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Abstract: Previous studies are mainly focused on the works that depth image
is treated as flat image, and then depth data tends to be mapped as gray values
during the convolution processing and features extraction. To address this issue,
an approach of 3D CNN hand pose estimation with end-to-end hierarchical model
and physical constraints is proposed. After reconstruction of 3D space structure of
hand from depth image, 3D model is converted into voxel grid for further hand pose
estimation by 3D CNN. The 3D CNN method makes improvements by embedding
end-to-end hierarchical model and constraints algorithm into the networks, result-
ing to train at fast convergence rate and avoid unrealistic hand pose. According
to the experimental results, it reaches 87.98 % of mean accuracy and 8.82mm of
mean absolute error (MAE) for all 21 joints within 24 ms at the inference time,
which consistently outperforms several well-known gesture recognition algorithms.
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1. Introduction

In order to display and simulate the details of hand action, hand pose estimation
algorithm is required to locate all 21 joints in the hand model with high efficiency
and precision from a depth image, which is essential for the development of human-
computer interaction (HCI) technical solution. Since the mapping between depth
image and articulated hand gesture is highly nonlinear and difficult, it remained
a challenging task to build an efficient, reliable and functional gesture recognition
and control system.

Previous studies are mainly focused on the works that depth image is treated as
optical flat image, and then depth data tends to be mapped as gray values during
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the processing and features extraction. Labeled pixels are merged to generate joints
location by clustering algorithm such as mean shift, after pixels are classified into
hand parts by random decision forests (RDF) [1]. Identification of joints by direct
regression from Hough forests [2] has also been tried to obtain the optimized final
results.

Thanks to the popularity of convolutional neural networks (CNN), substantial
progress towards highly precise hand pose estimation has been made. Many algo-
rithms have been proposed in the literature expanded from single depth map to
depth sequence. DeeplJoint [3] detects hand joints by Gaussian heat-map as mid-
dle representative, which down-scaling to 18 x 18 by max-pooling reduction is an
obstacle for high precision. Moreover, z-coordinate of joint position is deduced by
depth value after identification in 2D map is especially difficult for the occluded
joint to obtain. DeepPrior [4] embeds a bottleneck structure into the fully con-
nected layer to force the model to learn “pose prior” in lower dimensional space,
and then refinement with overlapping regions (ORRef) is applied to fine-tuning the
final outputs. DeepPrior++ [5] boost the performance of DeepPrior network by
data augment, refined hand localization and residual network block.

Gesture recognition based on spatio-temporal data from continuous depth se-
quence has also made a new direction in the recent research. 3D CNN is intro-
duced for VIVA challenge dataset to [6] combine information from multiple adjacent
frames. Convolutional recurrent neural network module (CRNN) [7] which is the
integration of convolutional neural network (CNN) and recurrent neural network
(RNN) shows that it makes great improvements of the accuracy in the hand pose
estimation experiment. Pavlo et al. use a unified recurrent three-dimensional con-
volutional neural network (R3DCNN) architecture [8] to segment and recognize
hand action with connectionist temporal classification (CTC) as loss function.

Although depth image is displayed in 2D formation, pixels captured by depth
sensor are able to provide 3D spatial structure of captured objects in the scene,
which is essentially different from the traditional optical image. Many researchers
come to realize that images captured by the same hand gesture are co-related
in multi-view projection, thus it is possible to utilize or approximate the hand’s
appearance from a different viewpoint by learning its latent representation. Ge et
al. [9] first convert image into 3D point cloud, then project them onto three orthog-
onal planes and each one is fed into a different CNN to regress for 2D heat-maps.
Lastly, they are fused to output final 3D coordinates of hand pose estimation. Poier
et al. implement the observations by a CNN with encoder-decoder architecture [10],
which consistently surpasses the counterparts with learned latent representations.

More and more recent researches are focused on algorithms directly working in
3D space which are beyond the concept that depth image is just the projection of
hands on planar space. 3D volumetric representations are generated by truncated
signed distance function (TSDF) after 3D reconstruction of hand depth image into
3D point cloud [11]. Then they are fed into the 3D CNN to learn the mapping be-
tween 3D volumes and 3D joint locations. V2V-PoseNet [12] first converts 3D point
cloud to 3D voxel grid, and then processed it with 3D CNN model to produce a 3D
probability density map for each joint. At inference time, detection of each joint
on 3D heat-maps expanded from 2D heat-maps similar in DeepJoint [3] boosts the
performance significantly. Compared from 3D volumetric representations produced
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by TSDF and voxel grid, Ge et al. [13] inputs 3D point cloud into 3D CNN directly
with oriented bounding box (OBB) to transform the original hand into canonical
shape which is robust to variations in global orientation.

With 2D CNN substituted by 3D CNN, methods commonly outperform in the
precision of the hand pose estimation in the following reasons. 1) 2D CNN are not
suitable for the prediction of 3D coordinates due to the lack of spatial information.
2) The mapping between 3D coordinates and a 2D image is highly nonlinear, which
is difficult for training. 3) Position in z-coordinate deduced by depth value hurts
the performance of occluded joints.

An approach of 3D CNN hand pose estimation with end-to-end hierarchical
model and physical constraints is proposed. Reconstruction of hand into 3D point
cloud makes recognition model focused on the 3D spatial structure, where depth
information is fully utilized. Afterward, 3D model is converted into voxel grid
for further gesture recognition and pose estimation by regression-based 3D CNN.
Although direct regression of the 3D coordinates is less accurate than heat-map
detection, it achieves better performance after adding hierarchical and physical
constraint algorithms.

The contributions in this thesis can be mainly summarized as follows.

Firstly, hierarchical cascaded model is normally deployed in previous 2D CNN
method, but generally it is hard to apply in the 3D CNN due to huge scale of
its framework or long-latency caused by multi-stage operation. Conversions from
sparse point cloud to dense voxel grid and shared convolutional layers into the
networks are both help to reduce the dimension of input data in large scale. End-
to-end hierarchically structured CNN architecture is an alternative to multi-stage
method in order that shorten the latency of the estimation is essential to HCI so-
lution. Different hierarchical architectures have also been tested in the experiment
to find the best case scenario.

Secondly, explicit spatial constraints by embedded into the loss function in order
to rectify the estimated pose which does not properly fit with appearance, and they
perform especially when occlusion or self-occlusion occurs. We presume joints on
the same finger are supposed to be collinear or coplanar. Thus we formulate the
global loss function along with these constraints applied to hand joints during the
training process in the case of violation of this condition. To our knowledge, this is
the first work to integrate 3D CNN with end-to-end hierarchical model and physical
constraints for hand pose estimation method.

2. Method

A. 3D voxel grid To begin with, after hand is segmented from depth image,
reconstruction of 3D point cloud from hand region is shown in Eq. 1, where I, is
width of the image, I, is height of the image and f is defined as focal length of the
camera. They are 320, 240 and 241.42 respectively in Intel®) RealSense™ sensor.
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I, 1
r = (u — 2) Xd(y,v) X ?
I 1
y = (2 — v) Xd () X ? (1)
z = d(u’v)

Directly processing 3D point cloud without proper reduction in 3D CNN is
high consumption on memory resources and less efficiency in computation. In the
experiment, we adopt GPU as hardware device during the training and inference,
whose memory size is 6-12GB in common. To avoid memory exhaustion due
to large storage in tensor by sparse raw point cloud, voxel is introduced from
Voxnet [14] and VoxelNet [15] aimed to reduce the number of inputs and increase
computational efficiency. Voxel which is a discretized binary variable represents
a basic unit of graphic information in 3D space compare to pixel in 2D plane.
Voxelized grid is much faster than TSDF [16] or D-TSDF [11] algorithm on CPU
to shorten the latency in the pre-process stage of hand recognition.

Each cloud point is mapped to discrete voxel coordinates by occupancy grid
models as shown in Eq. 2. V; ;1 is defined as 1 if the voxel is occupied by any
depth point and 0 otherwise. Volumetric representation of hand has a fixed voxel
size in our model. The resolution is chosen by 80 x 80 x 80 in order to avoid
either loss of detail information when the grid size is too small or enlargement of
computational cost when the grid size is too big.

0, Points(zy,.) =0

Viigk = { 1, Pointsgy.) > 1 .

The pipeline of 3D volumetric representation prepared for the next stage of 3D
CNN processing from depth datasets is visualized in Fig. 1.

=S =

Fig. 1 Reconstruction of 3D point cloud from hand region in depth map, then be
converted into 80 x 80 x 80 size of 3D wvozel grids by occupancy models.
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B. Hierarchical method Our hand model has 21 joints as the same number
and position as the hand labeled in MSRA15 datasets [17], including TIP, DIP
(distal interphalangeal point), PIP (proximal interphalangeal point), MCP (meta-
carpophalangeal point) on each finger and palm keypoint. Different from other
fingers, MCP on thumb is much close to the palm.

It is confirmed in [18] that single direct regression model has difficulty in the
prediction of the whole 21 joints on hand model, since it may has insufficient
capacity to learn the complex variations of hand. Therefore, deployment of a
hierarchically structured model which has multiple branches for global features
and local features is highly recommended to achieve better performance for 3D
articulated hands.

Hierarchical method divides the gesture recognition problem into sub-tasks such
as hand joints by finger in order that global hand pose can be separated into a
serial of local poses. Solving such complex problems in multi-stage by cascaded
method is previously used in RDF and CNN, which reduces the nonlinearity of
global hand pose. Cascaded method from coarse to fine is heavily time consuming
although it works better than single-stage method during the inference since it
iteratively updates results from previous stages. Training the network in an end-
to-end way and fusing the outputs of each branch into the final results once for all
can significantly improve the real-time performance of pose estimation algorithm.

Thus in our model hand pose estimation from holistic regression is replaced
by end-to-end hierarchically structured approach, which is divided into one global
hand pose branch and five local hand pose branches. Global branch composed of
fingertips and palm joint is focused on the recognition of basic hand gesture, while
five local branches each one is concentrated on the estimation of each finger. Over-
lapped joints such as six key joints will be predicted in multiple values since each
branch outputs once during the inference. Obtaining the final result by computing
average value of them will further improve the accuracy of the hierarchical model.

Detail solution shown in Tab. I. reveals fast convergence during the training
in the experiment. Our solution defining six key joints as representative of basic
hand gesture achieves better performance than previous method which utilizes the
whole 21 joints as global hand pose.

C. Physical constraints Structure constraints between correlated joints and
fingers have been introduced in many works of literature [19,20] to estimate pose
of articulated hands. It has been proved in [21] that unrealistic hand pose are
avoided by the application of explicit modeling of physical constraints and spatial
relation. Previous studies are mainly focused on the traditional approach when
physical constraints are applied in pose verification and error recovery after formal
hand recognition. By adding penalties into loss function when physical constraints
of hand are violated during the learning stage, such constraints can be integrated
into the holistic estimation model by end-to-end training.

There are two types of constraints in our spatial relation model, collinear or
coplanar from key joints on each finger. According to the spatial relation of these
joints, loss function can be computed in three different ways, and they are described
as follows.
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Branch ~ Global or local Joints in Ilustrate of joints”  Number of
name hand pose the branch location joints
palm ring_TIP mz:ldleleP

index_TIP

index_TIP
Palm Global middle_TIP
& tips hand pose ring TIP
little_TIP
thumb_TIP

thumb_TIP

palm
index MCP
Palm Local index_PIP
& index hand pose index_DIP
index_TIP

palm fmiddleﬁTlP

middle MCP midgle_DIP

Palm Local middle_PIP il
& middle hand pose middle_DIP
middle_TTP

palm

p alm rlngTTIP

ring MCP
Palm Local ring_PIP
& ring hand pose ring DIP
ring_TTP

ringl_DIP
ring, PIP

ring, MClI

palm

p alm ringTTIP

little MCP ring DIP

Palm Local little_PIP ring| PIP
& little hand pose little_DIP ting,MC
little_TIP

palm
thumb_MCP
Palm Local thumb_PIP thumb_TIP
& thumb hand pose thumb_DIP thumb_DIP
thumb_TIP thumb_PIP

palm thumb_MCP

Tab. I Hierarchical method by branching strategy in detail.
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Collinear relation from any three different joints belonging to the same finger
can be checked by Eq. 3 where thr; is set to 0.02, since the linear distance
between two points is the shortest.

| PLPs|| + || P P3| < ||[PLPs3|| x (14 thry) (3)

If given joints P, P>, P3 are considered to be collinear from ground truth
Joints labeled in depth image datasets, then we compute vector v = P; P3 as
the direction of this line and also its unit vector e =1 Vector v’ and

its unit vector €’ are calculated in the same way by the predicted location
of these three joints from the networks. Two lines with respect to ground
truth and inferred joints should be in same direction when the recognition
model is able to output accurate joints’ position in 3D space. If they meet
this condition, the result of dot product e - e’ = |le|| ||€'|| cos 8 is supposed to
be close to 1. So the loss for collinear joints is defined in Eq. 4 where thrs is
set to 0.95 in the experiment.

Ccollinear = tth - min(th'r% € 6/) (4)

If neither ground truth joints nor inferred joints are considered as collinear by
Eq. 3, we try to check coplanar spatial relation for all subsets of three joints
in a finger. Under this situation, direction of line is replaced Mle M
normal vector of these three joints through cross product N = PP, X Py P3
and its unit vector N, by ground truth joints or N.’ by inferred joints. Plane
normal vector from ground truth joints must be parallel to the inferred one
if dot product of N, - N,/ is close to 1, which shows the estimation model
can acquire quite precise outputs. Therefore, the loss functions for coplanar
joints are computed in the similar way as shown in Eq. 5.

Ccoplanar = thry — min(thr% N, - Ne/) (5)

Apparently, loss value should be a large number in the situation that ground
truth joints are not collinear, while inferred joints checked by Eq. 3 are con-
sidered to be collinear. Theoretically cross product of P; P, and P, P3 should
be zero if Py, Py, P3 are collinear, but it usually is a very small value in prac-
tical application. The influence of this small miscalculation will be certainly
introduced into the constraints method when computing the unit vector of
plane normal vector due to its length is amplified to 1. To avoid this issue,
the result of N, -N,' is set to zero directly under the circumstance in practice,
then the final result of loss function is thry by Eq. 5.

D. 3D CNN architecture 3D residual block extended from 2D residual block in
resnet [22] is deployed in 3D CNN architecture as basic convolution processing unit.
To further enhance the performance, hybrid dilated convolution framework [23]
(HDC) is introduced for preventing gridding effect and increasing receptive field.
Each 3D residual block is comprised of » = 1 and r = 2 dilated convolution layer as
shown in Fig. 2, which attains accurate prediction while reducing the computational
cost.
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Our 3D CNN architecture by hierarchically structured model as shown in Fig. 3,
first utilizes original 3D CNN layer in the beginning stage with kernel size at 7 to
significantly decrease the cost and memory resources in computation. Next it
shares features in two earlier network layers by using same 3D residual blocks. In
the end, main branch is divided into six sub-branches of convolution blocks and
fully connected (FC) layers to regress global and local pose jointly.

Each branch learns more specific features for basic hand gesture or each finger
by optimizing network parameters in order to minimize the loss function for global
and local hand pose between predicted values and ground truth values of hand
joints.

|| k=3, r=1, Dilated 3D CNN + 3D Batch Normalization + Relu
|| k=3, r=2, Dilated 3D CNN + 3D Batch Normalization

B <=1, Dilated 3D CNN + 3D Batch Normalization

- [~ + Skip-connection + Relu

Fig. 2 3D residual block by HDC.
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Fig. 3 3D CNN architecture by hierarchically structured model.
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Loss function is defined in Eq. 6 where « is set to 15 to enlarge the penalty values
of physical constraints. Each component of all cost is explained in the following
three equations.

Cc = Cglobal + Cﬁngers + a X Cconstraints
1o - 2
Cglobal = 6;“3(%%3)—3(%9’5)“
1 5 5 ~ 2
Cﬁngers = EZZHPﬂ] (‘rvyvz)_Pf,j (x7y7Z)H
f=1j=1
M N
C(constraints = Z Ccollinear + Z C'coplanar (6)
m=1 n=1

3. Experiment

A. Experiment setup MSRA15 [17] hand depth datasets labeled 21 accurate
ground truth joints’ position in 3D space satisfy the requirements according to our
hand model, which captured 76375 frames of hand depth images with resolution
at 320 x 240 from 9 subjects. Because training 3D CNN model is by far the most
time consuming part, a 6-core CPU and a NVIDIA RTX 2070 GPU are employed
to keep the training time practical. We execute the experiments under Linux and
GPU-based PyTorch 1.5.0 resulting in a huge speed boost.

The network is trained with mini-batch gradient descent and Adam optimiza-
tion algorithm, and decay learning rate strategy is also introduced. At the end of
experiments, fine training 3D CNN with end-to-end hierarchical model and con-
straints algorithm to 20 epochs converges our estimation network.

B. Experiment results Mean 3D distance error to each joint and success rate of
all joints on different error thresholds are applied as two evaluation metrics in the
experiment. For better comparison, other pose estimation methods are also tested
in the experiment, including 3D heat-map detection, 3D heat-map detection by a
hierarchical model, direct holistic regression as baselinel, baseline2 and baseline3
respectively. To our knowledge, any end-to-end hierarchical model for 3D heat-
map detection can be only executed by considerable enlargement of complexity of
the model, thus making inference in real-time infeasible. Physical constraints by
adding penalties into loss function can only be applied in direct regression model,
since the outputs of 3D heat-map are only middle representatives to final result of
joints’ location.

Firstly, we compute Euclidean distance between predicted coordinates and
ground truth coordinates for per hand joint in 3D space. The sequence numbers
in Fig. 4 from 1 to 21 corresponding to each joint are arranged in order as follows:
palm, index MCP, index_PIP, index_DIP, index_TIP, middle MCP, middle_PIP,
middle_DIP, middle_TTP, ring MCP, ring_PIP, ring_DIP, ring_TIP, little- MCP, lit-
tle_PIP, little_DIP, little_TIP, thumb_MCP, thumb_PIP, thumb_DIP, thumb_TTP.
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baselinel

baseline2

baseline3

3D CNN with end-to-end hierarchical model
our approach

15.01

mean 3D distance error (mm)

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21
sequence number for joint type

Fig. 4 Mean 3D distance error of per joint on MSRA15.

Secondly, success rate of all joints on different error thresholds is recorded to
draw the curve in Fig. 5. Since distance between adjacent joints is commonly larger
than 15mm, error threshold set to 15 mm is reasonable. The success rate within
the threshold is up to 87.98 % in our method.

100% -
=
S 90%
4
£ 80%-
=
[ =
£ 70%
=
2 60% -
v
2
5 50% 1
T 40%-
°
o 30%
b baselinel
E 20% | baseline2
g 10% baseline3
S 3D CNN with end-to-end hierarchical model
v 0% our approach

0 5 10 15 20 25 30 35 40
distance error thresholds (mm)

Fig. 5 Success rate of all joints for different thresholds.

Moreover, we compare state-of-the-art approaches between 2D CNN and 3D
CNN with respect to ours for average 3D error of all joints in Tab. II. Comparison
between the proposed method and existing 3D detection methods is also shown in
Tab. ITI. Both of them show that our 3D CNN approach outperforms others except
for baseline2.
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Approaches Average Approaches Average
of 2D CNN 3D error [mm] of 3D CNN 3D error [mm]
Sun et al. [18] 15.2 Ge et al. [11] 9.6
Ge et al. [9] 13.2 Our approach 8.82
DeepPrior++ [5] 9.5

Tab. IT Average 3D error on MSRA15 between 2D CNN and 38D CNN.

Approaches Average 3D error
3D heat-map detection (baselinel) 9.12mm
3D heat-map detection by a hierarchical model (baseline2) 8.43 mm
direct holistic regression (baseline3) 10.58 mm
3D CNN with end-to-end hierarchical model 9.35mm
3D CNN with end-to-end hierarchical model and 8.82 mm

physical constraints (our approach)

Tab. IITI Average 38D error of 3D detection methods on MSRA15.

In addition, duration time is also recorded in Tab. IV. Considerable enlargement
of complexity of the hierarchically structured model increases the intensity and
duration both in training and testing. The application of physical constraints with
penalties into loss function which is only performed during the training has no
effects on the duration time for testing. Most of methods can execute hand pose
estimation in real time except for baseline2 which is not fast enough to fulfill the
task for the depth image sequences at 25 frames per second.

Baselines Training  Testing
1 baselinel 52 hours 30 ms
2 baseline2 190 hours 108 ms
3 baseline3 10 hours 10.8ms
4 3D CNN with end-to-end hierarchical model 30 hours  22.3ms
5 3D CNN with end-to-end hierarchical model and 40 hours  22.3ms

physical constraints (our approach)

Tab. IV Duration time for training and testing.

C. Discussion Hand pose estimation methods have been evaluated as shown in
Fig. 4, Fig. 5 and Tab. II, Tab. III. Although baseline2 attains highest accuracy in
our experiments, it is not suitable for practical deployment in real application due
to its long-latency in the inference. Our approach achieves better performance in
high-accuracy than other benchmarks within real-time.
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3D CNN achieves higher precision than 2D CNN method for it makes full utilize
of spatial information provided by depth values. Our approach makes great im-
provements when hierarchically structured model is applied to fuse the outputs of
each branch into the final results. Physical constraints algorithm is only performed
in direct regression model which is able to avoid unrealistic hand pose as shown in
Fig. 6.

80 -
B0
40 ~

20 +

-20

404

60 -

400\(—‘// 40 400 \/"K—A/—‘ 40 4DDV4D
20 0 20 np 20 g 20

350 40 - 350 " ag 20 350 40 20

Fig. 6 Hand skeleton model by ground truth (left), by 3D heat-map detection with-
out physical constraints (middle), direct regression with physical constraints (right).

As shown in Fig. 7, our 3D CNN approach is able to acquire accurate hand
shape in various typical poses and orientations from depth image.

4. Conclusions and future works

In this paper, we have proposed an optimized 3D CNN approach for hand pose
estimation to create hand skeleton model by all 21 joints in 3D space, which is es-
sential to display and simulate the details of hand shape and action. It is observed
that our 3D CNN approach with end-to-end hierarchical model and physical con-
straints achieves higher performance than most of existing baselines. Within short
processing time, our approach makes hand pose estimation performed in real-time
(£ 24ms on RTX 2070 GPU).

In the future, our approach is capable of application in the LiDAR-based hand
pose estimation, which has the advantage for its longer effective sensing distance.
Depth image datasets with precisely labeled joints are first utilized to pre-train
the gesture recognition model due to their ease of obtainment, then we plan to
fine-tuning the model by small amounts of training 3D points data captured from
LiDAR, and expect similar conclusions could be made.
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Fig. 7 Exzamples of our experiment results.
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