediction analysis using machine learning algo-
rithms. In: 7th International Conference on Cloud Computing, Data Science & Engineering-
Confluence, 2017, pp. 775–781.

[14] MALHOTRA R. A systematic review of machine learning techniques for software fault pre-
diction, Applied Soft Computing, 2015, 27, pp. 504–518.

[15] SAHU K., ALZAHRANI F.A., SRIVASTAVA R., KUMAR R. Evaluating the impact of
prediction techniques: Software reliability perspective, Comput. Mater. Continua, 2021, 67,
pp. 1471–1488.

[16] LONGRAIS G.P. Development of a Software Reliability Prediction Method for Onboard
European Train Control System, ed., 2021.

[17] EKEN B., TOSUN A. Investigating the performance of personalized models for software
defect prediction, Journal of Systems and Software, 2021, 181, p. 111038.

22

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

[18] ALBAHLI S, A deep ensemble learning method for effort-aware just-in-time defect prediction,
Future Internet, 2019, 11, p. 246.

[19] KAUR A., KAUR I. An empirical evaluation of classification algorithms for fault prediction in
open source projects, Journal of King Saud University-Computer and Information Sciences,
2018, 30, pp. 2–17.

[20] XU Z., LI L., YAN M., LIU J., LUO X., GRUNDY J., ZHANG Y., ZHANG X. A comprehen-
sive comparative study of clustering-based unsupervised defect prediction models. Journal
of Systems and Software, 2021, 172, p.110862.

[21] MOUSSA R., AZAR D., SARRO F. Investigating the Use of One-Class Support Vector
Machine for Software Defect Prediction, arXiv preprint arXiv:2202.12074, 2022.

[22] FENG S., KEUNG J., ZHANG P., XIAO Y., ZHANG M. The impact of the distance metric
and measure on SMOTE-based techniques in software defect prediction, Information and
Software Technology, 2022, 142, p. 106742.

[23] RAHMAN M.H., SHARMIN S., ISLAM M.S., KHALED S.M., SARWAR S.M. An Attribute
Selection Process for Cross-Project Software Defect Prediction. DUJASE, 2021, 6(1) pp. 6–
15.

[24] WANG S. Leveraging Machine Learning to Improve Software Reliability, 2019.

[25] CHEN X., ZHANG D., ZHAO Y., CUI Z., NI C. Software defect number prediction: Un-
supervised vs supervised methods, Information and Software Technology, 2019, 106, pp.
161–181.

[26] LARADJI I.H., ALSHAYEB M., GHOUTI L. Software defect prediction using ensemble
learning on selected features, Information and Software Technology, 2015, 58, pp. 388–402.

[27] KUMAR R., CHATURVEDI A., KAILASAM L. An Unsupervised Software Fault Prediction
Approach Using Threshold Derivation, IEEE Transactions on Reliability, 2022, 71(2), pp.
911–932, doi: 10.1109/TR.2022.3151125.

[28] PORNPRASIT C., TANTITHAMTHAVORN C.K. Jitline: A simpler, better, faster, finer-
grained just-in-time defect prediction. In: IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), 2021, pp. 369–379.

[29] EKEN B., TUFAN S., TUNABOYLU A., GULER T., ATAR R., TOSUN A. Deployment
of a change-level software defect prediction solution into an industrial setting, Journal of
Software: Evolution and Process, 2021, 33, p. e2381.

[30] CHALLAGULLA V.U.B., BASTANI F.B., YEN I.-L., PAUL R.A. Empirical assessment
of machine learning based software defect prediction techniques, International Journal on
Artificial Intelligence Tools, 2008, 17, pp. 389–400.

[31] KAMEI Y., SHIHAB E., ADAMS B., HASSAN A.E., MOCKUS A., SINHA A., UBAYASHI
N. A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on
Software Engineering, 2012, 39(6), pp. 757–773.

[32] KAMEI Y., MATSUMOTO S., MONDEN A., MATSUMOTO K.-I., ADAMS B., HASSAN
A.E. Revisiting common bug prediction findings using effort-aware models. In: 2010 IEEE
international conference on software maintenance, 2010, pp. 1–10.

[33] YANG X., WEN W. Ridge and lasso regression models for cross-version defect prediction,
IEEE Transactions on Reliability, 2018, 67, pp. 885–896.

[34] YU X., KEUNG J., XIAO Y., FENG S., LI F., DAI H. Predicting the precise number of
software defects: Are we there yet?, Information and Software Technology, p. 106847, 2022.

[35] KIRAN N.R., RAVI V. Software reliability prediction by soft computing techniques, Journal
of Systems and Software, 2008, 81, pp. 576–583.

[36] DAS CHAGAS MOURA M. , ZIO E., LINS I.D., DROGUETT E. Failure and reliability
prediction by support vector machines regression of time series data, Reliability Engineering
& System Safety, 2011, 96, pp. 1527–1534.

[37] MAHATO S., DIXIT A.R., AGRAWAL R. Development of a Mathematical Model for the
Software Defect Rework Process to Optimize Defect Rework—A Six-Sigma Case Study, in
Recent Advances in Industrial Production, ed: Springer, 2022, pp. 403–410.

23

http://dx.doi.org/10.1109/TR.2022.3151125

Neural Network World 1/2024, 1–25

[38] PACHOULY J., AHIRRAO S., KOTECHA K., SELVACHANDRAN G., ABRAHAM A.
A systematic literature review on software defect prediction using artificial intelligence:
Datasets, Data Validation Methods, Approaches, and Tools, Engineering Applications of
Artificial Intelligence, 2022, 111, p. 104773.

[39] RATHORE S.S., KUMAR S. A decision tree regression based approach for the number of
software faults prediction, ACM SIGSOFT software engineering notes, 41, pp. 1–6, 2016.

[40] RATHORE S.S., KUMAR S. An empirical study of some software fault prediction techniques
for the number of faults prediction, Soft Computing, 21, pp. 7417–7434, 2017.

[41] RANJAN P., KUMAR S., KUMAR U. Software fault prediction using computational in-
telligence techniques: A survey, Indian Journal of Science and Technology, 2017, 10, pp.
1–9.

[42] ZHAO G., HUANG J. Deepsim: deep learning code functional similarity. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp. 141–151.

[43] MA S., LIU Y., LEE W.-C., ZHANG X., GRAMA A. MODE: automated neural network
model debugging via state differential analysis and input selection. In: Proceedings of the
26th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2018, pp. 175–186.

[44] LE T.H., CHEN H., BABAR M.A. Deep learning for source code modeling and generation:
Models, applications, and challenges, ACM Computing Surveys (CSUR), 2020, 53, pp. 1–38.

[45] KASSAYMEH S., ABDULLAH S., AL-BETAR M.A., ALWESHAH M. Salp swarm opti-
mizer for modeling the software fault prediction problem, Journal of King Saud University-
Computer and Information Sciences, 2022, 34(6), pp. 3365–3378, doi: 10.1016/j.jksuci.
2021.01.015.

[46] CHATTERJEE S., CHAUDHURI B., BHAR C. Optimal release time determination via
fuzzy goal programming approach for SDE-based software reliability growth model, Soft
Computing, 2021, 25, pp. 3545–3564.

[47] XIAO Y., KEUNG J., MI Q., BENNIN K.E. Bug localization with semantic and structural
features using convolutional neural network and cascade forest. In: Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software Engineering, 2018, pp.
101–111.

[48] WARTSCHINSKI L., NOLLER Y., VOGEL T., KEHRER T., GRUNSKE L. VUDENC:
Vulnerability Detection with Deep Learning on a Natural Codebase for Python, Information
and Software Technology, 2022, p. 106809.

[49] ZHAO Y., SU T., LIU Y., ZHENG W., WU X., KAVULURU R., YU T. Recdroid+: Auto-
mated end-to-end crash reproduction from bug reports for android apps. ACM Transactions
on Software Engineering and Methodology (TOSEM), 2022, 31(3), pp. 1–33.

[50] WU B., LIANG B., ZHANG X. Turn Tree into Graph: Automatic Code Review via Sim-
plified AST Driven Graph Convolutional Network, Knowledge-Based Systems, 2022, 252,
109452, doi: 10.1016/j.knosys.2022.109450.

[51] DUAN X., WU J., DU M., LUO T., YANG M., WU Y. MultiCode: A Unified Code Anal-
ysis Framework based on Multi-type and Multi-granularity Semantic Learning. In: IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), 2021,
pp. 359–364.

[52] WALUNJ V., GHARIBI G., ALANAZI R., LEE Y. Defect Prediction Using Deep Learning
with Network Portrait Divergence for Software Evolution. Empir Software Eng., 2022, 27,
118.

[53] TOSUN A., BENER A.B., AKBARINASAJI S. A systematic literature review on the ap-
plications of Bayesian networks to predict software quality, Software Quality Journal, 2017,
25, pp. 273–305.

[54] ZHENG J. Cost-sensitive boosting neural networks for software defect prediction, Expert
Systems with Applications, 2010, 37, pp. 4537–4543.

24

http://dx.doi.org/10.1016/j.jksuci.2021.01.015
http://dx.doi.org/10.1016/j.jksuci.2021.01.015
http://dx.doi.org/10.1016/j.knosys.2022.109450

Sudharson D., Gomathi R., Selvam L.: Software Reliability Analysis by Using. . .

[55] WANG T., LI W., SHI H., LIU Z. Software defect prediction based on classifiers ensemble,
Journal of Information & Computational Science, 2011, 8, pp. 4241–4254.

[56] TWALA B. Predicting software faults in large space systems using machine learning tech-
niques, Defence Science Journal, 2011, 61, p. 306.

[57] SIERS M.J., ISLAM M.Z. Cost sensitive decision forest and voting for software defect predic-
tion. In: Pacific Rim International Conference on Artificial Intelligence, 2014, pp. 929–936.

25

