AN EVOLUTIONARY FAULT INJECTION
SETTINGS SEARCH ALGORITHM FOR
ATTACKS ON SAFE AND SECURE
EMBEDDED SYSTEMS

E. Pozzobont N. Weifst J. Mottok: V. Matousek'

Abstract: In this paper, we present a novel method for exploiting vulnerabilities in
secure embedded bootloaders, which are the foundation of trust for modern vehicle
software systems, by using a genetic algorithm to successfully identify the correct
parameters to perform an electromagnetic fault injection attack. Specifically, we
demonstrate the feasibility of code execution attacks by leveraging a combination
of software and hardware weaknesses in the secure software update process of elec-
tronic control units (ECUs), which is standardized across the automotive industry.
Our method utilizes an automated approach, eliminating the need for static code
analysis, and does not require any hardware modifications to the targeted systems.
Through our research, we successfully demonstrated our attack on three distinct
ECUs from different manufacturers used in current vehicles. Our results prove that
the use of a genetic algorithm for finding the fault parameters reduces the num-
ber of attempts necessary for a successful fault to obtain arbitrary code execution
via “wild jungle jumps” by approximately 100 times compared to a naive random
search.

Key words: fault injection, security, genetic algorithm

Received: April 28, 2023 DOTI: 10.14311/NNW.2023.33.020
Revised and accepted: October 25, 2023

1. Introduction

Modern vehicles possess a unique threat landscape, distinct from that of other
connected devices. Vehicles are vulnerable to attacks from individuals with physical
access to the system, such as in the case of car thefts or chip-tuning activities. These
scenarios are particularly relevant in the real world, as evidenced by statistics on car
thefts, and are driven by the existence of a market for stolen cars and components
or chip-tuning software [4].

*Enrico Pozzobon — Corresponding author; Nils Weif; Jiirgen Mottok; University of Applied
Sciences in Regensburg, Germany, E-mail: enrico.pozzobon,nils2.weiss, juergen.mottok@oth
r.de

TVéclav Matousek; University of West Bohemia in Pilsen, Faculty of Applied Sciences, Czech
Republic E-mail: matousek@kiv.zcu.cz

©CTU FTS 2023 357

mailto:enrico.pozzobon,nils2.weiss,juergen.mottok@othr.de
mailto:enrico.pozzobon,nils2.weiss,juergen.mottok@othr.de
mailto:matousek@kiv.zcu.cz

Neural Network World 5/2023, 357-374

One popular form of physical attack against microcontrollers is the use of fault
injection (FI) techniques, which have become increasingly accessible with the ad-
vent of inexpensive hardware setups. This paper focuses on a specific type of FI
attack known as wild jungle jumps, which involve the manipulation of program
counters to achieve code execution at arbitrary memory addresses [3].

1.1 Safe and secure microcontrollers

In many modern vehicles, security trust anchors are built with safe and secure mi-
crocontrollers, such as the MPC57xx series from NXP. Therefore, the manufacturer
equipped them with a feature set rich of security functions and a dedicated embed-
ded hardware security module (HSM) core. A wide range of security functionality
allows high protection of the internal flash memories and debug interfaces of these
Processors.

1.2 Secure software-update process of ECUs

A simplified software update process of non-volatile memories in automotive control
units, based on ISO 14229-1:2020 [6, p. 374], is shown by Fig. 1. ISO 14229-
1:2020, also called unified diagnostic services (UDS), is the standard protocol for
software updates in automotive systems and is used by most original equipment
manufacturers (OEMs) and suppliers in the world.

A simple challenge-response “Security Access” criptographic algorithm is used
to enter the programming mode, which can be passed using (or reverse engineering)

Start Update
Process

Authenticate with
Security Access

Y

Erase
Memory

Y

Transfer Flash-Data

Y

Verify
Flash-Data

Update
finished

Fig. 1 Typical flow chart for a secure software-update procedure of mon-volatile
memory, following the ISO 14229-1:2020 standard [6, p. 374].

A

358

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

a repair shop tool. The main security measure against malicious code execution is
the authentication of the firmware update binary via asymmetric cryptography.

A small portion of the flash memory is reserved for a read-only bootloader which
is responsible for the update process, while the majority of the flash is used for the
main application. When the main application is updated, the update service will
erase the main application portion of the flash, flash the signed binary received over
UDS, and verify its authenticity via asymmetric cryptographic authentication.

If the received binary is deemed authentic, it will be marked as executable
and it will be executed on every successive boot. If the received binary was not
authenticated, it will not be marked as executable and erased during the next
attempted firmware update. Crucially, if the received update is not authentic,
the electronic control unit (ECU) will remain in a state where it can not operate
normally until a signed firmware updates is received.

1.3 Structure of this paper

This paper is structured as follows. Section 2 states related work in the area of
embedded and automotive security, focusing on fault injection attacks. Section 3
summarizes our contributions. The used test setup and our target ECUs are intro-
duced in Section 4. Section 5 explains information-gathering possibilities through
fault injection attacks on black box targets. A novel fault search algorithm is pre-
sented in Section 6. Section 7 describes vulnerabilities introduced by fault injection
attacks and demonstrates the exploitation of secure automotive bootloaders in real-
world targets. Section 8 discusses the application of the presented attack and the
fault search algorithm to different ECUs and instruction set architectures (ISAs).
Section 9 concludes this paper.

2. Related work

In the paper “BAM BAM!! On reliability of electromagnetic fault injection (EMFT)
for in-situ automotive ECU attacks [11]”, the author performs an EMFT attack tar-
geting the boot assist module (BAM) present in older versions of the Freescale/NXP
PowerPC microcontrollers. More recent models of PowerPC microcontroller units
(MCUs) from the same manufacturers make use of a boot assist flash (BAF) module
instead, which is re-writable and thus vulnerable flash code there can be patched,
so the attack does not affect these newer controllers.

Wiersma and Pareja [15] demonstrated an attack against the device configura-
tion (DCF) system of recent PowerPC MCUs next to an analysis of the resilience
of MCUs for safety-critical applications against fault injection attacks. Instead of
attacking the DCF system, this paper targets automotive bootloaders to broaden
the number of affected targets.

Wouters et al. [16] demonstrated voltage glitching on internal bootloaders of
microcontrollers used in immobilizer systems. Through their attack, they could
obtain the internal firmware and identified several security flaws in the immobilizer
systems of major car manufacturers such as Toyota, Kia, Hyundai, and Tesla. Our
work uses a different fault injection methodology and targets german car manufac-
turers instead.

359

Neural Network World 5/2023, 357-374

Attacks against internal bootloaders of three different MCUs were demonstrated
and summarized by Van den Herrewegen et al. [14]. The researchers performed
static and dynamic analysis and documented the first multi-glitch attack on a real-
world target.

Nasahl and Timmers used glitching attacks on an evaluation setup to obtain
code execution on an AUTOSAR-based demonstration ECU [10]. By leveraging
fault injection weaknesses in the ARM ISA they could corrupt a memcpy operation
to perform a jump into writable RAM memory. We want so show that EMFT is
effective against other architectures too.

Maldini et al. [9] applied genetic algorithm to EMFI on a pinata target board,
with the intention of breaking the WolfSSL implementation the SHA-3 algorithm,
successfully showing the advantage of using genetic algorithms for this purpose.
We aim to present similar results in a real world target rather than a developer
board.

Carpi et al. [2] applied genetic algorithm to VCC fault injection, which presents
a smaller search space than EMFT because the it is not affected by the spatial
position of the injection tool.

3. Contribution
In this paper,

e we present a nowvel algorithm (called EFISSA) using a feedback-channel to
efficiently estimate which glitch parameters cause so-called wild jungle jumps,

e we show the performance of this algorithm on PowerPC (PPC) — and ARM-
based automotive processors for safety-critical applications,

e we demonstrate the application of this algorithm through the ezploitation
of three different secure bootloaders in real-world ECUs, following the ISO
14229-1:2020 standard [6],

The presented attack gains code execution through fault injection without the
requirement of binary analysis or reverse engineering and can be applied fully
automated to black box real-world targets.

This paper documents successful exploitation of program-counter glitches on
PowerPC architectures, for the first time. Our novel algorithm makes wild jungle
jumps applicable on real-world targets. Until now, wild jungle jumps were only
exploitable in laboratory environments and considered impossible in practice [13].

4. Test setup

A test setup was built to perform the fault injection tests on real-world target
ECUs and on an ARM-based evaluation board. The chosen technique was EMFI
because it does not require any hardware modification of the target, so an exploited
target is visually indistinguishable from an unaltered ECU, which is desirable from
the attacker’s point of view.

360

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

In any fault injection method, several parameters can be altered for a fault,
which constitutes the search space for the successful attack parameters. For finding
the correct parameters, it is important to be able to automate the setup, so that
the entire parameter search algorithm can be executed without human interaction.
In an EMFT attack, the main parameters are the following:

e Injection coil (shape, size, number and direction of turns),
e Position in space of the injection coil,

e Duration of the activation of the coil,

Voltage across the coil,

Time offset from trigger signal (if the target firmware has deterministic exe-
cution time, this is equivalent to choosing which instruction to attack).

In our test setup, the setting of every one of these parameters could be au-
tomated, except for the injection coil, which must be changed manually. Another
advantage of having an automated test setup is to parallelize the attack to multiple
ECUs at the same time by building multiple setups.

To reduce the manual work necessary, we only performed our tests with two
coils included in the ChipSHOUTER kit: a 1 mm diameter core clockwise wound
coil, and a 1 mm diameter core counter-clockwise wound coil.

4.1 Description of the test setup

The hardware test setup for the collection of the data necessary for the attack is
shown in Fig. 2 and composed of the following items:

e USB-to-CAN — for controller area network (CAN) communication with the
target

e USB-to-UART - for receiving debug logs from the target over a universal
asynchronous receiver-transmitter (UART) connection

e ChipSHOUTER — for injection of the electromagnetic fault

e computer numerical control (CNC) mill — for manipulating the position where
the electromagnetic fault is injected

e [CEBreaker field-programmable gate array (FPGA) board — for consistently
triggering the glitch on a specific CAN message, and manipulating the timing
of the electromagnetic fault

o Keysight E36313A power supply — for power-cycling the ECU between at-
tempts

The target ECU is placed on the CNC mill bed and the CNC mill drill is replaced
with an electromagnetic pulse (EMP) injection tip connected to a ChipSHOUTER,
which allows to place the injection tip in any position above the target MCU with a
precision of +0.01 mm. The diagnostic CAN interface of the ECU is connected via

361

Neural Network World 5/2023, 357-374

Trigger FPGA

PC EMP Generator

: Programmable

(ChipShouter) Power Supply

R CNC —
B0 0SS 000000000 00N 00

CAN bus

Fig. 2 Diagram of our automated test setup.

a CAN bus to the control computer, and an FPGA is also connected to the same
bus via a CAN transceiver to listen for a specific CAN frame and emit a trigger
signal with a configurable delay and duration. The programmable power supply is
used to power-cycle the ECU when necessary. Finally, a USB-to-UART adapter is
used to collect feedback data from the target ECU.

The specific components of the test setup were chosen because they were either
readily available in a laboratory environment or cost effective to purchase. To
build a cheaper setup that can easily scale, the ChipSHOUTER can be replaced
with a ChipSHOUTER-PicoEMP [12] and the programmable power supply can be
replaced with a simple 12V wall adapter and a relay.

The software used to control the setup was written in the Python programming
language, using Scapy for the CAN and UDS communication [1]. A PostgreSQL
database is used for logging and data analysis.

Exploit code as well as example code on the target was written in C, PPC and
ARM assembly and compiled using the powerpc-eabivle-gcc and arm-none-eabi-gcc
toolchains.

4.2 Target description

The initial target chosen for this attack was an ECU that makes use of an MPC5748G
MCU, with a locked joint test action group (JTAG) debug interface. The target
MPC5748G MCU is used in several ECUs by different manufacturers. The UART
logs emitted by the target ECU contain stack traces whenever an exception inter-
rupt is called, including the values of all general-purpose registers and some special
registers. Later on, the attack was tested successfully on different ECUs from other
manufacturers, some of which did not have UART logging.

Since the communication interface used by the repair shop hardware to flash the
target ECU is CAN, the test setup was built so that the trigger for the glitch would

362

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

be derived from a specific CAN frame. The glitch is triggered after the last ISO
15765-2 transport protocol (ISOTP) consecutive frame of a TransferData UDS
request but before the corresponding response, as seen in Fig. 3 [5]. This specific
trigger attempts to inject the glitch during the processing of the TransferData
UDS request.

Response

Request e ety il
Trigger

Fault

Fig. 3 A snapshot of the oscilloscope screen during a fault injection attack. The
yellow line represents the CAN protocol, and shows the request and response ISOTP
messages. The magenta line is the trigger from the FPGA, which detected the
searched CAN frame. The blue line shows the voltage spike sent to the EMFI coil.

5. Information gathering

This section describes our information gathering process and enhancements of in-
formation leakage by using fault injection attacks.

The target MCU takes interrupts whenever an exception is generated, begin-
ning the execution of the corresponding interrupt service routine (ISR). Exceptions
are generated by signals from internal and external peripherals, instructions, the
internal timer facility, debug events, or error conditions.

On the target ECU, ISRs associated to exception interrupts are programmed
to output a stack trace over the UART interface and then resetting the MCU. The
emitted stack traces contain all the general purpose registers, several special use
registers, and the list of the addresses of the functions that are currently on the
execution stack. The special registers machine check status register (MCSR) and
exception syndrome register (ESR) are also emitted in the stack traces, which con-
tain bit-masks detailing what kind of exception was generated to give information
about the cause of the exception.

When a fault is injected, an exception may be generated and, if that happened,
the corresponding interrupt will be taken, causing the processor to start executing

363

Neural Network World 5/2023, 357-374

the associated ISR. The values of ESR and MCSR, can then be used to determine
which exception was caused by the fault.

As illustrated in Fig. 3, the fault was injected during the time interval between
when a UDS request was sent and the response was received. In this situation, one
of the following outcomes can happen whenever a fault is injected:

e Nothing anomalous happens and the correct UDS response is received.

e An undetected mistake is generated, causing a corrupted UDS response to be
received and/or an unexpected message on the UART log.

e An exception is generated, and the processor emits a stack trace and the
MCU resets.

e No stack trace is emitted and the MCU resets.

6. Fault search algorithm

Under specific conditions, the injection of a fault in the target core can result in
a disruption of the execution flow and an unintentional branch to unsigned code.
This phenomenon typically arises from an undetected memory read error during
instruction fetch, which subsequently corrupts to an instruction that alters the
program counter, either directly or indirectly through manipulation of the link
register or stack pointer.

In general, it is possible to randomly inject faults until one just happens to
affect the program counter in just the desired way. However, the search space for
the parameters of injected faults is quite large and a random search algorithm for
the right parameters can take from a few hours to months depending on the target
processor and the rate at which faults can be generated.

6.1 Definition of the search space

The search space of all the possible faults that can be injected with our setup cor-
responds to the multi-dimensional space (z,y, 2, ¢, 4, t, d) defined by the parameters
described in Section 4:

e (z,y,2): position of the coil in space

e c: coil used

e i: intensity of the fault (current through the coil)
e t: duration of the fault

e d: time offset from trigger

In addition to the above-mentioned parameters, the input data sent to the
target device before the injection also affect the state at the moment of the attack,
so the memory state m of the target should also be considered as part of the search
space for a fault.

364

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

BGA256 Package

silicon die No effect

E € €
£ Es Es
> N -
4 4
2 2
-2 0 0
25 50 75 100 125 0 2 4 6 8 10 12 0 2 4 6 8 10 12
x [mm] x [mm] x [mm]
2 Unexpected response Reset without stack trace Reset with stack trace

p=0.0089

p=0.9064 p=0.3311

10
E n €
E E
> -

2
x [mm] x [mm] x [mm]
Instruction Fetch Error Load Error

Store Error
p=0.3311

y [mm]

x [mm] x [mm]

x [mm]

Illegal Instruction Alignment Exception

ump to Payload
1 Jump Y|

p=0.0017

10 10 10

Fig. 4 Sensitivity of the different areas of the MPC574/8G MCU package to the
fault with respect to different errors. These images were drawn from the dataset X
unbiased data with random and uniformly distributed fault parameters, using the
1mm core diameter counter-clockwise wound coil. p indicates the probability of a
fault for the 0.5 mm x 0.5 mm area pointed by the white arrows, which is the highest
probability in the relative image.

365

Neural Network World 5/2023, 357-374

A subset of the parameters (z,y, z,¢,i,t) are only tied to the hardware of the
target processor and do not depend on what software the target is running. Only
the time of injection (o) after the trigger signal and the memory state (m) of the
target is dependent on the particular application the target is running.

Our objective is to build an algorithm that finds the correct fault parameters
by continuously generating new parameters, testing them on the target, and using
the stack traces received from the target to refine them.

It is not guaranteed that stack traces will be enabled or present on the target,
but it is usually possible to purchase an identical microcontroller to the one used
on the target and flash it with an example program with stack traces enabled, thus
creating a “test dummy”. By using the same search algorithm on the test dummy,
it is possible to find at least the correct parameters that are tied to the hardware,
thus leaving a much smaller search space when it comes to performing the attack
on the real target. Ideally, such a test dummy would be created by using the same
exact MCU package and printed circuit board (PCB) as the real target to reduce
the possible differences between the real target and the test dummy to a minimum:
a valid option here is purchasing a malfunctioning ECU and replacing the MCU
with a new blank one to use as a test dummy.

6.2 Overview of the algorithm

Given the input & = (z,y, 2, ¢, i, t, d, m) being the parameters of the fault, our glitch
setup will return some output feedback b received from the target, containing for
example the UART log and/or the UDS response. This output feedback is to be
parsed by a reward function f(b) which will assign it a numerical rating r depending
on how desirable the result was. For example, causing the target to reset with a
stack trace is more desirable than a reset without a stack trace, so the former case
will be assigned a higher rating than the latter. This is reasonable because a reset
without a stack trace can be generated when the target was hit “too hard” and/or
the power supply circuitry was hit, which is of no use for an attacker.
The general workflow of the system is the following:

1. The search algorithm generates a tuple @ of fault parameters (z,y, z, ¢, i, t,d, m)
2. The target is brought into state m.
3. The glitch setup injects the fault and returns some log.

4. The reward function parses the log and returns a rating r to the search
algorithm.

5. The search algorithm updates its internal state in such a way as to increase
the likelihood that the next generated fault will have a high rating.

6.3 EFISSA

The search algorithm we developed for this task, named EFISSA (Evolutionary
Fault Injection Settings Search Algorithm), is a genetic algorithm and as such is
inspired by the process of natural selection.

366

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

A pool of fault parameters tuples, called the “population”, is initialized with
random values at the start of the algorithm. Each tuple of fault parameters is tested
by the glitch setup, and the rating r returned by the reward function is added to
the fitness score of that tuple. The fitness score of each tuple is used to decide
how many “offspring” that tuple will have in the next generation. These offspring
are simple copies of the tuple which have been mutated by altering some bits of
its binary representation (which represents their genome) with a small mutation
probability applied to each bit. The tuples with low fitness scores are removed
from the current population, and new randomized tuples are introduced in the
population if the population size becomes too small.

Optimizing the path taken by the glitch setup to navigate through the popula-
tion of fault parameters is crucial to increase the fault rate and shorten the time
necessary to find a successful fault. In particular, moving the fault injection coil
on the XYZ table takes an amount of time proportional to the distance between
the current position and the desired position; changing the voltage on the Chip-
SHOUTER takes a fixed amount of time of around 1 second; while changing the
parameters on the FPGA only takes a couple of milliseconds. Because of this,
a distance function between two tuples is defined as the expected time taken to
change the settings between the two, and the array of faults in the population is
ordered to minimize the sum of the distances between consecutive faults before
being sent to the glitch setup.

6.4 Definition of the reward function

The reward function parses the feedback from the target after a fault to generate a
rating r for the fault. It is worthwhile to remember that the same fault parameters
tuple can produce different results due to noise and manufacturing tolerances in
the glitch setup, so it doesn’t always map to the same rating.

The reward function needs to be defined for every target architecture and should
return a rating that is proportional to the correlation of the obtained feedback to
the desired result of the fault.

Taking Fig. 4 as an example, since there is a high correlation between the
parameters that caused an “alignment exception” to the ones that caused a “jump
to payload” (the desired result), then “alignment exception” should have a high
rating.

By the same principle and same figure, we can derive the following sequence of
ratings that should be returned by the reward function f(feedback): f(no effect) <
f(reset without stack trace) < f(reset with stack trace) < f(illegal instruction) <
f(alignment exception) < f(jump to payload) = 4oco. f(jump to payload) is set
to +00 because it is the desired result and represents a successful fault, therefore
it receives the highest possible reward.

Note that we define a “jump to payload” event to happen when the Program
Counter jumps to any location in the erased application flash which can be manip-
ulated by an attacker using repair shop tester tools as explained in Section 7.1.

In general, without having to collect the data necessary to plot the figure, we
can assign ratings according to these categories:

367

Neural Network World 5/2023, 357-374

1. No fault (lowest rating): faults that produce no noticeable effect whatsoever
should be assigned the lowest rating because in all likelihood they are not
positioned correctly to affect the execution of the target.

2. Reset (low rating): faults that cause an instantaneous reset of the target
without any output or stack trace should receive a low rating, because they
are probably hitting the target too hard or hitting the power supply circuitry
of the die, rendering it incapable of producing a stack trace.

3. Generic exception (medium rating): a fault that caused a generic stack trace
(not Illegal Instruction) should be assigned a middle score, since it was strong
enough to affect the target but not strong enough to instantly reset it, and it
hit the die close enough to the CPU to have visible effects on the execution.

4. Illegal instruction (high rating): a stack trace containing an “Illegal Instruc-
tion” exception should always receive a high rating because the majority
of faults that corrupt an instruction fetched from memory will result in an
invalid instruction in most architecture.

5. Jump to payload (highest rating): a fault that causes provable execution of
unsigned /unreachable code should receive the highest rating, to ensure that
the genetic algorithm will continue to produce mutated faults that potentially
achieve a higher probability of a successful fault.

6.5 Tuning of the evolutionary algorithm parameters

The choice of the parameters is a critical part of any machine learning algorithm.
For an evolutionary algorithm like EFISSA, the most important parameters to tune
are population size, mutation rate, selection mechanism and reward function.

Testing a new set of parameters while tuning them is slow on the real hardware
setup, since the time necessary to inject each fault is quite long (about half a second
to a couple of seconds), so each test can easily take hours. To increase the speed
at which these parameters can be tested, a simulated environment was built out
of the data collected during the injection of millions of randomized faults. The
simulated EFISSA environment can inject millions of faults per second on a virtual
target while still calculating how much time it would have taken to execute the
same faults on real hardware, by estimating the time it took to move the injection
head to the new position and changing the configuration of the ChipSHOUTER.

This dataset, named X, is the result of running 10256642 faults over several
months with uniformly distributed fault parameters on a real automotive hardware
target. It contains the fault parameter tuples & as well as the corresponding output
of the communication interfaces of the target to allow to identify if a fault happened
and which kind of exception fault handler was executed.

When a fault is injected in the simulated environment with a given fault param-
eters tuple o, the virtual target returns the result of a fault injected with a fault
parameter tuple og, sampled randomly from the X after weighting the probability
of each point according to a multivariate Gaussian distribution centered on or.
Since X is collected from real hardware on random, uniformly distributed fault
parameters, og is typically a point in the vicinity of o, thus ensuring that the

368

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

value returned by the simulated environment correlates to the value that would be
returned by the real experiment.

It is important to remember that when injecting a fault with the same fault
parameters multiple times, the result is usually not the same. Due to this, it is not
sufficient to return the result for the closer tuple of parameters to o1 in X, since
this would cause the success probability of some tuples to be 100% in the simulated
ECU, which is not realistic.

After experimentation on the simulated environment, the algorithm was tuned
as follows:

e The population size was set to 100, though every tuple is tested 10 times
every generation to increase the number of faults per second since changing
the fault parameters costs a lot of time. A larger population size leads to
generations taking too long to be fully tested, slowing down the algorithm.

e The bit mutation probability was set to 0.01, meaning each bit has a 1%
probability of being flipped when an offspring is created by copying a parent.

e No cross-over was used because the implementation of a cross-over functions
did not lead to a noticeable improvement in performance.

e An aging coefficient of 0.9 was implemented, meaning that the fitness value
of each tuple in the population was multiplied by 0.9 at every generation,
ensuring that newly generated solutions will have a fair chance at competing
with tuples that were in the population for a long time.

e Elitism was implemented, preserving the tuples of fault parameters which
resulted in the 10 highest scores according to the reward function.

e The reward function still needs to be tuned for each different target, but in
the simulations it was seen that the best results are obtained by granting the
categories defined in Section 6.4 the ratings:

f(no fault) =0
f(reset) =1

— f(generic exception) =

— f(illegal instruction) =

— f(jump to payload) =
These rewards are added to the fitness of the tuple in the population.

e The selection function (which chooses which tuples are selected for having
offsprings in the next generation, and how many offsprings they will produce)

was chosen to be random with a selection probability proportional to the
logarithm of the fitness.

369

Neural Network World 5/2023, 357-374

6.6 Performance

For the purpose of discussion of the performance of the presented algorithm, any
jump over the application flash of the processor caused by a fault will be considered
a success. This is because the content of the application flash can be controlled by
an attacker as explained in Section 7.1.

We observed that the success probability of a fault attack is much higher on de-
velopment boards rather than automotive targets, possibly due to the large ground
planes and thicker copper used in automotive ECUs. The presented results were
obtained by attacking the bootloader in a modern ECU which emitted stack traces
upon encountering an exception interrupt. On said ECU, the MCU that the fault
injection was performed on was a MPC5748G.

Fig. 5 shows the probability of getting a success given that the algorithm has
been running for a given number generated faults.

1.0 A

< =
(=] co
| |

Probability of success
o
=Y
1

0.2

0.0

T T T
103 104 10% 106
Faults Injected

Fig. 5 Cumulative distribution function of the probability of finding a fault that
causes a jump of the program counter to any address within the application flash
on an automotive bootloader as a function of the number of faults generated by the
EFISSA algorithm. In total 4486208 faults were injected on the target to generate
this figure.

Once a success is found by the algorithm, the successes can be replicated with
an average probability of 0.674%. In other words, on average one every 148 faults
injected with the parameters found by EFISSA resulted in a success, or about one
success per minute with an average fault injection rate of 2 faults per second. On
average, these successful parameters are found after injecting less than 10* faults.
Conversely, when using a random search algorithm, the probability of obtaining a
successful fault was around once every 10 attempts.

370

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

7. Vulnerability and exploitation

After finding a set of fault parameters that are likely to lead to the corruption of
the program counter in some way, it is necessary to direct the program counter to
the desired unsigned code address in some way.

If the contents of the large application flash memory can be controlled by an
attacker, the random jumps inside the flash obtained through fault injection repre-
sent a vulnerability because there seems to be nothing preventing the MCU from
executing unsigned code.

7.1 Weak authentication for persistent memory writes

Extracted UDS security access algorithms from repair shop tester software became
publicly available in open source projects, for example on GitHub [8, 7]. Even if
a security access algorithm is not hosted on these open source projects, our attack
can be performed by abusing the original repair shop tester to write our payload
for our attack to an ECUs program memory, just by replacing the firmware update
files in the directory of the repair shop tester software.

These tools allowed us to write custom firmware to the application flash of
different real-world target ECUs. The written unsigned firmware can not normally
be executed, since signature checks will fail, but the code can still be reached by
jumping to it using the fault injection attack described earlier.

7.2 Exploit: Execution of arbitrary code

Finally, we can combine the described hardware and software vulnerabilities to ob-
tain arbitrary code execution. First, a firmware is assembled where a small payload
(with entry point named _start) is preceded and followed with long “trampoline”
sections programmed with NOP slides interleaved with unconditional branches to
the payload entry point. This firmware was flashed to the entire application flash
memory of the target.

.rept 1000
.rept 113
se_nop
.endr
e_b _start // Jump to _start
.endr
_start:

// The actual exploit code is written here
// Can be a simple ‘‘Hello, World!’’ for demonstration
// Or malicious code to help car theft

Listing 1 Ezxample GNU assembler code which generates a long PPC nopslide
which interleaves one branch instruction every 113 NOP instructions.

Since PPC variable length encoding (VLE) instructions can be aligned at every
even address, and since the branch instruction is 4 bytes long, if the fault causes
a jump in the middle of a branch instruction, it would cause an illegal instruction
exception. Since the NOP instruction is 2 bytes long, it is important to keep the ratio

371

Neural Network World 5/2023, 357-374

of branch instructions to NOP instructions very low to minimize the probability of
this happening.

By applying faults during the execution of some UDS service, which can be
requested with a CAN frame which will be the trigger of the fault, it is possible
to cause random jumps to the application flash memory. Since the great majority
of the target’s memory contains our “trampolines”, we have a high probability of
jumping into one of them. Once the processor jumps there, it will reach the exploit
code.

To demonstrate that arbitrary code execution was achieved, a simple “Hello,
World!” example was written in assembly and placed in the payload. A real world
attacker would use malicious code as payload. For example, a routine to dump the
firmware or one to remove the signature check of the firmware from the bootloader.

After using EFISSA, presented in Section 6.3, we obtained fault parameters that
granted a decent success probability (0.674%) of executing our unsigned payload.
Without the search algorithm, our fault led to code execution around once every
10% attempts.

8. Generalization of the attack

The presented attack was successfully performed on three different ECUs. The only
similarity between these ECUs was the MCU ISA and a secure bootloader following
the ISO 14229 standard. Anything else, including the processor series, the firmware,
the bootloader implementation, the hardware and software manufacturer, and even
the OEM using the ECU are different. Furthermore, the attack was performed
without any static analysis of the actual firmware on the target.

Parameter selection with EFISSA for the injected fault allowed us to perform
a code execution attack within one hour on average. Since the similarities between
our targets were marginal, we expect a wide variety of ECUs to be vulnerable to
this attack. Additionally, we successfully demonstrated the application of EFISSA
on an ARM S32K148 evaluation board. It was found that the ARM processor
architecture is significantly more susceptible to wild jungle jumps into writable
memory areas, compared to PowerPC processors.

As mentioned before, for targets that do not emit a stack trace upon encounter-
ing an exception interrupt, it is possible to “train” most of the fault parameters on
an off-the-shelf MCU with the same model as the attacked one, and then find the
remaining ones via exhaustive search on the target itself (usually, this only involves
finding the point in time to inject the fault upon, during the execution of a long
UDS job).

9. Conclusions
We demonstrated the efficient application of fault injection attacks to obtain code
execution through program counter manipulation on different real-world targets.

Our novel algorithm for fault parameter search makes this kind of fault injection
attack feasible on black-box targets.

372

Pozzobon E. et al.: Evolutionary fault injection settings search algorithm. ..

Thanks to commonly leaked “UDS Security Access” credentials, the attacker
is able to inject a large amount of code in the program flash of the victim device,
which can then be executed without authentication by injecting electromagnetic
faults. The success probability of obtaining arbitrary code execution in this way
increases as the size of the programmable flash grows, and on modern ECUs it is
so high that an uninformed attack making use of a genetic algorithm to search for
fault parameters is successful within minutes.

No information about the software running on the target device is necessary for
a successful attack. The map of the fault sensitivity can be obtained from another
sample of the same MCU as the target one. Additionally, the attack was easily
reproducible on multiple ECUs that were based on similar PowerPC MCUs with
minimal changes to the exploit code and on an ARM-based evaluation board.

The equipment necessary to perform the presented attack is cheap and readily
available, and the attack can be easily automated. Using the presented algorithm
(EFISSA) reduces the time taken to find a reproducible fault from several days to
less than one hour.

When applied to the real world, this attack can be used to reset stolen ECUs
to a virgin state to resell them, pairing new keys to an immobilizer system, or
aid in the development of further exploits by leaking firmware and restoring debug
interfaces.

References

[1] BIONDI P., VALADON G., LALET P., POTTER G. Scapy. 2018. http://www.
secdev.org/projects/scapy/ (accessed 2021-04-14).

[2] CARPI R.B., PICEK S., BATINA L., MENARINI F., JAKOBOVIC D., GOLUB
M. Glitch It If You Can: Parameter Search Strategies for Successful Fault Injection.
In: Smart Card Research and Advanced Applications: 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers,
Berlin, Germany: Springer-Verlag, 2014, pp. 236-252. Available also from: https:
//doi.org/10.1007/978-3-319-08302-5_16 doi: 10.1007/978-3-319-08302-
5_16. ISBN 978-3-319-08301-8.

[3] GRATCHOFF J. Proving the wild jungle jump. NL: University of Amsterdam, 2015.
Research Project Report. Available also from: https://rp.0s3.n1/2014-2015/
p48/report.pdf.

[4] INSURANCE INFORMATION INSTITUTE L. Facts + Statistics: Auto theft. 2022.
https://www.iii.org/fact-statistic/facts-statistics-auto-theft (accessed
2022-11-14).

[5] ISO CENTRAL SECRETARY. Road vehicles — Diagnostic communication over
Controller Area Network (DoCAN) — Part 2: Transport protocol and network layer
services. Geneva, CH: International Organization for Standardization, 2016. Stan-
dard ISO 15765-2:2016. Available also from: \url{https://www.iso.org/standard/
66574 .html}.

[6] ISO CENTRAL SECRETARY. Road vehicles — Unified diagnostic services (UDS)
— Part 1: Application layer. Geneva, CH: International Organization for Standard-
ization, 2020. Standard ISO 14229-1:2020. Available also from: \url{https://wuw.
iso.org/standard/72439.html}.

373

http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1007/978-3-319-08302-5_16
http://dx.doi.org/10.1007/978-3-319-08302-5_16
http://dx.doi.org/10.1007/978-3-319-08302-5_16
https://rp.os3.nl/2014-2015/p48/report.pdf
https://rp.os3.nl/2014-2015/p48/report.pdf
https://www.iii.org/fact-statistic/facts-statistics-auto-theft
\url{https://www.iso.org/standard/66574.html}
\url{https://www.iso.org/standard/66574.html}
\url{https://www.iso.org/standard/72439.html}
\url{https://www.iso.org/standard/72439.html}

(15]

374

Neural Network World 5/2023, 357-374

LEDBETTER B. SA2 Seed Key. 2022 (accessed January 30, 2022). https://
github.com/bri3d/sa2_seed_key.

LIM J. UnlockECU: Free, open-source ECU seed-key unlocking tool. 2022 (accessed
March 30, 2022). https://github.com/jglim/UnlockECU.

MALDINI A., SAMWEL N., PICEK S., BATINA L. Genetic Algorithm-Based
Electromagnetic Fault Injection. In: Genetic Algorithm-Based Electromagnetic Fault
Injection, 2018, pp. 35—42. doi: 10.1109/FDTC.2018.00014.

NASAHL P., TIMMERS N. Attacking AUTOSAR using Software and Hardware
Attacks. In: escar USA, 2019. escar USA; Conference date: 11-06-2019 Through
12-06-2019.

O’FLYNN C. BAM BAM!! On Reliability of EMFI for in-situ Automotive ECU
Attacks. 2020. https://eprint.iacr.org/2020/937. Cryptology ePrint Archive,
Paper 2020/937https://eprint.iacr.org/2020/937.

O’FLYNN C. ChipSHOUTER-PicoEMP. 2021. https://github. com/newaetech/
chipshouter-picoemp (accessed 2022-11-14).

SPENSKY C., MACHIRY A., BUROW N., OKHRAVI H., HOUSLEY R., GU
Z., JAMJOOM H., KRUEGEL C., VIGNA G. Glitching Demystified: Analyzing
Control-flow-based Glitching Attacks and Defenses. In: 2021 51st Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN), 2021,
pp. 400-412. doi: 10.1109/DSN48987.2021.00051.

Van den HERREWEGEN J., OSWALD D., GARCIA F.D., TEMEIZA Q. Fill your
Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary
Analysis. IJACR Transactions on Cryptographic Hardware and Embedded Systems.
2020, 2021(1), pp. 56-81, doi: 10.46586/tches.v2021.i1.56-81.

WIERSMA N., PAREJA R. Safety != Security: On the Resilience of ASIL-D Cer-
tified Microcontrollers against Fault Injection Attacks. In: 2017 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2017, pp. 9-16. doi: 10.1109/
FDTC.2017.15.

WOUTERS L., Van den HERREWEGEN J.;, GARCIA F.D., OSWALD D., GIER-
LICHS B., PRENEEL B. Dismantling DST80-based Immobiliser Systems. IACR
Transactions on Cryptographic Hardware and Embedded Systems. 2020, 2020(2),
pp. 99-127, doi: 10.13154/tches.v2020.12.99-127.

https://github.com/bri3d/sa2_seed_key
https://github.com/bri3d/sa2_seed_key
https://github.com/jglim/UnlockECU
http://dx.doi.org/10.1109/FDTC.2018.00014
https://eprint.iacr.org/2020/937
https://eprint.iacr.org/2020/937
https://github.com/newaetech/chipshouter-picoemp
https://github.com/newaetech/chipshouter-picoemp
http://dx.doi.org/10.1109/DSN48987.2021.00051
http://dx.doi.org/10.46586/tches.v2021.i1.56-81
http://dx.doi.org/10.1109/FDTC.2017.15
http://dx.doi.org/10.1109/FDTC.2017.15
http://dx.doi.org/10.13154/tches.v2020.i2.99-127

