
GENERATION OF SYNTHETIC FLAIR MRI
IMAGE FROM REAL CT IMAGE FOR

ACCURATE SYNOVIAL FLUID
SEGMENTATION IN HUMAN KNEE IMAGE

I.F. Abu-Qasmieh∗, I.S. Masad∗, H. Alquran∗, K.Z. Alawneh†

Abstract: Synthetic MRI FLAIR images of an abdominal 3D multimodality phan-
tom and in vivo human knee have been generated from real CT images using
predefined mapping functions of CT mean and standard deviation with the cor-
responding proton density PD, T1 and T2 that were previously generated from
spin-echo sequence. First, the validity of generating synthetic MR images from dif-
ferent sequences were tested and the same PD, T1 and T2 maps that were generated
from the real CT image have been used in the simulation of MRI inversion-recovery
(IR) sequence. The similarity results between the real and synthetic IR sequence
images, using different inversion times TI, showed a very good agreement. After
confirming the feasibility of generating synthetic IR images from the PD, T1 and
T2-maps, that were originally obtained from spin-echo sequence using the phan-
tom, the simulation of a knee image has been generated from the corresponding
knee CT real image using the steady-state transverse magnetization formula of the
inversion-recovery sequence. The simulated FLAIR IR sequence MR image are
generated using proper TI for nulling the signal from the synovial fluid, where the
image complement is used as a mask for segmenting the corresponding tissue region
in the real CT image.
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1. Introduction

Fluid-attenuated inversion recovery (FLAIR) is an MRI sequence with an inversion
recovery setup to nullify fluids signal in the output image where the inversion time
TI is selected such that there is no net longitudinal magnetizationMz at equilibrium
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from the fluid voxels, and therefore, their contribution to the resultant image is
nulled [1].

Several studies have addressed the generation of synthetic MR images based on
other modality or based on MR quantification, where such techniques reduce ex-
amination time while providing quantitative measurements of clinical and research
interests [2–8]. Such studies reported that synthetic images with different pro-
ton density PD, T1 and T2 weightings are acceptable diagnostic tools with similar
effectiveness as the conventional imaging.

For synthetic FLAIR images, several artifacts were reported as a bright sig-
nal appeared due to flow and partial volume effects, which are considered in the
analytical signal of real-synthetic mapping models. Other models that generated
synthetic FLAIR images based on deep learning using convolutional neural network
have shown promising results for similar problems in which mapping model-based
analytical techniques are difficult to implement [9, 10]. Abu-Qasmieh et al. [11]
showed in their study the effectiveness of generating synthetic MR images with
different weightings from a real CT image by building CT mean and standard
deviation mapping functions with the corresponding intrinsic parameters namely,
PD, T1 and T2 in the MR mages of the same slice in 3D multimodality abdominal
phantom and on human knees at different TE and TR parameters using a spin-echo
sequence.

In this study, the generation of synthetic MR images in [11] is extended by using
the same CT-MRI mapping functions to generate the PD, T1 and T2 maps for the
simulation of another MRI sequence, particularly the inversion recovery FLAIR
sequence by using the proper inversion time TI for nulling the synovial fluid signal
from the knee FLAIR simulated image and then segmenting the corresponding
tissue from the real CT image.

2. Materials and method

2.1 CT imaging

The dataset of [11] is used in this study, where the CT images were acquired, with
proper acquisition parameters for a selected slice of a triple-modality 3D abdominal
phantom. The CT image acquisition was repeated 9 times for averaging to increase
the signal-to-noise ratio (SNR).

2.2 MR imaging

The same slice acquired using the CT scanner was imaged with a clinical 1.5-T MRI
system. MR images, used to generate the three contrast MRI maps, were acquired
using a spin echo (SE) pulse sequence using similar slice imaging dimension, size
and thickness used in CT imaging.

For T1-map and ρ-map calculations, a series of MR images was acquired for
the same slice with echo time TE = 20ms and repetition times TR = 100, 200, 400,
800, 1250, 2000, 4000, and 5000ms. For T2-map calculation, another series of MR
images was acquired with TE = 10, 15, 25, 40, 60, 90, 130, 180, 240ms and TR =
2000ms [11].
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The amplitude of the spin-echo signal is given by:

AE = ρ

(
1− 2e−

(TR−TE/2)

T1 + e−
TR
T1

)
e−

TE
T2 (1)

If TE ≪ TR, Eq. (1) can be simplified to:

AE = ρ
(
1− e−TR/T1

)
e−TE/T2 (2)

The acquired CT and MR series images with T1, T2, and ρ weightings were sub-
jected to two main processes: registration and segmentation. The corresponding
flow chart in Fig. 1 summarizes the methodology followed by this study.

Fig. 1 The registration and segmentation processes.

2.3 Maps calculations

The calculations of T1, T2, and ρ-maps were described in [11]; however, they are
repeated in this work for better readability and flow of information.

T1-map calculation Eq. (1) can be re-written as a function of TR:

AE (b) = C1 + C2b
C3 , (3)
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where

b = e−TR ,

C1 = ρe−TE/T2 ,

C2 = −ρe−TE/T2

(
2e−TE/2T 1 − 1

)
,

and
C3 = 1/T1 or T1 = 1/C3. (4)

T2-map calculation Eq. (2) can be manipulated to:

ln(AE) = C1 + C2TE, (5)

where
C1 = ln

(
ρ
(
1− e−TR/T1

))
,

and
C2 = −1/T2 or T2 = −1/C2. (6)

ρ-map calculation Proton density map is derived from the image series with
different TR using the following equation:

AE(x) = ρx, (7)

where

x =

(
1− 2e−

(TR−TE/2)

T1 + e−
TR
T1

)
e−

TE
T2 . (8)

2.4 MRI maps

Fig. 2 shows the reference CT image for the selected slice, from which the liver
region was segmented and five ROI’s were selected, as shown in Fig. 3, to illustrate
the approach analysis.

Fig. 2 The selected CT slice reference image [11].
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Fig. 3 The liver partition segmentation [11].

T1-map Eq. (3) was used to calculate the T1 value for each pixel in the liver
segment, where b was plotted versus AE (Fig. 4) and the equation of the best
fitting line was found to calculate C3, and consequently, T1 value.

T2-map On the other hand, Eq. (5) was used to calculate the T2 value for each
pixel in liver segment, where TE was plotted versus the natural logarithm of the

Fig. 4 Fitting curves of the signal AE with e−TR at different locations (indicated in
Fig. 3) of the selected slice with their corresponding calculated T1 relaxation times.

195



Neural Network World 3/2023, 191–203

gray-level (lnAE) for different positions as shown in Fig. 5; and the equation of the
best fitting line was found to calculate C2 in order to obtain the T2 value.

Fig. 5 Fitting curves of the signal ln(AE) with TE at different locations (indicated
in Fig. 3) of the selected slice with their corresponding calculated T2 relaxation
times.

ρ-maps Finally, the same images used to calculate the T1 map were used to
calculate the proton density map (ρ-map). The linear fittings for the different
positions in liver ROI with their calculated ρ are displayed in Fig. 6.

The three maps of the main contrast parameters for the selected phantom slice
are shown in Fig. 7 for comparison.

2.5 Mapping between CT and MRI contrast parameters

For mapping the CT of the liver segment in the reference CT image to the MRI
contrast parameters of the same segment, the liver partition was reshaped to a
vector (one-dimensional array) in the four images for fitting purposes. The mapping
was performed between the mean and the standard deviation values extracted from
the CT of each liver pixel and its surrounding neighbors of a window size 5×5. The
resultant surface fitting using piecewise linear interpolation between each contrast
parameter and the corresponding CT mean µ and standard deviation σ values are
illustrated in Fig. 8, where the three mapping functions were obtained and saved
for achieving the goal of generating synthetic MR images from a real CT image.

2.6 Inversion recovery MRI sequence

The phantom’s slice for the real CT image selected in the study of [11] was used for
testing the proposed approach. The same slice was imaged by clinical 1.5-T MRI
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Fig. 6 Fitting curves of the signal AE with x at different locations (indicated in
Fig. 3) of the selected slice with their corresponding calculated proton density ρ.

Fig. 7 The calculated T1-map (a), T2-map (b), and ρ-map (c) of the liver segment
in the selected phantom slice [11].

Fig. 8 The surface fitting for CT-MRI mapping, using piecewise linear interpolation
between the contrast parameters (T1, T2, and ρ), and the corresponding CT mean µ
and standard deviation σ values (left, middle, and right graphs, respectively) [11].
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system (Optima MR360, GE Healthcare, Chicago, IL, USA) using the inversion-
recovery sequence protocol with the following parameters: slice thickness = 2.5mm,
FOV = 30 cm× 30 cm, matrix size = 256× 256 pixels, bandwidth = 15.6 kHz,
echo time TE) = 10ms and repetition times TR = 2540ms and inversion times
TI = 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000 and 2500ms. The MR IR image
was acquired to compare MR real image with the simulated ones and to test the
validity using the CT-MR spin-echo PD (ρ), T1 and T2 functions in generating
synthetic images using different MR sequences.

For simulation purposes, the IR pulse sequence steady state signal equation is
used as follows [12]:

AE = ρ

(
1− 2e−

TI
T1 + 2e−

(TR−TE/2)

T1 − e−
TR
T1

)
e−

TE
T2 , (9)

when TE ≪ T1, Eq. (9) can be simplified to:

AE = ρ
(
1− 2e−

TI
T1 + e−

TR
T1

)
e−

TE
T2 , (10)

where according to Eq. (10), the tissue signal can be nulled if the inversion time TI

is chosen as:

TI = T1 ln

(
2

1 + e−
−TR
T1

)
. (11)

3. Results and discussion

The acquired real IR MR images were compared with the simulated/synthetic cor-
responding images, after image registration, using the same technical parameters,
TE, TR and TI and Eq. (10) to investigate the validity of the proposed approach.
The similarities between the generated synthetic MR images from the real CT im-
age and the real MR images of the same slice were tested using two parameters;
the slope between the generated/synthetic MR image segment array (liver segment)
and the real MR image segment array after they have been reshaped to vectors.
The other similarity testing parameter used is the percentage root-mean-square
difference (PRD).

Fig. 9 shows the real and the generated MR images with TE = 10ms, TR =
2540ms and inversion times, TI = 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000
and 2500ms, respectively, with the similarity relationship of their liver segments
after they were reshaped to vectors, where the calculated similarity parameters of
slope/PRD were (0.999/5.36%, 0.991/2.54%, 0.961/12.71%, 1.008/5.06%, 0.997/
2.83%, 0.987/2.25%, 0.991/1.82%, 0.983/1.65%, 0.985/1.64%, 1.004/1.42%), re-
spectively.

After the very good agreement of the MR synthetic image with the corre-
sponding MR real image, the same approach was implemented for the human knee
slice [11] using the saved mapping functions of the CT real image with the three
contrast intrinsic maps T1, T2 and PD (ρ)-maps. Fig. 10 shows the real CT knee
image, while the corresponding generated MRI maps are shown in Fig. 11.

The simulated/synthesized IR FLAIRMR image of the corresponding CT image
shown in Fig. 10 was generated using Eq. (10) and parameters TE = 10ms, TR =
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Fig. 10 The real CT image of a selected human knee slice in HU [11].

Fig. 11 (a) The generated T1-map in sec, (b) T2-map in sec, and (c) ρ-map in
HU, generated from the real CT image shown in Fig. 14 [11].

2540ms and TI is calculated such that the synovial fluid signal is nulled in the
knee IR image using Eq. (11). The T1 relaxation time for the synovial fluid in the
human knee at field strength 1.5 T is around 2641±60ms [13] and therefore, the TI

for nulling the synovial fluid signal is around 976ms. The generated FLAIR image
using the proper TI is shown in Fig. 12 with its complement image.

Fig. 12 The synthesized knee FLAIR image (left) with its inverse (right).
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The complement image shown in Fig. 12 was gray-level transformed by power
of three (cubed) to enhance the high gray level of the synovial fluid region and
the result was then binarized as shown in Fig. 13. After suppression the signal
of the synovial fluid using proper TI value, which permits a clear and accurate
determination of the concerned tissue, the image complement, to inverse the low
signal pixels to have the maximum intensity, was calculated and then binarized by
thresholding to obtain the synovial fluid mask as shown in Fig. 13.

Fig. 13 The synovial fluid region mask is generated using proper binarization
threshold.

The synovial fluid region mask was then multiplied by the original/real CT
image shown in Fig. 10. for segmentation of the synovial fluid region from the CT
image as shown in Fig. 14.

Fig. 14 The segmented synovial fluid region, in HU, from the original CT image.
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The segmented synovial fluid region using the proposed simulation method
was delineated clearly compared to the conventional CT windowing method, us-
ing piecewise gray level transformation for well-defined tissue type (synovial fluid)
window width and window center (Fig. 15) used for displaying specific tissue in
CT image after windowing the synovial fluid region.

Fig. 15 The synovial fluid CT windowing result using the traditional method.

4. Conclusion

This study has been designed to compare the overall image quality of synthetic/
simulated MR imaging with conventional/real MR imaging in inversion recovery
sequence. Other objectives included legibility of anatomic features and diagnostic
performance of synovial fluid region in human knee axial image using FLAIR pulse
sequence. The current study has validated the assumption that once the MRI three
main intrinsic contrast parameters maps, T1, T2 and PD (ρ), have been generated
using predefined mapping functions with the corresponding CT image, other MRI
pulse sequences images can be generated with similar diagnostic quality using the
steady state formula of that specific MR pulse sequence. In addition, synthetic
MRI generation was significantly faster than conventional MRI scanning if many
different contrast settings were required for the same geometry, which is usually
applicable for clinical examinations. Moreover, the FLAIR synthetic image permits
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the accurate delineation of the fluid region from the corresponding CT real image,
which supports taking the correct diagnostic decision by the specialist radiologist.
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