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Abstract: Due to travelling on railway systems; there are many gaps and problems
in cross areas. Therefore; it is necessary and very important to establish intelligent
crossing systems in such areas. On the other hand, it is not possible for trains to
stop or brake immediately against an obstacle due to their high speed and inertia.
For this reason, it is necessary to work on the safety/warning of the other main fac-
tors and necessities (pedestrians and vehicles) in level crossings. This experimental
investigation is carried out by using an experimental real-time train and crossing
systems. The main vibration parameters are analysed by using neural networks.
First, the dynamics of the train-rail system related to level crossings are examined,
and the vibrations created by the train on rails are measured at different speeds.
Then three types of proposed neural networks predictors, Levenberg-Marquardt
backpropagation (LMBP), scaled conjugate gradient backpropagation (SCGB) and
BFGS quasi-Newton backpropagation (BFGS) are used to predict the vibration of
the train-rail system. From the results, it is seen that the proposed LMBP is more
suitable for analysing and predicting the vibration of the train-rail system. It is
clear that the speeds of the trains approaching the level crossing can be estimated
from the vibration of the trains on the rails.
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1. Introduction

With the increasing population in the world and the ever-evolving technology,
advanced level fast and safe public transportation needs are also increasing. One of
the most preferred types of transportation in the world is especially railway systems.
For this reason, the railway networks that are becoming more common nowadays
make the intersection of highway and railway unavoidable. Level crossings at the
intersection of the highway and the railway are the sections of the railway systems
that have the highest security flaw today. Although there are some studies to
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improve and develop level crossing systems in terms of security, these studies are
still not sufficient. In particular, the number of uncontrolled level crossings is high
compared to the controlled level crossings [1].

The main problem of existing level crossing systems is a large number of time
losses in level crossings. In most of the level crossings, the gate barriers are closed
and opened regardless of the train speed. Especially, the driver and pedestrians
are impatient and somehow try to cross the level crossing, as the downtime of the
gate is long. This causes major accidents to occur in level crossings. Therefore,
it is necessary to develop a compact, safe and low-cost level crossing control sys-
tem to cover all type of level crossings. However, there are also studies on the
control of level crossing barriers and these studies have not been able to bring the
level crossing safety to the desired level and the implementation of these studies
requires high costs. Hence, these problems necessitate a search for a cheap and safe
solution that covers all level crossing systems related to level crossings. Bahloul
et al. [2] have suggested some technological solutions to improve safety at level
crossings. They studied on the PANsafer project whose purpose is to improve
safety at level crossings and carried out statistical analysis using accident/incident
databases and studied on the human behaviour to determine potential risky situ-
ations. On the other hand, Burdzik and Nowak [3] simulated the working states
that can potentially have an effect on the vibration environment of railway infras-
tructure. They listed the main frequencies for the dominant components of the
signals and showed that it could be possible to separate the vibration properties of
signals arising from different sources. Also, railway vibration was analysed using
micro-electromechanical systems-type accelerometer sensor to recognise the exis-
tence and to measure the position of the train as a warning system by Ardiansyah
et al. [4]. They used a neural network to recognise the vibration patterns of the
both the train and the non-train and reported that the neural network can recog-
nise the vibrations generated by the train to non-train with a 100% success rate
at a distance of 45 meters. Larue et al. [5] conducted research on time losses that
occurred at level crossings. In their research, they collected data on a selected
level crossing to investigate what caused more time loss and found that warning
times are the main issue of redundant level crossing downtime. The study showed
that time loss in level crossings could be reduced with some improvements. Sharad
et al. [6] studied on an early warning system on unmanned level crossings. The
system is based on embedded systems with some sensors (pressure, vibration, mag-
netic and proximity) and communications. Sensors are supported by a laser beam
to perceive the train. The laser beam is the first sign for the upcoming train, and
the other sensors help to detect the train pass. Another study on the safety of
level crossing was made by Edle et al. [7]. They studied on the multilevel auto-
mated security system which aims to unmanned level crossings. The system has
three security levels: GPS system, IR and RFID systems, and IR sensors on the
level crossing gate. Mainly, the GPS system sends data to the control unit about
the velocity and the position of the train. Intercalarily, despite GPS faults due to
weather conditions, IR-RFID system support the security system. The system also
detects whether there is a vehicle or someone in the gate and provides time to take
precautions by the driver. However, Mahdi and Zuhairi [8] designed a simple level
crossing control system based on IR LED-sensor system. If the train crosses the
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sensor, the sensor provides a signal to the micro-controller, and the micro-controller
closes the gate if the gate is open. When the train is passed the second sensor,
the gate will re-open by the micro-controller. Kiruthiga et al. [9] have developed
a system based on the obstacle sensor and GSM modem to prevent casualties and
train crashes. Mostafa et al. [10] improved a radio-based intelligent level crossing
system. They use radio transmitters at the head and end of the train. The con-
troller gets information about the train when the train passes through a sensor and
control the gate. Another sensor-based study made by Biswas et al. [11]. When
the train passes through an IR sensor, the controller of the level crossing activates
warning systems and starts closing the gate. When the gate is closed at 45 degrees,
the system checks whether there is a vehicle or anything else in the level crossing
by means of the pressure sensors on both sides of the level crossing. If there is
no vehicle in the level crossing, the gate continues to close. If there is a vehicle
in the level crossing, the control unit does not close the gate barriers for a while
and allows the vehicle to pass and warns the train driver. Ameen [12] have studied
on the vibration-based early stimulation system regardless of the train speed for
track signalling of level crossings. The goal of the study is a low-cost system for
unattended level crossings. The system is based on a piezo vibration sensor and
Arduino controller board. When a train passes over the sensor at any speed, the
vibration sensor sends a signal to the controller board; thus, the signal system
starts to give information about the train. Kitamura et al. [13] carried out a study
with autonomous decentralised technology on level crossing systems. A network
level crossing system was experimentally applied to reduce the influence of level
crossings failure. Another purpose of the system is to continue controlling the sys-
tem without interruption and loss of time in case of a possible error. Burdzik et
al. [14] conducted an experimental study on vibration analysis of wheel-rail con-
tact. They measured the 3-axle distribution of vibration generated by the train
simulator wheel-rail contact and analysed it through basic statistics and Fourier
transformations to determine the dominant frequency bands.

If the studies conducted are examined, it can be seen that, until now, for level
crossings, the application area of the solution suggestions is limited and high cost.
Today, it confirms this phenomenon the fact that the number of uncontrolled level
crossings is still high. However, artificial neural networks are low-cost systems that
have a wide range of applications and provide reliable results. A level crossing sys-
tem to be controlled with neural networks will be both compact and cost-effective.
As far as the authors are known, there is no investigation such as this work. This
paper presents a proposed investigation on intelligent level crossing system design
and analyses with sensor and control technology. In accordance with this purpose;
three types of artificial neural networks were used to analyse and evaluate vibration
resulting from train-rail influences under different operating speeds. The vibration
data were experimentally obtained by means of vibration sensors placed on the
railway system.

The paper is organised as follows: Section 2 describes the motion equation
of railway systems. Section 3 explains the experimental system. Section 4 gives
some information about the proposed neural network. Results from experimental
analyses and neural networks are given in Section 5. The study is accomplished
with conclusions and discussion in Section 6.
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2. Description of dynamic of railway structure

In order to better understand the vibration analysis of the wagon-rail system, it is
necessary to obtain the equations of motion of the system. There are many studies
on this subject in the literature [15–18]. Mass models, continuous models and finite
element models are the most used models for railway vehicles. In the wagon-rail
dynamics, the most critical point is the interaction between the wheel and rail.
There are different approaches to model this interaction in the literature [19–26].

In this study, the components in the train-rail system whose vibration is mea-
sured consist of wagon, bogie, wheel, rail, sleepers and ballasts, and dynamic equa-
tions are derived according to these expressions. Quarter wagon system is taken
into account as it reflects the general behaviour when obtaining dynamic equations.
Dynamic system model of train-rail is given in Fig. 1. If the motion equation is
created for the wagon body, here mv shows the wagon mass, mb bogie mass, mw

wheel mass and the suspension stiffness coefficient between the wagon and bogie
is defined by kbv. Generally, leaf springs are used between bogies and wheels, and
their stiffness is defined by kwb. Therefore, the motion equation for the wagon
body (Eq. (1)) and the motion equation for the bogie (Eq. (2)) are defined below

mvÿv + kbvyv − kbvyb = 0, (1)

mbÿb + kwb (yb − yw) + kbv (yb − yv) = 0. (2)

Due to the bogie is attached to the wagon at the centre of the bogie and have
one wheel, the pitch motion of the bogie is neglected. A detailed view of the bogie
is given in Fig. 2.

Equation of motion for the wheel

mwÿw + kwb (yw − yb) + F (t) = 0, (3)

Fig. 1 Schematic representation of train-rail dynamic system model.
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Fig. 2 Schematic view of the bogie structure.

can be written. Here yw is the weight of the wheel, F (t) is the contact force
caused by wheel-rail contact. If the wheel-rail contact force is written according
to the Hertzian contact theory, depending on the wheel, bogie and wheel surface
deformation and a specific Hertzian contact coefficient [20,21]

F (t) = CH[yw(t)− yr(t)− r(t)]3/2. (4)

Here CH is a Hertzian coefficient depending on the wheel-rail contact, and r(t)
is a wheel surface function. And so, with taking into account the static forces, the
total vertical forces

F ∗(t) = F (t) + [0.5 (mv +mb) +mw] g. (5)

Sleepers are one of the main components which in the use of concrete nowadays,
rarely in wood form, and are both supporting and keeping line the rail. The force
generated between each sleeper-rail can be defined as follows

Frt(i)(t) = krs(i)
[
yr (xi, t)− ys(i)(t)

]
+ crs(i)

[
ẏrs(i) (xi, t)− ẏs(i)(t)

]
, (6)

where xi is the position of ith sleeper. krs(i) and crs(i) are the stiffness and damping
coefficients between the rail and sleepers, respectively. Ballast layer has a significant
effect on reducing the impact of vibration on the ground by damping. The vibration
arising from the wheel-rail interaction is transmitted from the rails to the sleepers
and then from the sleepers to the ballasts. In addition, considering the interactions
of ballasts among themselves, the equations of motion for traverses and ballasts
are given in Eq. (7) and Eq. (8).
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ms(i)ÿs(i)(t) + (crs + csb) ẏs(i)(t) + (krs + ksb) ys(i)(t)− csbẏsb(i)(t)

− ksbysb(i)(t)− crs

K∑
k=1

Yk (xi) ṫk(t)− krs

K∑
k=1

Yk (xi) tk(t) = 0
(7)

i = 1, 2, . . . , N,

mb(i)ÿb(i)(t) + (csb + cbf + 2cbl) ẏb(i)(t) + (ksb + kbf + 2kbl) yb(i)(t)

− csbẏs(i)(t)− ksbys(i)(t)− cblẏb(i+1)(t)− kblyb(i+1)(t)− cblẏb(i−1)(t)

− kblyb(i−1)(t) = 0

(8)

i = 1, 2, . . . , N,

where Yk is kth deflection mode and tk is the time coordinate. ksb and csb are the
stiffness and damping coefficients between sleeper and ballast, respectively. kbl and
cbl are the stiffness and damping coefficient of the interaction between the ballast
layer. kbf and cbf as to are the stiffness and damping coefficients of the interaction
between ballast and ground.

The force between the ballast layer and the sleepers can be expressed as follows

Fsb(i) (t) = ksb(i)[ys(i) (t)− yb(i)(t)] + csb(i)[ẏs(i) (t)− ẏb(i) (t)]

+kbl(i)[yb(i)(t)− yb(i+1)(t)] + cbl(i)[ẏb(i)(t)− ẏb(i+1)(t)]

+kbl(i)[yb(i)(t)− yb(i−1)(t)] + cbl(i)[ẏb(i)(t)− ẏb(i−1)(t)] (9)

Thus, the motion equation of the entire system can be written as follows, with
the rail being regarded as the Euler beam.

EI
∂4yr (x, t)

∂x4 +mr
∂2yr(x, t)

∂t2
= −

N∑
i=1

Frs(i)(t)δ(x− xi)

+

2∑
j=1

F ∗(t)δ (x− xj) , (10)

where N is the total number of sleepers considered. j is the number of combined
wheel-sets in the wagon model representing the number of moving load points
affecting the rail. E is the modulus of elasticity depending on the material of the
rail, and I represents the second moment of inertia.

3. Experimental measurement system

In this section, the measurement method and measurement information of the
vibration created by the train on the rails are given. Measurement was performed
for train with three different speeds. Information of speeds of the train are given
in Tab. I.
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Measurement Speed
number [km/h]

1 40
2 52
3 60

Tab. I Measurement performed train system information.

The real-time measurement system is given in Fig. 3. Uni-axial acceleration
sensors were used for vibration measurement and data from four vibration sensors
was taken for each measurement at the same time.

Acceleration sensors are directly connected to the rail and the measurement
process has started as the train approaches the sensor, and then is terminated
when the train moves away and the vibration level decreases again. The system,
which is measured vibration, consists of train body, bogie, rail, traverse and ballast
layer.

(a)

(b)

Fig. 3 Real-time measurement system: (a) Data collection system. (b) Measure-
ment system overview.
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4. The main proposed structure of artificial neural
network

Artificial neural network systems are used by computer-aided softwares that oper-
ate in a structure which similar to the human perception and learning system and
have the ability to process the information on their own.

Feedforward network structure is one of the essential classes of artificial neural
networks because of its simple structure and stability. In general, the network
structure consists of three main layers as the input layer, the hidden layer and the
output layer. There may be more than one hidden layer level in the hidden layer
region, depending on the data density and type [27].

In this study, an intelligent data acquisition system with (Bruel Kjaer 4524 B
001 type IDA) one-axial accelerometers and a computer were used to measure and
analyse vibration.

The block diagram of the experimental setup used to collect the vibration data
generated by the train on rails at three different speeds and weights are given in
Fig. 4. Where im is measured data and in is neural networks acceleration values.
These data were tested in the next stage for the prediction of train speed with
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Fig. 4 Experimental system and block diagram with NN predictor.
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three different learning algorithms via computer. 70% of the total data is used
for training, 15% is used for testing, and 15% is used for validation. In order to
improve the predictability of the model, test and validation data are randomly
selected.

The radial based artificial neural network has a feedforward artificial neural
network structure, like other feedforward artificial neural networks, it consists of
the input layer, the hidden layer and the output layer as given in Fig. 5. Radial
based neural network function

F (x) =

m∑
i=1

ωiφi(x), (11)

where ωi is the weight value between layers and x is the n-dimensional input vector.
m is the number of neurons in the hidden layer. φi(x) is the transfer function,
where [27]

φi(x) = exp

(
−

n∑
k=1

(xk − cjk)
2r2jk

)
. (12)

Fig. 5 The structure of radial based ANN.

4.1 Levenberg-Marquardt algorithm

Derived from Newton algorithms, the Levenberg-Marquardt algorithm is the min-
imum mean square error calculation method based on maximum neighbourhood.
This algorithm consists of the best features of the Gauss-Newton and gradient-
descent algorithms and removes the limitations of these two methods. In general,
this method is not affected by the slow convergence problem and performs pa-
rameter update operations with the error vector and Jacobian matrix created for
all inputs. Levenberg-Marquart algorithm, which is the combination of the Gauss-
Newton algorithm, is more effective in optimisation problems than gradient descent
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algorithm. The Levenberg-Marquardt algorithm uses system resources (memory
etc.) more than other algorithms, but the training of the network takes place in a
shorter time. Training ends when generalisation stops recovery [28,29].

∆ω =
(
JTJ+ µI

)−1

JTe, (13)

where ω is the weight vector, I is a unit matrix and µ is a combination coefficient.
J point out the Jacobian matrix in size [(Pxn), N ] and e point out error vector in
size [(Pxn), 1]. Here P shows the number of training samples. n and N show the
number of outputs and the number of weight, respectively.

4.2 BFGS quasi-Newton backpropagation

As an alternative to the generalised backpropagation algorithm, the Newtonian
algorithm provides faster optimisation and is expressed in Eq. (14).

xk+1 = xk − w−1
k gk. (14)

w−1
k is a Hessian matrix, which refers to quadratic derivatives of the defined per-

formance index in the current values of weight and threshold values. Although
the Newton method converges faster than the conjugate gradient algorithm, the
calculation of the Hessian matrix used for feedforward networks is quite difficult
and time-consuming. On the basis of the Newtonian algorithm, methods that do
not need to calculate the Hessian matrix have been developed. These methods
are called quasi-Newton algorithms. The most successful method of quasi-Newton
methods is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The BFGS
method is based on the method of calculating the approximate value of the Hes-
sian matrix at each iteration [30,31].

p(t) = −w−1(t)g(t), (15)

w (t+ 1) = w(t) + ∆w(t), (16)

∆w(t) =
g(t)g(t)

T

g(t)
T
p(t)

.
∆g(t)∆g(t)

T

∆g(t)
T
∆x(t)

. (17)

Search direction in BFGS is selected according to Eq. (15). In the first iteration,
the Hessian matrix can be selected as the unit matrix or derivative of the Jacobians
matrix. ∆w value seen in Eq. (16) is calculated by Eq. (17). ∆w is the change of
weight at tth iteration [31].

4.3 Scaled conjugate gradient

The scaled conjugate gradient (SCG) algorithm based on conjugate directions was
designed to prevent line search, which causes loss of time. All conjugated gradient
algorithms need a search at every stage. This search process is very time-consuming
in terms of computing. The scaled conjugate gradient algorithm developed by
Moller is an algorithm developed to reduce the burden of these over computations.
Step size in the SCG algorithm is a function of the second degree of convergence of
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the error function. This makes it more robust and independent than user-defined
parameters. The step size is predicted with different ways of approaches.

sk =
E′ (ωk + σkpk)− E′ (ωk)

σk
+ λkpk, (18)

αk =
g2k+1 − gTk+1gk

gTk gk
, (19)

pk+1 = −gk+1 + αkpk, (20)

where s is the Hessian matrix approximation. E is the total error function, with
E′ is the gradient of E. λ and σ are scaling factors. αk factor and direction of
the new search given in Eq. (19) and Eq. (20). The independent update of design
parameters at each iteration is a key factor for the success of the algorithm and
provides a significant advantage over line search based algorithms [32].

5. Experimental and simulation results

In this study, vibration analyses of trains at three different speeds were performed
with the acceleration sensors placed on the rail. Train speeds were predicted by us-
ing three types of artificial neural networks algorithms. Fig. 6 shows the real-time
estimation results of the vibration by the train at 40 km/h. LMBP, SCGB and
BFGS algorithms were used to prediction. The minimum error rate for each acti-
vation function combination was determined using the mean squared error (MSE)
metric. The MSE measures the proximity of a regression line to a set of points by
calculating the average of the squared differences between the points and the re-
gression line. The negative signs are eliminated by squaring the differences, which
also gives more emphasis to larger deviations. A low MSE value indicates a high
level of accuracy in the forecast as it represents a closer relationship between the
predicted values and the actual values.

MSE =

N∑
i=1

(oi − ti)
2

2
. (21)

Here oi is the outputs of purposed ANN models, ti is experimental value and
N is total number of data. The regression value “R” quantifies the correlation
between the predicted outputs and actual targets. The best prediction result in
terms of the number of iterations and response speed was obtained with the LMBP
algorithm. Fig. 7 and Fig. 8 shows the estimation results for the train with a speed
of 52 km/h and 60 km/h, respectively. The LMBP algorithm carried out a better
performance than other algorithms again. Considering the best MSE value is 0 and
the best regression value is 1, the MSE and regression values, given in Tab. II, are
acceptable for all algorithms. Also, this can be seen from the figures. Nevertheless,
in a real-time estimation, it is essential to make fast and accurate predictions.
For this purpose, SCGB and BFGS algorithms perform worse prediction and need
more time and more iteration to prediction than the LMBP algorithm. Although
the vibration that occurs on rail has high amplitude and fluctuation, the LMBP
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Fig. 6 Experimental and ANN results for the vibration of the train with 40 km/h.
(a) Measured data and LMBP prediction results. (b) Measured data and SCGB
prediction results. (c) Measured data and BFGS prediction results.

algorithm fits almost perfectly to measured data in all vibrations of different speed
conditions, and the LMBP algorithm needs less time to predict. In addition, it
is seen from the figures that the occurrence time of high amplitude vibrations at
slow speed is in an extended period, but the vibration amplitude is low, and the
occurrence time al of high amplitude vibrations at high speed is shorter, but the
vibration amplitude is higher than the others. For instance, vibration values change
between about 12m/s2 and 35m/s2 at 40 km/h and it takes about 40 seconds.
Besides at 60 km/h, vibration values change between about 20m/s2 and 140m/s2

and it takes about 22 seconds. This situation is expected at different speeds of the
train.
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Fig. 7 Experimental and ANN results for the vibration of the train with 52 km/h.
(a) Measured data and LMBP prediction results. (b) Measured data and SCGB
prediction results. (c) Measured data and BFGS prediction results.

6. Conclusions and discussion

In this study, the neural networks approach was used to predict the speed of a
train by analysing the vibrations on the rails. The performance of the neural net-
work was evaluated using the mean squared error (MSE) metric, which measures
the difference between the predicted values and the actual values. The regression
value, which quantifies the correlation between the predicted outputs and actual
targets, was also calculated. An experimental measurement system was established
to gather the real-time vibrations caused by a moving train. Three different types
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Fig. 8 Experimental and ANN results for the vibration of the train with 60 km/h:
(a) Measured data and LMBP prediction results. (b) Measured data and SCGB
prediction results. (c) Measured data and BFGS prediction results.

of neural network algorithms were employed and compared to determine the opti-
mal neural estimator. The results showed that the LMBP algorithm was able to
estimate the speed of the train quickly and accurately from the vibrations, with a
low MSE and high regression value.

The goal of this research was to develop a neural predictor for train speeds from
rail vibrations, and the LMBP algorithm proved to be effective in achieving this
goal in a short amount of time. This means that a low-cost, vibration-based level
crossing control system could be installed near crossings, reducing downtime and
waiting times for drivers and pedestrians. In the proposed ANN and vibration-
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Speed NN sH nI nH no MSE R
[km/h] Type

40 LMBP 2 1 20 1 0.00001 0.99997
SCGB 2 1 20 1 0.01870 0.94239
BFGS 2 1 20 1 0.02750 0.91398

52 LMBP 2 1 20 1 0.00001 0.99998
SCGB 2 1 20 1 0.00249 0.99586
BFGS 2 1 20 1 0.00211 0.99649

60 LMBP 2 1 20 1 0.00001 0.99996
SCGB 2 1 20 1 0.01030 0.95457
BFGS 2 1 20 1 0.00968 0.95730

Tab. II Training parameters of neural networks and MSE and regression values of
proposed networks. sH hidden layer number, nI number of neurons in input layer,
nH number of neurons in each hidden layer, no number of neurons in output layer,
MSE mean square errors, R regression.

based system, the presence and speed of the train can be detected by vibrations
on the rails, minimizing cost and human error. The control system + detection
system will be installed in a compact structure near the level crossing, instead of
far away with long cables.

Today, level crossing control systems are installed near the level crossings, but
the sensors and detection systems are located far away and require separate setup
and long cables. This has disadvantages such as exposed pole wires at level cross-
ings, the danger of wires breaking, and the cost of separate system installation
and maintenance. One of the biggest disadvantages of existing systems is that
the barriers close independently of the train speed, causing long waiting times and
leading to impatient people trying to cross the level crossing diagonally, resulting
in accidents.

In future work, a prototype of a smart level crossing design system will be
developed and the artificial neural network approach will be applied. The results
of this study will inform the use of the proposed network system to analyse and
predict vibration parameters in railway systems under different conditions (different
weather conditions, deformations that may occur on the rails, different loading
conditions and train types etc.). Advanced intelligent sensor technology can also
be utilized in train and railway systems to prevent traffic accidents.
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