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Abstract: According to BI-RADS criteria, radiologists evaluate mammography
images, and breast lesions are classified as malignant or benign. In this retrospec-
tive study, an evaluation was made on 264 mammogram images of 139 patients.
First, data augmentation was applied, and then the total number of images was
increased to 565. Two computer-aided models were then designed to classify breast
lesions and BI-RADS categories. The first of these models is the support vector
machine (SVM) based model, and the second is the convolutional neural network
(CNN) based model. The SVM-based model could classify BI-RADS categories and
malignant-benign discrimination with an accuracy rate of 86.42% and 92.59%, re-
spectively. On the other hand, the CNN-based model showed 79.01% and 83.95%
accuracy for BI-RADS categories and malignant benign discrimination, respec-
tively. These results showed that a well-designed machine learning-based classifi-
cation model can give better results than a deep learning model. Additionally, it
can be used as a secondary system for radiologists to differentiate breast lesions
and BI-RADS lesion categories.
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1. Introduction

Nowadays, breast cancer (BC) poses a severe threat to the health of the female
population [1]. Early diagnosis of breast cancer is an essential step in increas-
ing survival rates [2]. Mammography is the most recommended imaging tool for
breast screening that uses low-dose X-ray for early diagnosis [3, 5]. Radiologists
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examine the mammogram images to identify breast lesions as malignant or benign.
The Breast Imaging Reporting and Data Systems (BI-RADS) is a comprehensive
guide radiologists use to identify breast lesions. The BI-RADS terminology pro-
vides standardization of breast imaging, report organization, assessment categories,
and classification of breast lesions. Based on the level of suspicion, breast lesions
can be categorized into six BI-RADS categories: incomplete (category 0), nega-
tive (category 1), benign (category 2); probably benign (category 3), suspicious
(category 4), high probability of malignancy (category 5); and proved cancer (cat-
egory 6) [4]. A radiologist usually analyzes many mammogram images manually,
which is repetitive and prone to human error. Therefore, the process of deciding
BI-RADS categories and classifying breast lesions can be a challenging task for
radiologists. This decoding process can also lead to misinterpreted mammograms
and unnecessary biopsy rates. Computer-aided diagnostic (CAD) models can re-
duce these difficulties and assist radiologists [5]. CAD systems play an important
role in improving BC’s diagnostic performance. The main goal of such systems is
to minimize the interpretation error by diminishing the number of false positives
that lead to unnecessary biopsies. CAD systems mainly consist of machine learning
(ML) and deep learning (DL) approaches. ML approaches depend on handcrafted
feature extraction, feature selection, and classification processes. Conversely, DL
approaches extract the discriminating features automatically by a learning process
from the dataset during the training [6]. Some CAD models focus on classifying
breast lesions, while others are designed to organize BI-RADS categories [7–15].
However, as a result of the examination of the studies on the subject in the litera-
ture, it has been observed that very few studies automatically classify both breast
lesion and BI-RADS categories. In this study, two different CAD models based on
ML and DL that automatically classify breast lesions and BI-RADS categories (2,
3, 4 and 5) are proposed.

Several CAD systems have been designed to classify BI-RADS categories and
breast lesions as malignant or benign. Chokri and Farida [7] presented an ML-
based CAD model for classifying BI-RADS and mammographic breast lesions.
Twenty-three handcrafted features and multiplayer perception (MLP) are used.
Their approach showed 88.02% and 83.85% accuracy for breast lesions and BI-
RADS categories. Boumaraf et al. [8] introduced a machine-learning CAD model
for classifying BI-RADS categories (2, 3, 4, 5). The experiments were tested on
the DDSM database. They extracted 130 handcrafted features. The modified ge-
netic algorithm was used for the feature selection process A backpropagation neural
network (BPNN) is utilized for the classification process. Their suggested model
achieved 84.5% accuracy, 84.4% positive predictive value, and 94.8% negative pre-
dictive value. Tsai et al. [9] used a deep neural network (DNN) model to classify
BI-RADS categories. A public dataset was utilized for experiments. The suggested
model achieved 94.22% accuracy. Domingues et al. [10] presented a CNN model
for classifying BI-RADS categories. The experimental results showed 83.4% accu-
racy. Punitha et al. [11] used an optimized region-growing technique to segment
malignant and benign breast masses. Gray level co-occurrence matrix (GLCM)
and gray level run matrix texture features were used. The Digital Database for
Screening Mammography (DDSM) database was preferred. Feed-forward neural
network (FFNN) was used as the classification algorithm. The proposed model
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achieved 98.1% sensitivity and 97.8% specificity values. Ting et al. [12] suggested
a CNN-based model for breast lesion classifications. The presented model reached
90.5% of accuracy. Ketabi et al. [13] proposed a CAD model for differentiating
breast lesions. Histogram and GLCM methods were used for the feature extrac-
tion (FE) process. The genetic algorithm was utilized to select the optimal feature
subset. Finally, they used the support vector machine approach for the classifica-
tion process. Their classification results were 90% accuracy. Li et al. [14] suggested
an ML-based approach to predict mammographic microcalcifications’ pathological
status. A data set of 260 patients was used. 837 textures and nine geometric
features were extracted from the mammographic microcalcifications. The recur-
sive feature elimination technique was used for the feature selection process. After
the feature selection process, ten features were selected. Logistic regression (LR),
support vector machine (SVM), k-nearest neighbor (k-NN) and naive Bayes (NB)
algorithms were utilized for the classification process. The SVM algorithm achieved
80% accuracy compared to other algorithms. Stelzer et al. [15] suggested a model
using texture features and ML algorithms to detect calcifications in mammography.
A data set of 226 patients was used in the study. Two hundred forty-nine image
features are derived from the grey-value histogram, grey-level co-occurrence and
run-length matrices. The principal component analysis (PCA) was used to select
the most discriminative features. The multiplayer perceptron (MLP) was chosen
as the classification algorithm. The model proposed in the study demonstrated
the potential to reduce 37.1–45.7% of unnecessary biopsies for one false negative
per reader. Although there are separate studies on the classification of breast le-
sions and BI-RADS categories in the literature, there are very few studies that
automatically classify both breast lesion and their BI-RADS categories together.

The study is organized as follows: Some existing studies on the subjects are
summarized in Section 1. The materials and methodology are explained in Sec-
tion 2. Experimental results are described in Section 3. Section 4 summarizes the
discussion and conclusion of the study.

2. Materials and methodology

This study proposes two CAD models to classify BI-RADS categories and breast
lesions. The architecture of the proposed CAD models is presented in Fig. 1.

2.1 Study population

This study used a mammography dataset retrieved from Ankara Training and Re-
search Hospital, Department of Radiology. The Institutional Ethics Committee of
Ankara Training and Research Hospital approved this retrospective dataset. All
patients who underwent digital mammography between April 2015 and April 2020
were retrieved from the picture archiving and communication systems (PACS). Pa-
tient consent was obtained on the condition that all data were anonymized. The
inclusion criteria are (1) patients who had suspected breast lesions and accepted
digital mammography and (2) patients who were confirmed with benign and malign
breast lesions by histopathologic examinations or the ones who were confirmed with
benign lesions as a result of two years of radiological periodic follow-up. Exclusion
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Fig. 1 The framework of the suggested CAD models.

criteria were: 1) any treatment history for breast cancer before mammography
imaging and 2) poor quality of mammographic images. 3) breast lesions are not
fully displayed in craniocaudal (CC) and/or mediolateral oblique (MLO) views.

The data set consists of 264 mammogram images of 139 (mean age: 58.26
±11.96) patients in total. Data augmentation is applied to increase the number
of mammogram images to avoid overfitting [16]. During the data augmentation
process, the images were not shifted (no matter vertically or horizontally). Because
it was thought that the shifting process would affect the tumour tissue positionally
and cause errors. Only 60° angle rotation and zoom operations are performed.
After the data augmentation process, the dataset consists of 565 images. Tab. I
shows the number of benign, malignant, and BI-RADS category samples before
and after the data augmentation.

Samples Before augmentation After augmentation

Benign 103 256
Malign 161 309

Total 264 565

2 30 80
3 21 73
4 76 215
5 137 197

Total 264 565

Tab. I The number of breast lesions and BI-RADS categories.
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Turk F., Akkur E., Eroğul O.: BI-RADS categories and breast lesions classification. . .

The dataset is randomly divided into training, validation, and test data, illus-
trated in Tab. II.

Samples Training Validation Testing

Benign 194 30 32
Malign 212 48 49

Total 406 78 81

2 57 11 12
3 53 10 10
4 149 32 34
5 147 25 25

Total 406 78 81

Tab. II The training, validation, and testing samples.

2.2 Image preprocessing

Mammogram images contain many artefacts, pectoral texture, and inference noise
that affect the clarity of the images and cause false positive rates. Image prepro-
cessing is a crucial step to improve the performance of CAD models [17]. First,
unwanted areas are cut off, and the image is cropped (this step is performed with the
img.crop parameter). During the image preprocessing phase, image.enhancement
functions in the Python OpenCV library were used. Brightness and contrast pa-
rameters have been improved by 1.5, respectively. Then, while the size of the
original mammogram images was 3584 × 2816, unnecessary areas (black areas on
the image that did not contain tissue samples) were removed. The image was then
cropped by setting the resolution to 224 × 224. Thus, faster training aimed to re-
duce the workload in the deep learning phase. Some sample images of the datasets
before and after image processing are shown in Fig. 2.

Fig. 2 The framework of the suggested CAD models.
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The original images are presented in gray color on the official website. We took
them as they are. Then, we applied image processing steps such as sharpness,
blurriness and brightness with ready-made functions in the OPENCV library in
Python. Finally, we colored the gray image with the “cvtColor” function in the
OPENCV library so that the texture and lesion differences on the image could be
seen better.

2.3 SVM CAD model

The flowchart diagram of the SVM-based CAD model, which is the first model to
classify BI-RADS categories and breast lesions, is shown in Fig. 3. The model starts
with the segmentation process applied to determine the region of interest (ROI).
The first step of the segmentation process is cropping the region where the breast
lesion is located and removing unnecessary areas. Depends on mammography im-
ages and their corresponding ROI integrated with three categories. A total of 127
features, including 16 geometric and texture features, which are 15 histograms, 52
gray level co-occurrence matrix (GLCM) and 44 gray level run matrix (GLRM),
were extracted for each ROI [18–20]. GLCM and GLRLM features were computed
for 0°, 45°, 90° and 135° directions for each ROI [16]. The extracted features are
stated in Tab. III.

The next stage is the feature selection process. The least absolute shrinkage
and selection operator (LASSO) regression is used to select the most discriminant
features in the training dataset. 10-fold cross-validation and λ (standard error of
the minimum mean-square error criteria) are preferred to choose optimal features
for LASSO. Then, corresponding λ values are computed. The features with zero
coefficient are eliminated, and the remaining values of λ (non-zero coefficient) are
determined useful [21,22]. After the feature selection process, the ML classification
model starts. As an ML, the SVM algorithm is used for regression and classification

Fig. 3 The suggested machine learning-based CAD model architecture.
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Methods Features Dimensions

Geometric Area, perimeter, max. radius, min. radius, euler
number, eccentricity, solidity, entropy, equivalent
diameter, elongatedness, circulation 1, circulation
2, compactness, dispersion, thinness ratio, shape
index

16

Histogram Mean, standard deviation, variance, smoothness,
mean absolute deviation, skewness, kurtosis, min-
imum, maximum, 10th percentile, 90th percentile,
interquartile range, range, root mean square, me-
dian

15

GLCM Contrast, correlation, energy, entropy, homogene-
ity, sum of square and mean, sum of variance and
entropy, difference variance and entropy, informa-
tion measure of correlation 1 and 2

52

13 values were obtained for each corresponding to
the four directions (0°, 45°, 90°, 135°)

GLRM Short run and long run emphasis, gray-level and
run length nonuniformity, run percentage, short
run low and short run high gray-level run empha-
sis, long run low and long run high gray-level run
emphasis, low gray-level and high gray-level run
emphasis

44

11 values were obtained for each corresponding to
the four directions (0°, 45°, 90°, 135°)

Total 127

Tab. III The extracted features.

processes. The algorithm classifies the data by finding the best hyperplane that
separates one class from the other classes [23]. The SVM algorithm includes hyper-
parameters such as kernel function (KF), box constraint level (BCL), and kernel
scale (KS). Hyperparameter optimization is used for the algorithm to achieve the
best performance for the data. Bayesian optimization method is used in this study.
Bayesian optimization automatically sets the hyperparameters of SVM. This algo-
rithm is a practical approach for parameter search and is a black-box optimization
technique. The algorithm builds a probabilistic model by selecting a prior prob-
ability distribution over the optimized function. Then, it combines with sample
information to obtain a posterior function. The algorithm’s work depends on an
iterative Gaussian process [24]. The suggested optimized SVM algorithm is imple-
mented in MATLAB using the Statistical and Machine Learning Toolbox [25]. The
setting of hyperparameters for SVM is shown in Tab. IV.
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Algorithm Hyperparameters Search range

KF Gaussian, linear, quadratic, cubic
SVM KS [0.001–1000]

BCL [0.001–1000]

Tab. IV The setting of hyperparameters of SVM.

2.4 CNN-based CAD model

The second suggested CNN-based CAD model is a convolutional neural network
that classifies BI-RADS categories and breast lesions. CNN is one of the popu-
lar deep neural networks used in classifying images, object detection and image
recognition. It comprises three layers: convolution, pooling, and fully connected.
FE has been performed in the convolutional layer by applying suitable filters. A
pooling layer is used to reduce the dimensionality of feature spaces. A pooling
layer is used to reduce the dimensionality of feature spaces. The higher-level fea-
tures are extracted in fully connected (FC) layers with a corresponding weight.
These achievable features are processed to classify according to output categories
corresponding to the original input [26]. Fig. 4 illustrates the architecture of the
suggested CNN model. The input image is given to the models as 224 × 224 and
goes through 4 convolutional layers. Convolution is performed with 5× 5 filters in
the first two layers and 3 × 3 filters in the next layers. From this stage onwards,

Fig. 4 The suggested deep learning-based CAD model architecture – CNN-based
model structures for BI-RADS and breast lesion classification.
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max-pooling and dropout layers are used while moving from each layer to the next.
After the four convolutional layers, two dense layers were added. The soft-max
function is used for classification. An activation function is utilized to reduce the
feature dimension, and ReLU was used as an activation function. Adam Optimizer
was used for optimization.

Tab. V shows the layer structures, output sizes, and parameter numbers for
breast lesions and BI-RADS categories classifications. Output shape can have 2
or 4 classes (benign-malignant, or multi-class). The param expression shows the
mathematical values of the row, column and depth expressions of the matrices
created according to the size of the images through the CNN model. Since the
input size of the first image is not important on the model, the input size can be
taken as “none”. Both architectural structures start with a 2D convolutional layer
and continue with a 2 × 2 filter, max pooling and 0.1 dropout layer, respectively.
This process was carried out with four block layers (conv2D, max pooling, dropout).
Then, the architecture is finalized by flattening with a flattened layer (conversion
to a one-dimensional matrix) and returning the desired output with a dense layer.
The last dropout layer applies a 0.2% simplification. It should be noted that only
the number of classes in the previous drizzle layer of the architectures is different.
This situation has been planned in this way to facilitate the application.

Layer type Output shape (2/4 class) Number of parameters

Conv2D 1 (None, 224, 224, 32) 896
Maxpooling 1 (None, 112, 112, 32) 0
Dropout 1 (None, 112, 112, 32) 0
Conv2D 2 (None, 112, 112, 64) 18496
Maxpooling 2 (None, 56, 56, 64) 0
Dropout 2 (None, 56, 56, 64) 0
Conv2D 3 (None, 56, 56, 128) 73856
Maxpooling 3 (None, 18, 18, 128) 0
Dropout 3 (None, 18, 18, 128) 0
Conv2D 4 (None, 18, 18, 256) 295168
Maxpooling 4 (None, 6, 6, 256) 0
Dropout 4 (None, 6, 6, 256) 0
Flatten 1 (None, 9216) 0
Dense 1 (None, 64) 589888
Dropout 5 (None, 64) 0

Dense 2 (None, 2) 130
Dense 4 (None, 4) 130

Tab. V The layer structures, output sizes, and parameter numbers for breast lesions
and BI-RADS categories classifications.
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3. Experimental results

The suggested CAD models are examined according to the two different scenarios
using different evaluation measures. The presentation and analysis of experimental
results are shown in this section. Four evaluation metrics—accuracy, precision,
recall and F-score were utilized.

3.1 First scenario — BI-RADS classification

The BI-RADS categories are classified as SVM and CNN-based models in the first
scheme. The classification of results is shown in this section. The results are shown
in terms of the test dataset.

3.1.1 SVM model results

Tab. VI shows the selection features after using the LASSO feature selection pro-
cess. After the feature selection process, 15 discriminant features (6 geometric, 3
histograms, 3 GLCM and 2 GLRM) remained for the classification of BI-RADS
categories.

Feature Feature type

Eccentricity Geometric
Entropy Geometric
Compactness Geometric
Dispersion Geometric
Thinness ratio Geometric
Shape index Geometric
Mean Histogram
Std. deviation Histogram
Skewness Histogram
Sum of square (0° degree) GLCM
Sum of square (45° degree) GLCM
Difference variance (0° degree) GLCM
Run length nonuniformity (0° degree) GLRM
Run percentage (0° degree) GLRM
Run percentage (90° degree) GLRM

Tab. VI The most discriminant features for BI-RADS classification.

The confusion matrix and the performance matrix of the SVM algorithm for
BI-RADS classification are presented in Tab. VII and Fig. 5. 70 of 81 breast lesions
are correctly classified in their BI-RADS classes. The overall accuracy is 86.42%,
and the classification results for each BI-RADS category (2, 3, 4, 5) are 95.06%,
91.36%, 91.36% and 95.06%.
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Fig. 5 The confusion matrix of the SVM algorithm.

Class Accuracy [%] Precision [%] Recall [%] F1-score [%]

BI-RADS-2 95.06 83.30 83.30 83.30
BI-RADS-3 91.36 70.00 63.60 66.70
BI-RADS-4 91.36 85.30 93.50 89.20
BI-RADS-5 95.06 96.00 88.90 92.30

Overall acc. 86.42

Tab. VII Performance metrics of the SVM algorithm.

3.1.2 CNN-based model results

The confusion matrix and the performance matrix of the CNN algorithm for
BI-RADS classification are presented in Tab. VIII, and Fig. 6. 64 of 81 breast
lesions are correctly classified in their BI-RADS classes. The overall accuracy is
79.01%, and the classification accuracy results for each BI-RADS category (2, 3, 4,
5) are 88.9%, 91.36%, 84% and 93.08%.

3.2 Second scenario — breast lesion classification

For breast lesion classification as malignant or benign, SVM and CNN-based models
are performed, respectively. The results are demonstrated in terms of the testing
dataset.
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Fig. 6 The confusion matrix of the CNN algorithm.

Class Accuracy [%] Precision [%] Recall [%] F1-score [%]

BI-RADS-2 88.90 66.70 61.50 64.00
BI-RADS-3 91.36 70.00 63.60 66.70
BI-RADS-4 84.00 79.40 81.80 80.60
BI-RADS-5 93.80 88.00 91.70 89.80

Overall acc. 79.01

Tab. VIII The confusion matrix and the performance matrix of the CNN algo-
rithm.

3.2.1 SVM model results

Tab. IX shows the most discriminant features after using the LASSO feature se-
lection process. After the feature selection process, 11 discriminant features (2
geometric, 4 histograms, 2 GLCM and 3 GLRM) remained for breast lesion classi-
fication.

The confusion matrix and the performance matrix of the SVM algorithm for
breast lesion classification are presented in Tab. X and Fig. 7. 75 of 81 breast lesions
are classified correctly, and 3 misclassifications are performed for each malignant
and benign lesion. The SVM algorithm showed an overall accuracy rate of 92.59%.

3.2.2 CNN-based model results

The confusion matrix and the performance matrix of the CNN algorithm for breast
lesion classification are presented in Tab. XI and Fig. 8. 68 of 81 breast lesions are
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Fig. 7 The confusion matrix of the SVM algorithm.

Fig. 8 The confusion matrix of the CNN algorithm.
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Feature Feature type

Compactness Geometric
Thinness ratio Geometric
Mean Histogram
Std. Deviation Histogram
Skewness Histogram
Kurtosis Histogram
Sum of square (0° degree) GLCM
Difference entropy(0° degree) GLCM
Run length nonuniformity (0° degree) GLRM
Run percentage (0° degree) GLRM
Run percentage (90° degree) GLRM

Tab. IX The most discriminant features for breast lesion classification.

Class Accuracy [%] Precision [%] Recall [%] F1-score [%]

Benign 92.59 90.60 90.60 90.60
Malign 92.59 93.90 93.90 93.90

Overall acc. 92.59

Tab. X The performance matrix of the SVM algorithm.

Class Accuracy [%] Precision [%] Recall [%] F1-score [%]

Benign 83.95 78.80 81.30 80.00
Malign 83.95 87.50 85.70 86.60

Overall acc. 83.95

Tab. XI The performance matrix of the CNN algorithm.

classified correctly. 6 benign cases and 7 malignant cases were incorrectly classified.
The overall accuracy obtained using the CNN model is 83.95%.

3.3 Comparison of the results of SVM and CNN-based CAD
models for BI-RADS categories and breast lesions

Fig. 9 presents the classification accuracy rates for each BI-RADS category obtained
using the SVM and CNN models. Except for the BI-RADS 3 category, the SVM
model gives better results than the CNN model for all other categories (2, 4, 5).
SVM and CNN models show the same accuracy value for the BI-RADS 3 category.

The overall accuracy rates for all BI-RADS categories using CNN and SVM
models are shown in Fig. 10. With an 86.42% accuracy rate, the SVM model offers
a better classification rate than the CNN model with 79.01% accuracy.
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Fig. 9 The classification accuracy rates for each BI-RADS category were obtained
using the SVM and CNN models.

Fig. 10 The overall accuracy rates for all BI-RADS categories using CNN and
SVM models.

The results of classifying breast lesions as malignant or benign using CNN and
SVM models are shown in Fig. 11. When the results of SVM and CNN were com-
pared, the SVM model with 92.59% accuracy showed a better classification rate.

Fig. 12 shows the ROC analysis of the test results of the proposed CNN model
and the SVM algorithm. It is possible to conclude that the models are success-
ful since they are beyond the green line area. However, the SVM based model
outperformed.

Fig. 13 shows mammogram images misclassified in differentiating malignant
and benign breast lesions and classifying breast lesions in the BI-RADS categories.
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Fig. 11 The results of classifying breast lesions as malignant or benign using CNN
and SVM models.
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Fig. 12 Comparison of ROC analysis results.

Here, true class refers to the data belonging to classes that are previously known
to be true, and predicted class refers to the results of the classes that are predicted
by our model.

4. Discussion and conclusion

According to the BI-RADS guidelines, BI-RADS 2 shows a high probability of
benign lesions, BI-RADS 3 defines the probability of benign lesions, BI-RADS 4
illustrates suspicious lesions, and BI-RADS 5 describes a high probability of ma-
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Turk F., Akkur E., Eroğul O.: BI-RADS categories and breast lesions classification. . .

Fig. 13 Misclassified mammogram images (SVM testing result).

lignant lesions. In clinical practice, differentiating between malignant and benign
breast lesions and classifying breast lesions of BI-RADS categories are complicated
tasks for radiologists due to individual differences in breast density and daily work-
load. When the images are examined, it is seen that it is difficult to predict the
BI-RADS categories and malignant/benign classification of breast lesions with the
naked human eye. Therefore, using CAD systems is very useful to assist radiologists
in decision-making.

This study aims to provide a practical approach to BI-RADS categories and
breast mass malignancy classification. For this purpose, SVM-based and CNN-
based CAD systems are designed. Both the CNN and SVM models are uniquely
designed in terms of their architectural structures and principles of use. These pro-
posed models may provide a new systematic perspective in breast cancer diagnosis.
Comparing the classification rates obtained by the two proposed systems for the
classification of BI-RADS categories and malignant-benign discrimination, it can
be seen that the SVM-based system has a better classification rate. This study
demonstrates that ML methods are still a popular choice for classification tasks
and can be utilized as an alternative to deep learning, particularly in the medical
field.

Tab. XII compares the model presented in this study and similar studies in
the literature. There are separate studies in the literature that classify BI-RADS
and mass malignancy. However, there are very few studies that automatically
classify both breast lesion and BI-RADS categories together. In addition, studies
in the literature often use publicly available datasets rather than clinical datasets.
Therefore, this study is valuable because it uses clinical data. When compared to
studies in the literature, the model presented in this study achieved 86.42% and
92.59% accuracy rates with the SVM model and 79.01% and 83.95% accuracy rates
with the CNN model in both BI-RADS category classification and mass malignancy
classification.
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Ref Task Dataset Methods Accuracy [%]

[7] BI-RADS classification DDSM MLP 88.02
Mass malignancy classification 83.85

[8] BI-RADS classification DDSM BPNN 84.50
[9] BI-RADS classification A public dataset DNN 94.22
[10] BI-RADS classification InBreast CNN 83.40
[11] Mass malignancy classification DDSM FFNN 98.10 (sensitivity)
[12] Mass malignancy classification A public dataset CNN 90.50
[13] Mass malignancy classification DDSM SVM 90.00
[14] Microcalcification classification A public dataset SVM 80.00
[15] Microcalcification classification A public dataset MLP 82.00
Our BI-RADS classification A public dataset SVM 86.42
study Mass malignancy classification 92.59

Tab. XII Classification results within the present study are compared with the
related studies.

It is expected that deep learning algorithms will have a higher classification
rate than machine learning algorithms in general. Due to the small-scale dataset
used in our study, the SVM-based model outperformed the CNN-based model in
terms of classification rate. Based on this information, it is possible to conclude
that SVM or other machine learning methods can yield better results than deep
learning algorithms in small-scale data sets. Larger volume datasets are needed for
deep learning algorithms.

It is clear from the experimental results that the suggested SVM-based model
can be utilized to classify breast lesions and their BI-RADS categories. In this way,
it is thought that the proposed SVM-based model will contribute to the clinical
process in the hospital. Designing a diagnostic tool for BC is a significant task since
BC threatens many women. Therefore, we believe that the proposed SVM-based
CAD model can be considered an auxiliary system for radiologists in classifying
breast lesions with high classification rates.
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