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Abstract: Recurrent neural networks (RNNs), along with long short-term memory
networks (LSTMs), have been successfully used on a wide range of sequential data
problems and have been entitled as extraordinarily powerful tools for learning and
processing such data. However, the search for a new or derived architecture that
would model very long-term dependencies is still an active area of research. In this
paper, a relatively psychologically plausible architecture named event buffering
JANET (EB-JANET) is proposed. The architecture is derived from the forget-
gate-only version of the LSTM, which is also called just another network (JANET).
The new architecture implements a new working memory mechanism that operates
on information represented as dynamic events. The event buffer, as a container of
events, is a reference to the state of the relevant pre-activation values on the basis
of which historical candidate values were generated relative to the current timestep.
The buffer is emptied as needed and depending on the context of information. The
proposed architecture has achieved world-class results and it outperforms JANET
on multiple benchmark datasets. Moreover, the new architecture is applicable to
a wider class of problems and showed superior resilience when processing longer
sequences, as opposed to JANET which experienced catastrophic failures on certain
tasks.
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1. Introduction

Artificial neural networks are mathematical models that leverage learning algo-
rithms inspired by the brain to store information [1]. An RNN [2] is a type of arti-
ficial neural network designed for processing sequential data or time series data. To
address the vanishing gradient problem and model long-term dependencies, Sepp
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Hochreiter and Juergen Schmidhuber introduced a variant known as the (vanilla)
LSTM network in 1997 [3]. Following this development, numerous studies have
focused on analyzing the components of the LSTM and exploring alternative ar-
chitectures. Significantly, simultaneous discoveries highlighted the forget gate as
a crucial element of the LSTM [5, 7], an addition absent in the original 1997 ar-
chitecture but introduced in 2000 [8]. Furthermore, a new neural network was
proposed in 2018 as a transformation and simplification of the LSTM in that it
uses only the forget gate and chrono-initialized biases [9] and it was named JANET,
an abbreviation for just another network [10]. The JANET architecture, crucial for
this research, consistently outperforms the LSTM on multiple benchmark datasets.
Considering the achieved results, it is also remarkable that, even today, after sev-
eral years of existence, it can still compete with the best state-of-the-art models
(for example [11, 12]). However, the JANET architecture unfortunately also has
certain shortcomings, which will be discussed further in the paper.

The LSTM architecture, upon psychological examination, is not inherently de-
signed to be psychologically plausible, despite some correlations with cognitive
concepts. Psychologically plausible models aim to reflect human cognition and
brain functions. These models strive to incorporate more intricate mechanisms in
order to accurately mirror human cognitive processes. While there are connections
between certain LSTM architectures and certain aspects of human cognition, such
as the notions of sensory memory (SM), short-term memory (STM), and long-term
memory (LTM), the LSTM architectures do not directly implement or simulate
specific cognitive mechanisms observed in human memory. However, while revising
human memory theory and recent psychological research, an idea emerged to map
specific findings, such as those in [19], related to working memory (WM) onto an
existing neural network architecture. The intention was to create or adapt an arti-
ficial neural network, such as the LSTM architecture, as a psychologically plausible
model aligned with the revised theory while maintaining functionality.

This research begins by examining the psychological aspects of LTM and WM.
Subsequently, a basic overview of RNNs and the LSTM is provided. However,
emphasis is placed on the JANET neural network as this architecture serves as a
foundational element, possessing essential building components necessary for sub-
sequent upgrades. The focus then shifts to the implementation, where, prior to the
actual technical implementation, the gating mechanism of WM and the interoper-
ability between LTM and WM are explored, also from a psychological perspective.
Additionally, within the context of technical implementation, a new storage buffer
for WM is introduced. Finally, the results of experiments involving real and publicly
available datasets, along with synthetic datasets, are presented to further evaluate
the performance of the proposed models and architectures. The implementation
of this idea was anticipated to yield improvements in certain results from the con-
ducted experiments, while also mitigating some of the drawbacks associated with
the JANET architecture.

2. Related work

In the context of cognitive psychology, over the last few decades, various mem-
ory models have been proposed. In this study, particular emphasis is placed on
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the Atkinson-Shiffrin model [13] and its variant [16] for several compelling rea-
sons. Firstly, the Atkinson-Shiffrin model provides a comprehensive framework
that elegantly captures the different stages of memory processing. Secondly, the
Atkinson-Shiffrin model has substantial empirical support, with numerous studies
validating its principles. Additionally, the variant proposed in [16] introduces a
nuanced perspective or extends the original model, addressing emerging questions
and incorporating additional factors. Although the Atkinson-Shiffrin model and
its variant elegantly describe human memory processes, comprehending the compo-
nents and their operations is a complex task. Nevertheless, extensive research has
firmly established the foundational theory of these crucial components, including
WM [17, 18], central to this paper. However, the specifics of WM operations and
its interaction with information involve an additional theory. This theory proposes
the existence of gate mechanisms [20,21], directly controlling and interacting with
information.

To transition successfully from the conceptualization to the implementation
phase, it was necessary to revise the RNN architectures of artificial neural net-
works to achieve meaningful synergy. Just as in the field of cognitive psychology,
diverse architectures and initialization methods have been formulated through ex-
tensive research, aiming to optimize sequential data processing. Upon reviewing
the literature, it was concluded that the key reference points could be the build-
ing blocks of the LSTM architecture [8]. Nevertheless, as a simplification of the
LSTM, the JANET neural network [10] quickly emerged as the foundation for con-
structing a new neural network. This is because of its simple architecture that
incorporates an LTM mechanism, which already aligns well with the mechanisms
of the Atkinson-Shiffrin model and its variants. With the aforementioned reasons,
another significant factor drawing attention to the JANET architecture is a new
technique [9] utilized by this architecture. This technique enables the finalization of
the idea behind this research. Although various papers are implicitly linked to this
research, the references in this section provide the primary source of information.

3. Memory

Memory encompasses the processes of collecting, storing, retaining, and retriev-
ing information, existing in diverse forms and relying on distinct neural systems.
Memory models are usually used to describe the way of organizing and defining
how memory behaves. The model most people are familiar with is the Atkinson-
Shiffrin model, also known as the multi-store model or the modal model, illustrated
in Fig. 1 (disregarding the dashed lines A and B). Atkinson and Shiffrin developed
the multi-store model of memory that describes the flow between the already men-
tioned storage systems of memory: SM, STM, and LTM [13]. Furthermore, when
describing the information flow between the components, Atkinson and Shiffrin
were not sure about one part of their model, that is, they left open the possibility
that there may be a direct transfer of information from SM (only the dashed line A
in Fig. 1) to LTM. According to [16], in addition to the many variants of the model,
the Atkinson-Shiffrin model has also been modified by certain psychologists, who
claim that information could directly enter LTM through “a back door”, that is,
without us consciously attending to it (automatic processing, as depicted in Fig. 1,
while considering only the dashed line B).
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Fig. 1 The Atkinson and Shiffrin’s model of memory and its variants.

3.1 Long-term memory

LTM represents the theoretical construct used in cognitive psychology and cogni-
tive neuroscience which is described as an unlimited storage of information that
is needed in the process of creating enduring memories [22, 23]. This storage of
memories tends to be more durable and stable, lasting for a long time, in contrast
to the relatively short-term nature of WM. In theory, the capacity of LTM could
be unlimited, but a distinction should be made here in relation to the process of
retrieving information from LTM. In other words, information can be written into
LTM, but its retrieval can be hindered.

3.2 Working memory

WM is a theoretical construct in cognitive psychology, functioning as a limited
capacity system for the temporary storage and manipulation of active (new) in-
formation necessary for complex cognitive tasks [17, 24], overlapping structurally
and functionally with LTM [25, 26]. It is believed that the information moving
through STM is encoded into LTM through a process called memory consolida-
tion. The mentioned process either leads to the formation of a permanent change
in the brain, which is defined as an engram [27], or the information decays or is
replaced. It should also be noted that the term WM is sometimes associated with
the term STM. Despite the conceptual differences between them, the use of the
terms WM and STM in theory and literature is not always consistent. WM and
STM mechanisms are supposedly different theoretical concepts that are assumed
to reflect different cognitive functions. However, researchers have not been able to
tangibly separate both constructs. Moreover, there is evidence for a potential over-
lap [26]. In this paper, the term “working memory” will be used and the potential
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differences between WM and STM will not be dwelled upon. It is also interesting to
note that from a psychological perspective, LTM can be highly accurate; however,
it is often considered perishable and inaccurate when compared to WM. According
to [28], there is a possibility that WM has better fidelity than LTM, and, moreover,
a similar scenario could potentially exist in the world of artificial neural networks.

4. Recurrent neural networks

RNNs are a generalization of the feed-forward neural network that have an inter-
nal memory and are one of the most successful class of architectures for solving
sequential problems. The simplest form of an RNN, at any timestep t , takes xt as
the input and updates its hidden state ht according to the rule

ht = ϕ(Uhht–1 +Whxt + bh). (1)

The linear layer is commonly employed to make predictions or extract informa-
tion through a linear transformation applied to the hidden state ht, as follows:

yt = Wy · ht + by. (2)

In the aforementioned equations, U and W represent the weight matrices with
their respective layer denotations, while b represents the bias vector with its corre-
sponding layer denotation. ϕ is the nonlinear activation function. However, RNNs
suffer from the problem of vanishing gradients that highly affect the ability to learn.
Therefore, several approaches have been developed to solve such a problem.

4.1 Long short-term memory

RNNs are hard to train due to the exploding and vanishing gradient problems
[29, 30]. LSTM networks, as instances of a more general class of recurrent neural
networks, aim to mitigate the aforementioned problems, especially the vanishing
problem. Hence, the LSTMs are capable of modeling longer term dependencies by
having memory cells which can maintain their state over time and the gates which
control the information flow along with the memory cells. In other words, let xt be
the input at any time step t where f t, it, ot, and ct represent the forget gate, input
gate, output gate, and the memory of the current timestep t . The forget gate is
responsible for controlling what information to throw away (0 to forget entirely)
or keep (1 to completely remember) in the memory. The LSTM decides what new
information will be stored in the cell state. This is done in such a way that the
input gate decides which values it should update or filter and the tanh layer c̃t
creates a vector of new candidate values that can be added to the cell state. The
equation of the candidate value is very similar to the simple RNN. The LSTM
output gate controls how much of the current cell activity will be released. The
hidden state ht at each timestep learns which data to keep and which to discard.
The operability of the standard LSTM can be summarized through the following
equations (σ is the symbol for the sigmoid activation function, and ⊙ is the symbol
for the element-wise or pointwise product, also known as the Hadamard product)
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f t = σ(Ufht–1 +Wfxt + bf),

it = σ(Uiht–1 +Wixt + bi),

c̃t = tanh(Uc̃ht–1 +Wc̃xt + bc̃),

ct = f t ⊙ ct–1 + it ⊙ c̃t,

ot = σ(Uoht–1 +Woxt + bo),

ht = ot ⊙ tanh(ct).

(3)

The linear layer is commonly employed to make predictions or extract informa-
tion through a linear transformation applied to the hidden state ht, as follows:

yt = Wy · ht + by. (4)

In the aforementioned equations, U and W represent the weight matrices with
their respective layer denotations, while b represents the bias vector with its cor-
responding layer denotation.

4.2 Just another network

In order to transform the LSTM architecture into the JANET architecture, the
first step is to couple together the forget and input gate as in [5], that is i=1 – f .
The tanh activation of ht can worsen the vanishing gradient problem, whereas the
weight matrix U could take values outside the range [-1,1]. Therefore, the specified
non-linearity can be removed. Intuitively, if hypothetically more information is
accumulated than forgotten, sequence analysis could be easier. This was empirically
confirmed to be true by subtracting a pre-specified value β from the input control
component. It was determined that the setting β = 1 provides the best results
for the data sets analyzed in [10]. The resulting architecture is described by the
following equations:

gt = Ught–1 +Wgxt + bg,

c̃t = tanh(gt),

f t = σ(Ufht–1 +Wfxt + bf – β),

ct = f t ⊙ ct–1 + (1 – f t)⊙ c̃t,

ht = ct.

(5)

The linear layer is commonly employed to make predictions or extract informa-
tion through a linear transformation applied to the hidden state ht, as follows:

yt = Wy · ht + by. (6)

In the aforementioned equations, U and W represent the weight matrices with
their respective layer denotations, while b represents the bias vector with its cor-
responding layer denotation.

Unfortunately, this architecture is not suitable for the standard LSTM ini-
tialization scheme, in which the weight matrices U and W are distributed as

U
[

–
√
6√

nl+nl+1
,

√
6√

nl+nl+1

]
, where U denotes the uniform distribution, nl is the size of

each layer l [31,32], and all the biases are set to zero, except for the forget gate bias,
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which is initialized to 1 [6]. Let us note the following: the free input regime [33]
is a theoretical event where inputs stop after a certain time t0, xt = 0 for t > t0
and information omission through the hidden layer is neglected, assuming that all
other associated weight matrices are set to 0. Therefore, assuming that the inputs
stopped after a certain time and neglecting information leakage through the hidden
layer (also known as the free input regime), JANET would not be able to retain
the memory values ct for more than a few steps in the case of such initialization.
In other words, the pre-activation vector of the forget gate would have a value of
1, which means that for n zero-valued inputs, the memory values would tend to be
centered around

ct+n = σ(1)n ⊙ ct ≈ 0.73nct. (7)

In 2018, a new initialization scheme was proposed for the LSTM gate biases. It
was named the chrono initialization [9] and it initializes the LSTM gate biases as

bf∼ log(U [1,Tmax – 1]),

bi = –bf ,
(8)

with Tmax as the expected range of long-term dependencies and U as the uniform
distribution. As demonstrated in the example using the MNIST dataset [34] pro-
vided by [10], employing the technique Eq. (8) in the JANET architecture implies
that JANET will be able to retain memory values ct for more than a few steps if
consecutive zero inputs occur. In other words, if the images of the MNIST dataset
are transformed into sequences of Tmax = 784 individual pixels (raster of 28 × 28
pixels), with each pixel considered as a moment in time, and the technique Eq. (8)
is applied, then for n zero-valued inputs, the memory values would tend to be
centered around

ct+n = σ(log(Tmax – 1))
n ⊙ ct = σ(log(783))n ⊙ ct ≈ 0.99nct. (9)

Furthermore, the value of the partial derivative
∂ct+1

∂ct
will be approximately 1 [10].

This implies that the length of the sequence has minimal impact on the gradients
of memory cells.

4.2.1 JANET’S drawbacks

This neural network is not suitable when anticipation occurs, for example, at each
timestep. It has also been specified in [10] that it can be expected that the LSTM
is a better choice in next-word prediction tasks, especially when inputs are discrete
and non-zero. Furthermore, our experiments revealed instances of catastrophic
failures in JANET, particularly in segments that were not initially mentioned here
as shortcomings. These observations suggest that JANET’s applicability is limited
to a narrower range of problem classes. The experiments utilize precisely selected
and constructed datasets, taking into account the corresponding statements. Addi-
tionally, specific adjustments and challenges were introduced, such as alterations in
task types and the transition of input values from discrete to continuous formats,
reinforcing previous statements.
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5. Towards implementation

Examining the JANET neural network Eq. (5), reveals a direct interaction between
the data and LTM. In abstract terms, this interaction is illustrated in Fig. 1, where
data undergoes automatic processing and directly integrates into LTM. Addition-
ally, Fig. 1 illustrates the WM mechanism, raising the question of how and which
data should interact first with WM in the context of an artificial neural network.
A scenario is created in which at the time t one piece of data would be obtained.
When going back to Fig. 1, it could potentially be concluded that the data obtained
at the time t might enter both LTM and WM, but under certain conditions. That
is, one piece of data enters LTM in its encoded form, but according to Fig. 1, the
same piece of data enters WM without being encoded, but by being carefully se-
lected. In other words, the data enters the WM mechanism that selectively directs
attention towards the target and reduces irrelevant distractors. Hence, the data
should be carefully selected so that WM holds only the information relevant to
the current task. The conclusion is that only the pre-activation vectors should be
observed, based on which candidate values are generated. Looking again at Fig. 1,
this makes sense, the selected pre-activation values enter WM and the same, but
encoded data enters LTM.

Since the operability of LTM is already integrated into JANET, the following
subsections will focus on the details of WM operability, its interaction with LTM,
and its implementation. Given the complexity of processes in the human brain,
the SM component has been excluded to simplify the implementation.

5.1 Working memory gating

According to [35], WM is thought to be strongly related to cognitive control. Cogni-
tive control orchestrates thoughts and actions in harmony with goals and contexts.
In order for cognitive control to be successful in such an orchestration, it selects
relevant perceptual information which is to be updated into WM (input gating).
There it maintains and protects the selected information so that the information
does not get corrupted under the influence of distractions (maintenance). Further-
more, it then filters a subset of the maintained information that is ready for use, all
the while executing a complex cognitive task (output gating) [20, 21, 35]. The fea-
sibility of the aforementioned takes place with the help of additional mechanisms,
which are sometimes metaphorically called “gates” by cognitive neuroscientists.
The gates allow the relevant information to enter WM when opened, but they pro-
tect the WM contents from interference when closed; or in simpler words, these
gates control the flow of information [20,21].

The implementation of the aforementioned theory proceeds as follows. A new
variable e has been introduced. The variable can be updated by the artificial neural
network as needed, and the operation that allows the logical and expected updating
is shown by the succeeding equation with the pre-activation vector g

gt = Ugct–1 +Wgxt + bg,

et = rt ⊙ et–1 + (1 – rt)⊙ gt,

ht = et.

(10)
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Here it can be imagined that the variable e contains a certain amount of information
and that it represents WM. The equation represents the WM mechanism, which
makes it possible to generate the WM value at the time t . The variable r represents
the gate (or sometimes the reset gate), and it is defined as the sigmoid activation
function. It controls how the WM e should be updated based on the recurrent
information and the pre-activation vector g. Hence, the gate acts almost as the
forget gate, as it decides how much of the past information needs to be neglected. To
be more precise, this gate controls how the input and the previous state determine
the current state in its case.

5.2 Memory harmonization

In addition to perceptual information, WM may also incorporate information from
LTM [36]. The interaction between LTM and WM is highly complex. Until re-
cently, it was unclear whether a gate controls the selection of LTM representations
into WM and what kind of interconnection is created during the WM gating of the
perceptual information and LTM information, and how that information relates to
each other. Recent research now provides evidence for a gating mechanism con-
trolling the selection of LTM content entering WM. The findings showed that the
access to WM for both the perceptual and LTM sources of information is plausible
when controlled by a gate and attentional selection mechanism [36]. It should also
be noted that according to [37], the more strongly the items are associated in LTM,
the more benefit will the WM performance have. In order to obtain a synergistic
effect of the joint interaction of LTM and WM, the technical perspective of imple-
mentation had to be observed, while at the same time a meaningful manipulation
of various pieces of incorporated information had to be maintained. It was con-
cluded that the selection of the data in WM must take place with the help of the
acquired knowledge stored in LTM. In other words, the intention is to control the
gate with the help of LTM. It was deduced and later empirically confirmed that,
for controlling the WM state with LTM support, the most effective mathematical
formulation for the gate function is as follows

rt = σ(Urct +Wrxt + br), (11)

where U and W represent the weight matrices with their respective layer denota-
tions, while b represents the bias vector with its corresponding layer denotation.
It should be noted that the LTM values for the current timestep t have already
been generated. In terms of the interoperability between LTM and WM, it has
just been mentioned how LTM can impact WM. The question arises as to whether
there is an opposite direction. According to the theory and our empirical tests,
there is. It was deduced that if the forget gate is impacted by WM (analogous to
the earlier case where it was shown how LTM impacts WM), the performance of
the architecture will increase. In other words, the forget gate equation is now set
as follows

f t = σ(Ufet–1 +Wfxt + bf). (12)

To conclude, it can be said that the control of retroactive memory interference
depends on the adjacent type of memory.

441



Neural Network World 6/2023, 433–459

5.3 Event buffering JANET

In the previous section and its corresponding subsections, the mathematical equa-
tions were systematically developed and integrated into the JANET neural network
architecture, aligning with theories of cognitive processes related to WM. The con-
structed architecture can be visually observed in Fig. 2. If SM is neglected in the
analysis due to the complexity of the entire model, it becomes evident that the
architecture of the artificial neural network in Fig. 2 closely corresponds to and
aligns with the Atkinson–Shiffrin memory model depicted in Fig. 1 (taking into
account the variant with the dashed line B). At this point, it is presumed that the
artificial neural network is also functional.

The JANET architecture, with additional WM, underwent testing and examina-
tions in a manner similar to that described in the Experiments section. The results
were compared with the same architecture but without WM. Although some im-
provements were present, they were not entirely satisfactory, and therefore, WM
was not deemed acceptable (the aforementioned results were not included into the
research of this paper). However, a paper that came out recently in relation to the

Fig. 2 The JANET architecture leveraging working memory.

time of writing this paper suggested changes in the way WM operates. In essence,
the theory describing WM and WM gate mechanisms remains intact. However,
recent advancements in cognitive psychology suggest an enhanced mechanism that
refines the existing one. Namely, in [19], a new model of information processing in
WM was proposed. The storage buffer of event information in WM was researched,
defining the event as a segment of time at a given location perceived by the ob-
server, having both a starting and ending point. Analyzing the WM mechanism
through the Eq. (10) and considering the initial weight initializations, it can be in-
ferred that there are deviations from the recently presented refinement of the WM
theory. The Eq. (10) indicates a preference for retaining historical information,
which might come into conflict with the principles of the new event buffer theory.
The latter advocates for a structured and controlled approach to information re-
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tention. Mathematically, this can be represented by resetting the WM container’s
value to a baseline level as required.

In order to use and technically implement the previously described event buffer
theory, it was concluded that the key is to to access sequentially historical infor-
mation, but only up to the point that breaks relevance for the current timestep.
The mitigating factor is that there is no need for extensive mathematical manipu-
lation with equations to carry out the implementation of the event buffer theory.
In essence, the mechanism necessitates a subtly different implementation, incorpo-
rating a subtle yet pivotal adjustment, signifying that the following approach is the
correct one

et = rt ⊙ gt + (1 – rt)⊙ et–1. (13)

The variables et–1 and gt have been interchanged, but the same initialization scheme
of the r gate, as it was the case earlier, has been kept. It would now be best to re-
introduce the theoretical situation of the free input regime. If there was no external
input to the neural network after the time step t0, that is, xt = 0 for t > t0 with
Ur = 0, the rt gate would be activated and its values would go to 1. In that case,
the WM buffer reference would be set to the value of gt. If it is taken into account
that gt is defined as

gt = Ugct–1 +Wgxt + bg, (14)

and the assumption of the free input regime with Ug = 0, the following applies:

gt = bg, (15)

that is,
et = bg. (16)

This mechanism suggests that it is possible to define the beginning and the end
of the event with a zero input situation. Namely, with the start of the free input
regime, the event is to be stopped, and with the end of the free input regime, the
event is to be started. In this way, information is created and eliminated from WM,
that is, the buffer of WM is completely emptied when needed and set to the bias
value of the variable g at the moment when the event ends. It is important to note
that the application of the new architecture is not influenced by the sequence’s
number of events or by any specific class of problems. For example, sequences
composed entirely of non-null values indicate the processing of only one event.
Theoretically, in such cases, the new WM storage buffer will not be completely
emptied through all time steps. Given the mentioned initialization Eq. (8), this
leads to a difference compared to the Eq. (10), particularly in terms of information
emphasis. In other words, the Eq. (10) prioritizes the retention of historical infor-
mation, while the WM mechanism in the EB-JANET architecture, as described by
Eq. (13), emphasizes the incorporation of new information.

Different bias values of the g variable were experimented with, and it turned
out that the bias with the value of 1 gave slightly better results than the bias with
the value set to 0.

What can now be seen is that LTM possesses the entire knowledge of processed
information, while WM possess only a small amount of relevant information from
the event that is goal-oriented. Consequently, the forget gate is influenced by infor-
mation in WM, and the functioning of WM is influenced by the overall knowledge
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from LTM. Due to modifications in the WM mechanism, it was decided to term
that buffer the “event buffer” (symbolically represented by the letter e) and the
new neural network architecture as the event buffering JANET (EB-JANET).

Assuming the context of the free input regime, the updating of the weights
outside the event is not allowed. The partial derivative ∂et

∂ek
= 0 if the timestep k

is outside the event spanning time t .
The finalized overview of the architecture is given by the following equations

gt = Ugct–1 +Wgxt + bg,

c̃t = tanh(gt),

f t = σ(Ufet–1 +Wfxt + bf),

ct = f t ⊙ ct–1 + (1 – f t)⊙ c̃t,

rt = σ(Urct +Wrxt + br),

et = rt ⊙ gt + (1 – rt)⊙ et–1,

ht = et.

(17)

The linear layer is used to make predictions or extract information through a
linear transformation applied to the hidden state ht, as follows:

yt = Wy · ht + by. (18)

In the aforementioned equations, U and W represent the weight matrices with
their respective layer denotations, while b represents the bias vector with its cor-
responding layer denotation.

6. Experiments

In this section, the performance of the newly developed EB-JANET architecture
is compared with several other RNN architectures, including the LSTM, LSTM-
chrono, and JANET models. The LSTM-chrono model represents the LSTM model
initialized using the chrono initialization technique Eq. (8). In the case of the
JANET model, parameters β = 0 and β = 1 were used to control a certain amount
of information that will be forgotten Eq. (5).

The goal was to assess and compare the convergence of the models towards
the optimal minimum, while also evaluating the effectiveness of these models in
capturing long-term dependencies as observed through performance metrics. It is
important to note that a key aspect of these experiments involves the incorporation
of a novel mechanism within the EB-JANET architecture, which is designed to
enhance its learning capabilities and efficiency in processing sequential data.

The effectiveness of the RNN architectures in this research was evaluated through
complex tasks. To ensure proper experimental conduct, a variety of datasets were
utilized. This approach enabled a comprehensive evaluation of the performance
of the models across various domains and challenges, contributing to an improved
understanding of their capabilities and limitations. The results were derived from
three independent experiments, with the outcomes being averaged. Experiments
were sometimes repeated in response to oscillations. If oscillations were frequent,
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an experiment was deemed unsuccessful. In certain experiments, changing the ini-
tial value of the event buffer from 0 to U [–1, 1] significantly enhanced the neural
network’s resilience to failures. Default initialization was zero unless otherwise
specified. Furthermore, a consistent set of hyperparameters was maintained across
all experiments to ensure fairness and facilitate meaningful comparisons. The final
model was selected based on the best validation loss, with all reports generated at
the epoch level.

6.1 Experiments – real and publicly available datasets

Real and publicly available datasets serve as valuable benchmarks for testing mod-
els in real-world scenarios and optimizing them for various challenges. All models
were trained by using the Adam optimizer with a learning rate of 0.001 and a mini-
batch size of 200. The weight decay factor was set to 1e-5 and the dropout value of
0.1 was used on the output of the recurrent layers. The number of passes through
the entire training dataset (epochs) was set to 100 or sometimes 200 (highlighted
in the corresponding graphs), and the gradient norm was clipped at the value of
5. The number of hidden layer units (L) varied for each task (highlighted in the
corresponding graphs).

6.1.1 Fashion MNIST classification

Fashion MNIST (fMNIST) [41] is a dataset of clothing images from Zalando, de-
signed to replace the original MNIST dataset [34]. It is used for benchmarking
machine learning algorithms, providing a more challenging classification task than
the original MNIST. The dataset consists of 28 × 28 pixels grayscale images of
clothes that are annotated with a label indicating the correct garment (dress,
shirt, sneaker, etc.). Despite the dataset’s nature, similar to the sequential MNIST
task [38], fMNIST images are transformed into a sequential format of 784 individ-
ual pixels (raster of 28× 28 pixels), presented one at a time to the neural network.
Furthermore, the dataset is divided into a training set of 60,000 images and a test
set of 10,000 images. For the validation set, 10% of the training data was used.
The primary metric employed for evaluating the performance of the models was
accuracy.

In this experiment, one-dimensional arrays of transformed fMNIST images fre-
quently contain zero sequences. This implies the new model could efficiently ana-
lyze theoretical events, leveraging its enhanced memory mechanism when handling
longterm dependencies in sequential data. As shown in Fig. 3, EB-JANET achieves
higher accuracy on the validation set, indicating that it potentially generalizes more
effectively to unseen data compared to other models. The high performance on the
test set, as shown in Tab. I, confirms the model’s ability to generalize well to un-
seen data. While the LSTM model sometimes shows competitive performance, its
training variability can cause inconsistent outcomes. Another advantage of the
EB-JANET model is its faster convergence to the optimal minimum loss compared
to other models, evident from Fig. 3, underscoring its training efficiency.
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a) L = 128 b) L = 256

c) L = 512

Fig. 3 The mean accuracy values, calculated by assessing the models on the vali-
dation set during three separate training runs, utilizing varying numbers of hidden
layer units (L).

Model L = 128 L = 256 L = 512

EB-JANET 0.9013 0.9068 0.9147
JANET (β = 0) 0.8801 0.8799 0.8856
JANET (β = 1) 0.8773 0.8833 0.8865
LSTM-chrono 0.8737 0.8778 0.8853
LSTM 0.8967 0.9065 0.9060

Tab. I The mean accuracy [%] values, calculated by assessing the models on the
test set after each of the three separate training runs, are listed in the table. The
best accuracies obtained from the experiments are presented in bold.

6.1.2 Permuted Fashion MNIST classification

The permuted Fashion MNIST (pfMNIST) dataset is a transformation of the fM-
NIST dataset, as introduced in this paper. It represents a more complex variant
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in which the pixels in every image from the fMNIST dataset have been permuted
in the same order. The labels are kept. Furthermore, each image within the pfM-
NIST dataset is also converted into a sequence of 784 individual pixels (raster of
28 × 28 pixels). The dataset is divided into a training set of 60,000 images and
a test set of 10,000 images. For the validation set, 10% of the training data was
used. The primary metric employed for evaluating the performance of the models
was accuracy.

The EB-JANET model outperforms the other models with a faster ascent to
optimum accuracy on the validation set, as detailed in Fig. 4, and demonstrates
enhanced generalization abilities on the test set, as shown in Tab. II. This exper-
iment introduces a more challenging classification task by permuting the pixels in
all images using the same order, unlike the previous one. This alteration introduces
longer-range patterns and can lead to a dispersion of characteristic shapes within
the input data. Notably, in this more intricate task, the LSTM model exhibited
fewer oscillations compared to the previous experiment.

a) L = 128 b) L = 256

c) L = 512

Fig. 4 The mean accuracy values, calculated by assessing the models on the vali-
dation set during three separate training runs, utilizing varying numbers of hidden
layer units (L).
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Model L = 128 L = 256 L = 512

EB-JANET 0.8528 0.8539 0.8552
JANET (β = 0) 0.8447 0.8456 0.8461
JANET (β = 1) 0.8287 0.8094 0.8003
LSTM-chrono 0.8317 0.8329 0.8464
LSTM 0.8445 0.8458 0.8511

Tab. II The mean accuracy [%] values, calculated by assessing the models on the
test set after each of the three separate training runs, are listed in the table. The
best accuracies obtained from the experiments are presented in bold.

6.1.3 Human activity recognition

Human activity recognition (HAR) using smartphones [42] is a challenging task
that involves classifying a person’s activity based on sensor data influenced by
their movements. The study involved participants between the ages of 19 to 48,
who were instructed to perform six distinct activities while wearing a smartphone
mounted on their waist. These activities included walking, walking upstairs, walk-
ing downstairs, sitting, standing, and laying down. The experiments were video
recorded to manually label the data with the goal of classifying the activities into
one of the six predefined categories. The dataset is partitioned, with 70% set aside
for training, and the remaining portion reserved for testing. Additionally, as part
of the training process, 10% of the training data was utilized for a validation set.
The primary metric employed for evaluating the performance of these models was
accuracy.

In this experiment, sequences in the dataset are comprised entirely of non-zero
values, indicating the presence of a single event. The question concerns whether the
memory components of the new architecture can handle long-term dependencies in
sequential data more effectively than the other models, even in scenarios involving
a single event. Consequently, EB-JANET exhibited enhanced anticipatory power
compared to JANET for both β = 0 and β = 1, and also when compared to the
LSTM-chrono model, as can be observed cumulatively in Fig. 5 and Tab. III. In
experiments with hidden layers containing 128 units, the LSTM showed slightly
better performance. However, as the number of units increased, EB-JANET dis-
played greater prediction accuracy on the test set, as shown in Tab. III.

Model L = 128 L = 256 L = 512

EB-JANET 0.9237 0.9408 0.9517
JANET (β = 0) 0.9129 0.9280 0.9282
JANET (β = 1) 0.9149 0.9212 0.9223
LSTM-chrono 0.9085 0.9196 0.9217
LSTM 0.9268 0.9279 0.9252

Tab. III The mean accuracy [%] values, calculated by assessing the models on the
test set after each of the three separate training runs, are listed in the table. The
best accuracies obtained from the experiments are presented in bold.
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a) L = 128

b) L = 256

c) L = 512

Fig. 5 The mean accuracy values, calculated by assessing the models on the vali-
dation set during three separate training runs, utilizing varying numbers of hidden
layer units (L).
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6.1.4 Time series analysis

Time series analysis involves examining and extracting insights from a series of data
points collected over a set period. In this experiment, two datasets were chosen to
give a rough idea of how the models perform in predicting trends and patterns in
similar data. Below are the abbreviations and their explanations:

• NDX: The NASDAQ-100 index consists of the top 100 non-financial compa-
nies globally, listed on the broader NASDAQ stock market, selected based on
their market capitalization. This index encompasses a diverse range of com-
panies spanning major industry sectors, including computer software, retail,
and biotechnology.

• HG=F: Copper futures are standardized contracts traded on the New York
Mercantile Exchange (NYMEX). As the third most widely used metal glob-
ally, following iron and aluminum, copper holds pivotal roles in industries
like construction and industrial machinery manufacturing.

The datasets cover four years of information up to the paper’s writing, up-
dated daily, and used for predicting closing prices based on historical trends. The
sequence lengths were standardized at 30, with a focus on predicting the next ele-
ment in the sequence. The performance of the models was evaluated using mean
squared error (MSE) as a primary metric. The models underwent testing with
hidden layer units (L) set at 16 and 32, employing a mini-batch size of 32. This
analysis provided valuable insights into the strengths, limitations, and forecasting
applicability of the models.

Across both validation sets of this experiment, EB-JANET achieves a lower
MSE and converges towards the optimal minimum faster than the other models, as
shown in Figs. 6 and 7, suggesting better generalization to unseen data. Further-
more, the analysis of evaluation results on both test datasets in this experiment,

NDX (NASDAQ-100 index)

a) L = 16 b) L = 32

Fig. 6 The mean MSE results obtained by evaluating the models on the validation
set across three independent training runs, utilizing varying numbers of hidden layer
units (L).
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as shown in Tabs. IV and V, highlights significant advantages favoring the EB-
JANET model. Similar to the prior experiment, there are no assumptions about
the number of events. This confirms that integrating the new WM mechanism im-
proves anticipatory abilities, irrespective of the input data sequence construction,
showcasing its versatility and robustness across varied situations.

Model L = 16 L = 32

EB-JANET 0.0004 0.0003
JANET (β = 0) 0.0009 0.0008
JANET (β = 1) 0.0011 0.0009
LSTM-chrono 0.0011 0.0011
LSTM 0.0008 0.0006

Tab. IV The mean MSE values, calculated by assessing the models on the test set
after each of the three separate training runs, are listed in the table. The best MSE
results results from the experiments are presented in bold.

HG=F (copper futures)

a) L = 16 b) L = 32

Fig. 7 The mean MSE results obtained by evaluating the models on the validation
set across three independent training runs, utilizing varying numbers of hidden layer
units (L).

Model L = 16 L = 32

EB-JANET 0.00028 0.00019
JANET (β = 0) 0.00084 0.00065
JANET (β = 1) 0.00093 0.00088
LSTM-chrono 0.00087 0.00081
LSTM 0.00089 0.00069

Tab. V The mean MSE values, calculated by assessing the models on the test set
after each of the three separate training runs, are listed in the table. The best MSE
results results from the experiments are presented in bold.
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6.2 Experiments – synthetic datasets

Synthetic datasets enable the testing, evaluation, and optimization of models in
controlled conditions with various variables, providing insights into how models
perform in real-world situations and how to adapt them for different challenges
and scenarios. In the subsequent experiments, the models underwent testing on
synthetic tasks designed to expose them to various perspectives, with the goal of
evaluating their performance in a wide range of scenarios and challenges. Diverse
sequence lengths were employed to ensure a comprehensive evaluation of the mod-
els’ adaptability and effectiveness. The Adam optimizer with a learning rate of
0.001 and a mini-batch size of 50 was utilized for model training, with the num-
ber of units in the hidden layer set to 128. The training set comprised 100,000
instances, while the validation set consisted of 10,000 instances, and the test set
included 40,000 instances. The number of passes of the entire training dataset
(epochs) was set to 100, with the gradient norm being clipped at a value of 5.
Additionally, a dropout value of 0.1 was applied to the output of the recurrent
layers.

6.2.1 Copying problem

The copying memory task, originally introduced in [3], represents a synthetic task
that highlights how RNN-based models manage the LTM and the ability to recol-
lect information seen in the distant past. This characteristic establishes the copy
task as a robust benchmark for evaluating RNNs in proficiently addressing long-
term dependencies within sequences [43]. The same setup as in [10] was followed,
as briefly outlined here. A = {ai}Ki=1 is a set of K symbols and S ,T ∈ N are arbi-
trarily chosen. The input embraces a T + 2S length sequence of categories, where
the first S entries need to be remember, all the while being sampled uniformly
and independently and with replacement from {ai}Ki=1. The following T – 1 inputs
are set to aK+1 and they represent a dummy or blank category. Furthermore, the
following input aK+2 indicates that the network should predict the initial S entries
of the input, and it can be considered a delimiter. The remaining S inputs are set
to aK+1. The expected output sequence consists of the T + S repeated entries
of aK+1, followed by the first S categories of the input sequence kept exactly in
the same order. The main objective is to minimize the average cross-entropy of
the predictions at each timestep of the sequence, which boils down to memorizing
a categorical sequence of the given length S for T timesteps. The most that a
memoryless model can do in the mentioned task is make a random prediction in
relation to the possible characters and imply the exact cross-entropy loss [6, 11],
depending on a defined dataset considering the aforementioned (referred to as the
baseline performance). The EB-JANET’s event buffer was initialized as U [–1, 1].
The primary metric employed for evaluating the performance of these models was
the negative log-likelihood.

Upon examining Fig. 8, illustrating evaluations of the models on the validation
dataset, it can be noted that EB-JANET performs better compared to the others,
demonstrating faster convergence and reaching a more favorable optimum. This
implies that the implemented enhancements improve the capacity to effectively ad-
dress problems characterized by extensive sequences of steps. As for the evaluation
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a) T = 200 b) T = 500

c) T = 750

Fig. 8 The mean negative log-likelihood results obtained by evaluating the models
on the validation set across three independent training runs, utilizing varying event
lengths.

on the test dataset presented in Tab. VI, EB-JANET achieves results differing by
at least an order of magnitude compared to the other models. The conventionally
initialized LSTM is inadequate in solving the copy memory problem [6,10,43].

Model T = 200 T = 500 T = 750

EB-JANET 10–6 10–6 10–6

JANET (β = 0) 10–4 10–4 10–4

JANET (β = 1) 10–4 10–3 10–4

LSTM-chrono 10–5 10–4 10–5

LSTM 10–2 10–2 10–2

Tab. VI The mean negative log-likelihood values, calculated by assessing the models
on the test set after each of the three separate training runs, are listed in the table.
The best MSE results results from the experiments are presented in bold. Due to
the differences in the results, the tabular presentation has been simplified.
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6.2.2 Partial sums problem

The partial sums problem, introduced in this paper, involves remembering non-
zero inputs in a sequence and calculating partial sums up to each non-zero element.
Four experiments were conducted for each defined sequence length, using different
event lengths. Sequences in the dataset, containing grouped non-zero values xi ∈
R[–1, 1], consistently featured 10 events. Event lengths were limited to two distinct
values (highlighted in the corresponding graphs). The objective was to assess the
models’ robustness and performance when working with zero-dense sequences and
their resilience to failures, while considering variations in result quality based on
event width and sequence length. The primary metric employed for evaluating
the performance of the models was MSE. It should be noted that the models were
unable to complete the last specified experiment in its entirety.

Through the conducted experiments, the EB-JANET and LSTM-chrono models
were able to complete the largest number of experiments, where the EB-JANET
model demonstrated the best performance in most cases, as can be visually observed
in Fig. 9. The JANET model rarely finished experiments, more often with β = 0,
but generally struggled to capture the complexity of the data and frequently failed
to finish experiments. When the sequence length was set to T = 750 or higher, and
the event length was set to 6 or more, all models experienced catastrophic failures.

Sequence length T = 200

a) Event length = 1 b) Event length = 2,3

c) Event length = 6,7 d) Event length = 9,10
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Sequence length T = 500

a) Event length = 1 b) Event length = 2,3

c) Event length = 6,7 d) Event length = 9,10

Sequence length T = 750

a) Event length = 1 b) Event length = 2,3

Fig. 9 The mean MSE results obtained by evaluating the models on the validation
set across three independent training runs, utilizing varying event lengths.
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For the test dataset, the average and tabular presentation of results are provided
for the models that successfully performed the task, as presented in Tab. VII.
Displaying individual results has been omitted due to abundance.

Model T = 200 T = 500 T = 750

EB-JANET 0.0061 0.0029 0.0003
JANET (β = 0) 0.0169 – –
JANET (β = 1) – – –
LSTM-chrono 0.0072 0.0031 0.0004
LSTM 0.0047 – 0.0004

Tab. VII The mean MSE values, calculated by assessing the models on the test
set after each of the three separate training runs, are listed in the table. Different
event lengths were experimented with for each sequence length (T), resulting in the
averaging of results. The best MSE results from the experiments are presented in
bold. The absence of data in the table is related to models that did not successfully
complete the experiment.

7. Conclusion

This research delved into human memory theory with the aim of creating an artifi-
cial neural network that mirrors these principles. It combined established memory
models and recent findings to bridge real-world and artificial methods. This paper
introduced the event buffering JANET (EB-JANET) architecture, an advanced
JANET model with a newly developed event buffer for improved handling of dy-
namic events in working memory.

A surveillance of the EB-JANET model was conducted through empirical test-
ing on a variety of datasets. By comparing EB-JANET with JANET for both
β = 0 and β = 1 values, it has been demonstrated that EB-JANET outperforms
JANET in the majority of experiments. These experiments indicate the versatility
of the EB-JANET model across various problem domains, in contrast to JANET,
which is primarily suited for a limited range of scenarios.

The secondary findings of this research indicate that EB-JANET consistently
outperforms both the LSTM and LSTM-chrono in capturing long-term depen-
dencies and effectively utilizing sequential information across nearly all conducted
experiments. While the LSTM remains widely used, the EB-JANET model, with
fewer learnable parameters, has the potential to be a better alternative to the
LSTM and LSTM-chrono models.

The study has presented EB-JANET, purposefully designed to be a relatively
psychologically plausible model, outperforming its predecessor, the JANET model.
Artificial intelligence has the potential to contribute to our understanding of the
brain and cognition, assuming the reversibility of this process. Utilizing this archi-
tecture as a memory model concept within the field of psychology could make it
easier to harmonize theory, practice, and artificial architectures. This synergistic
approach with these three elements may better tackle questions about the human
brain and memory, offering insights into unsolved mysteries of cognition.
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In terms of the development environment used in this study, Python was em-
ployed as the primary programming language. The research extensively utilized
the Keras functional API and TensorFlow within the Google Colab environment
for advanced data processing and model development.
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