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Abstract: Segmentation of an individual tooth in dental radiographs has great
significance in the process of orthodontics surgeries and dentistry. Machine learning
techniques, especially deep convolutional neural networks can play a key role in
revolutionizing the way orthodontics surgeons and dentists work. Lately, many
researchers have been working on tooth segmentation in 3D volumetric dental scans
with a great degree of success, but to the best of our knowledge, there is no pre-
trained neural network available publicly for performing tooth segmentation in 3D
cone-beam dental CT scans. The methods which so far have been proposed by the
researchers in this domain are based on complex multistep pipelines. This lack of
the availability of a pre-trained model blocks the path for further explorations in
this domain. In this research, we have produced a deep learning model for tooth
segmentation from CBCT dental radiographs. The proposed model can segment
teeth in CBCT scans in a single step. To train the proposed model, we obtained a
dataset consisting of 70 3D CBCT volumes from a local health facility. We labeled
the ground truth through a semi-automatic method and trained our neural network.
The training yielded a validation accuracy of 95.57% on a binary class semantic
segmentation of the 3D CBCT volumes. The model is successfully able to segment
teeth, regardless of their type from the background in a single step. This eliminates
the need of having a complex and lengthy pipeline which many researchers have
been proposing. The proposed model can be extended by incorporating labeling
schemes. The custom labeling schemes will help healthcare professionals to perform
the labeling as per their needs. The produced model can also provide a basis for
further research in this domain.
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1. Introduction

The application of machine learning models in the medical field has become popu-
lar. Machine learning has been used for the analysis, diagnosis, and understanding
of the medical conditions in various scanning methods. The reason behind it is the
exceptional results produced by deep convolutional neural networks in the recent
past. Common applications of semantic segmentation through deep convolutional
neural networks in the field of medical imaging are tooth segmentation [2, 14, 20,
4], Alzheimer’s disease detection [5], breast cancer diagnosis [7], osteoporosis de-
tection in panoramic jaw radiographs [13], detection of COVID-19 in chest X-ray
radiographs [9], and more [3, 21]. Transfer learning from popular deep convolu-
tional neural networks has been producing exceptional results in classification and
segmenting teeth in dental radiographs too [13].

Isolation of a single tooth is important in dentistry for critical analysis and
diagnosis of the patient’s dental condition. In dentistry, generally, three types of
scans are used by the practitioners.

– 2D dental radiographs [10]

– 3D surface mesh optical scanning [28]

– CBCT dental radiographs [2, 20, 4]

The use of the type of scan depends on the condition of the patient and the need
of the practitioner. The 2D dental radiographs provide basic X-ray imaging [10].
The 3D surface mesh is obtained through optical scanners. The 3D surface mesh
optical scans provide detail of the surface of the teeth in 3D space [28]. The state-of-
the-art in dental radiography is the cone-beam CT scanning (CBCT). The CBCT
scans provide the volumetric scan of the jaw [4]. The inside detail of the teeth and
jawbones, including soft tissues, gingiva, and soft bones are visible in form of 3D
volume.

Though CBCT scans are currently the most advanced form of dental scanning,
the other forms of scanning still have significance. Dentists and orthodontics sur-
geons prescribe the type of scanning based on the condition of the patient and
based on the type of procedure to be performed on the patient. For example,
a panoramic 2D X-ray is advised by the dentist to examine a broken or cracked
tooth. The 3D dental surface optical scanning is advised before scaling of the teeth
or when alignment of the teeth is to be performed. The CBCT dental scans pro-
vide inside detail of the teeth. A CBCT scan is referred by the dentists when there
are nonerupted and overlapping teeth inside the gingiva of the patient. CBCT
scanning also helps in conditions such as broken teeth, cracked teeth, rotten teeth,
root canal treatment, alignment, filling and filing of the teeth, and extraction of
the teeth.

2. Related work

Medical image processing started as soon as the computer experts found a way to
acquire and load medical imagery into the computers. They started to work on
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easing and automating the analysis and diagnostic process through medical im-
age processing [16]. The methods of medical image processing started with basic
imaging processing techniques. For example, edge detection through geometrical
methods, and evolved to the state-of-the-art deep convolutional neural networks
based methods [16]. Today a variety of diseases and disorders detection have been
made through machine learning. From the detection of thin hairline bone fracture
in X-ray to the detection of novel coronavirus infection, that emerged in 2019, in
chest X-rays are being done through deep machine learning models. The segmen-
tation and classification of human teeth are also not an exception. It has been
done through computer-aided systems for decades. Like any other medical image
processing, tooth segmentation has also been evolved from basic geometrical detec-
tion methods through the state-of-the-art deep convolutional neural networks [28].
Following is a brief introduction of the similar work carried out by the researchers.

It is established among the researchers in the field of the segmentation of the
teeth in CBCT volumetric radiography, that segmenting and identifying an indi-
vidual tooth through a single-stage multiclass neural network is unrealistic [2]. A
group of researchers in the year 2020 proposed a pipeline for segmenting and la-
beling of teeth in two stages [2]. They first used a fully connected neural network
to identify tooth surface and tooth region and in the second stage, they used a
marker-controlled watershed algorithm for reconstructing the individual tooth in
3D space.

In 2019, a group of researchers from The University of Hong Kong proposed
a two-stage methodology for segmentation and identification of teeth in CBCT
volumetric radiographs [4]. They proposed a two-stage network for achieving highly
accurate tooth segmentation and labeling for identification. In the first stage of the
proposed method, an edge map is extracted and in the second stage, the edge maps
are passed to a region proposal network. A novel-learned similarity matrix is used
to eliminate the redundant proposals. The elimination of the redundant proposal
helps them in speeding up the processing by reducing the workload significantly.

In late 2019, a novel coronavirus emerged in China which caused SARS like
diseases. The disease caused by this novel coronavirus was called COVID-19. The
infection caused by the novel coronavirus first infects the upper respiratory system
but eventually ends up in the lungs, causing pneumonia. A group of researchers de-
veloped a machine learning model to detect the COVID-19 in chest CT scans. The
model is based on learning of structured latent, multiview representations [9]. The
proposed model can successfully discriminate COVID-19 from regular pneumonia
despite having similar symptoms and similar appearance. In their experiments,
they used a set of 2,522 chest CT scans of variety of patients including male and
female and of different age groups. Since the conditions and symptoms of pneu-
monia and COVID-19 are similar, and also the COVID-19 turns into pneumonia
if not treated properly, the researcher has included an inverse dataset as well. The
total number of 2,522 scans they used had 1,495 COVID-19 patients and the rest of
the 1,027 CT scans from pneumonia patients. The researchers have reported that
their model produced 95.5% accuracy, 96.6% sensitivity, and 93.2% specificity.

With the use of deep learning in tooth segmentation, researchers have been using
deep learning for detecting bone diseases like osteoporosis in dental radiographs.
Most segmentation problems are solved by researcher by retraining pre-trained
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networks such as GoogLeNet, VGG and ResNet. A group of researchers have
successfully performed transfer learning from VGG16 to achieve high accuracy in
detecting osteoporosis in dental radiographs [12]. To improve the accuracy, the
researchers finetuned VGG16 by modifying weights and achieved an accuracy of
85.8%.

Depending on the application, equipment used, and the kind of dataset in hand,
the methods of segmentation and classification are divided into the following three
broad categories.

– Segmentation in 2D radiographs [1, 25]

– Segmentation in 3D volumetric radiographs [27, 17, 19]

– Segmentation in 3D surface mesh dataset [28]

The literature review suggests that the above types of tooth segmentation are
attempted by the researchers using the following methods.

– Manual segmentation [29]

– Semi-automatic segmentation [15, 6]

– Fully automatic segmentation [18, 28]

While the manual segmentation usually involves an operator performing the whole
segmentation manually using pointing, dragging, outlining, and clicking, the other
two i.e. semi-automatic, and fully automatic methods have been attempted by the
researchers using the following models for general purpose or tooth segmentation.

– Geometrical models [26, 22]

– Active contour based models [30]

– Machine learning-based models [18, 28]

The machine learning-based models include the following methods:

– Unsupervised learning [23]

– Supervised learning [18, 28]

Since the research in hand is focused on a supervised machine learning model and
especially on the use of deep convolutional neural networks for segmenting and
classifying individual tooth, we will look deeper into the research found in the
literature related to this domain.

In the research presented in [18], the researchers have performed transfer learn-
ing from AlexNet [18] to perform segmentation, classification, and labeling in a 3D
CBCT dataset. The objective of this research is to automate the process of forensic
dental identification for identifying individuals in cases of mass disasters like earth-
quakes, tsunamis or fire outbreaks, etc. The automation involves the comparison
of the postmortem dental CT report with the antemortem dental CT scan report.
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To better understand the 3D CBCT images and to simplify the identification
of the individuals, they transformed the 3D CBCT volumetric radiographs into 2D
panoramic images. Total of 52 original volumes were used as the training dataset.
For more simplification, they excluded teeth with artificial installations such as
braces, fillings, implants, etc. Due to the shortage of dataset of wisdom teeth, they
also excluded the wisdom teeth from segmentation and classification.

Since it is known that the machine learning models need a huge amount of
data to be able to train and avoid overfitting, they performed common data aug-
mentation methods to supplement the dataset. The common technique they used
included rotating the original images +10 and −10 degrees and intensity transfor-
mation using the gamma correction method.

They also exploited the AlexNet [11] to avoid drafting a deep CNN from scratch.
With transfer learning from the AlexNet and with the above-mentioned data aug-
mentation techniques, they achieved an overall accuracy of 91.0% in segmentation
and classification, which was favorable for identifying individuals in cases of mass
disasters.

In another research [28], deep CNN is used to segment and classify individual
teeth. The dataset used in this research is different from the one used in the research
earlier. The scientists used 3D surface mesh to experiment with tooth segmentation
and classification through deep convolutional neural network. A novel model has
been presented which achieved 99.06% accuracy generally and achieved favorable
accuracy in condition of rotten, missing, crowded, and featureless teeth.

2.1 Gap analysis

The literature review suggests that CNN based models are state-of-the-art in this
domain. However, the methods we found in the literature are mostly based on
multiple steps. Also, there is no publicly available pre-trained neural network for
evaluation. It is important to have an efficient pre-trained model for automatically
segmenting teeth in CBCT radiographs. This can pave the path towards effective
utilization of the CNN based model in practical dentistry.

3. Methodology

In our previous work, we proposed a deep learning model for segmenting 2D
panoramic dental radiographs into 9 classes. We proposed a feedforward deep
convolutional neural network with 5 sets of convolutional layers by batch normal-
ization and ReLu layers. We trained the model with 116 2D panoramic dental
radiographs [10]. The model yielded an accuracy of 80% accuracy, surpassing
VGG16 [24] which yielded 72% accuracy in similar training conditions.

For this research, we modified our network to add the capability to handle 3D
volumetric data. After testing several different configurations, we finally obtained
a stable version of the network with 38 layers that yielded promising results.
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3.1 Dataset and statistics

It is a common understanding among researchers that a deep learning model will
always need a huge amount of training data. It is not always easy to obtain a huge
dataset that is enough to train a deep learning model. Especially in the domain of
medical image processing, it is even difficult to manage a huge dataset. The other
problem with the research at hand that we faced is to find an annotated dataset
that can be used to train our model for performing semantic segmentation. The
CBCT radiography is relatively a new technology in Pakistan. We did not have
many options. Luckily, a local dental college and hospital agreed to provide us the
required dataset. We obtained 70 3D CBCT volumetric radiographs in DICOM
format from this facility.

The figures show a raw instance from the 3D CBCT dataset. Fig. 1 shows a
side-to-side view of the 3D volume, Fig. 2 shows the same volume from the front
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side. In Fig. 3, we can see the same volume from the top and in Fig. 4 it is shown
from the bottom-top side.

Although, we obtained a dataset that was good for our research, the problem
that we faced was that the dataset was not annotated. Annotating a 3D volumet-
ric dataset is a very tedious and laborious job and it is not possible to annotate
many 3D volumes manually. So, we selected a subset of the volumes and semi-
automatically labeled them. We used the interpolation technique for labeling the
dataset.

In Fig. 5, a plane from the maxilla is seen. The categorical labels of the same
slice can be seen in Fig. 6. Similarly, Fig. 7 is a slice from the mandible. The
categorical labels for the same are seen in Fig. 8.
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In Fig. 9, Fig. 10, Fig. 11, and Fig. 12, we can see the 3D volume with the
ground truth annotation for the teeth from different angles.
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3.2 Preprocessing

Our dataset is obtained through a variety of CBCT equipment. The manufacturers
of the radiography equipment do not follow any common standard grey level inten-
sities for their radiographs. The setting in the software packages that work with
the CBCT equipment allows the operators to select the dimensions and size of the
scans. The volumes in our dataset varied from 450× 450× 450 to 550× 550× 550.
To obtain a balance between the size of the volume and the quality of the volume,
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we resized the volumes to 500× 500× 500 in the first step and then center cropped
the volumes in 496×496×496 size. In addition to resizing and cropping, we applied
histogram adjustments to balance the grey level intensities.

3.3 Model pipeline

The pipeline of our proposed methodology is illustrated in Fig. 13. The pipeline
of our proposed methodology starts by inputting a raw CBCT dental radiograph
straight from the CBCT scanner. In the first step, we remove any singleton di-
mensions from the volume. The input size of the volume that our method expects
is 496 × 496 × 496. To transform the input volume into the target input size, we
first resize the volume to 500× 500× 500, and then center crop the volume of the
size 496× 496× 496 to make the input volume uniform while retaining maximum
information. The manufacturers of the radiography equipment do not follow any
common or standard greylevel intensities for their radiographs. Histogram equal-
ization is a technique to make the greylevel intensities uniform of a greyscale image.
Since our dataset is obtained from more than one CBCT scanners, we employed
histogram equalization on our dataset to make it uniform.

To perform supervised training of the model, the raw data must be annotated.
To annotate the dataset to produce ground truth, we labeled our dataset into two
classes. In our binary class problem, one class for a tooth, regardless of its label,
and everything else is labeled as background.

Given the large size of the CBCT dental radiographs and given the computation
power and time available, it was not possible to train the model on the full dataset
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with full size. Keeping in mind these constraints, we broke down the volumes into
small patches through the random patch extraction mechanism.

It is a common understanding among researchers that machine learning models
need a huge amount of data for training. It is also widely accepted that the
augmentation of the visual datasets usually increases the accuracy of the deep
learning models by fulfilling the requirements of large datasets. To enlarge our
dataset, we applied traditional dataset augmentation techniques to surplus our
dataset. The visual data augmentation techniques include rotating left and right
to 10 degrees, horizontal flipping, and resizing [10]. For this research, we employed
only the flipping technique. The dataset size after augmentation is 140 volumes.
We splitted the dataset into 60%, 20% and 10% for training, validation and testing
respectively.

In the next step of the proposed pipeline, we extract 16 random patches from
each volume from random places with corresponding ground truth patches to pass
it to the neural network for feature extraction and training. At the end of the
proposed neural network, a 44×44×44 set of labels are predicted. Backpropagation
is applied for validating the results and weights are adjusted accordingly.

In the testing phase, a raw CBCT volume is first squeezed to eliminate any
singleton dimensions. In the next step, the test volume is resized to 500×500×500
voxels, and then center cropped to 496×496×496 voxels, which is a suitable size for
our deep network. Histogram adjustment is then applied as the last preprocessing
step to balance the gray level intensities. The test volume is then passed to the
network which spits out a label for each voxel in the volume to predict the teeth
and background for semantic segmentation.

3.4 Network design

Our proposed network design consists of 38 layers having 11 blocks of 3D convo-
lutional layers followed by batch normalization layers and Relu layers. The first
layer of our network is a 3D input layer of size 132× 132× 132× 1. The structure
of the proposed models can be seen in Fig. 14. The input layer of our network does
not perform any kind of normalizations on the input data. The input layer of our
network is followed by 11 blocks of 3D convolutional layers which downsample the
volumes to 44× 44× 44.

Fig. 14 Network design of the proposed model.
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In the 3D convolutional layers, we used filters of 3× 3× 3 voxels with a stride
of 1 voxel at a time, i.e. 1 × 1 × 1 with a dilation factor of 1 × 1 × 1. In each
convolutional block, we increased the number of filters starting from 16 filters to
up to 128 filters, and then reduced the number of filters eventually to 2 to match
the number of classes to the binary classification. The ratio of tooth voxels in any
CBCT dental radiographs is 3% as compared to the background voxels. To solve
this huge class imbalance, we used Dice pixel classification layer. The Dice pixel
classification layer provides a categorical label for each voxel using generalized Dice
loss (GDL). Which eliminates the class imbalance problem. The GDL controls the
influence that each class contributes to a loss through weighting the classes by the
inverse size of the expected area.

3.5 Training

We carried the training through the adaptive moment estimation (Adam) optimizer
for a fast convergence with the computing power constraints. The input to our
network is a fixed 496× 496× 496× 1 3D volumetric image. The first layer of the
network, that is the input layer extracts 16 random 3D patches from the volume
of 132 × 132 × 132 size for convolutions. We used the random patch extraction
mechanism to extract the 3D patches because it is impossible to perform training
on full-size 3D volume due to the limited computation power and available time.
In parallel with the extraction of patches from the volume for training, we also
extracted ground truth labels for the same patches. We used a small batch size
of 8 for the training with an initial learning rate of 0.0001 with a drop factor of
0.95 on every 5 epochs. Our model yielded validation accuracy of 95.57%. Fig. 15
shows that how the training process converged.
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3.6 Results

We achieved promising results with the proposed methodology as can be seen in
Fig. 16 and Fig. 17. The arrow marker “1” in figure Fig. 16 and Fig. 17 indicates
the accuracy of tooth segmentation, however, certain parts of the mandibula bone
are also misclassified as teeth, which can be seen in Fig. 16 and Fig. 17 where
marked with the arrow marker “2”.
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indicates the exceptional segmentation performance by the proposed method as  indicated by the 
arrow marker “1”. 

Figure 18 shows the 3D reconstruction of the segmented slices. It is to be noted that the color 
labels as shown in Figure 18 are not network-predicted. The colors are used for visibility purposes 
only. There are various labeling schemes followed by the researchers for classification of the teeth 
[12] [23] [4]. This suggests that the dental surgeons and medical practitioners follow different 
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Fig. 17 Ground truth (left) vs network predicted (right).

It is noted that background voxels inside the teeth voxels are also correctly seg-
mented. This indicates the exceptional segmentation performance by the proposed
method as indicated by the arrow marker “1”.
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Fig. 18 shows the 3D reconstruction of the segmented slices. It is to be noted
that the color labels as shown in Fig. 18 are not network-predicted. The colors are
used for visibility purposes only. There are various labeling schemes followed by the
researchers for classification of the teeth [28, 18, 4]. This suggests that the dental
surgeons and medical practitioners follow different labeling schemes. We believe
that tying the proposed model with any particular labeling scheme may reduce the
usefulness of the proposed model. A custom labeling scheme can be incorporated
through a secondary model.
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3.7 Transfer learning for comparison

To compare the results of the model that we propose, we also performed transfer
learning from 3D versions of popular deep learning models within the fair condi-
tions.

3.7.1 3D U-Net

U-Net [21] is a deep convolutional neural network specially designed for working
with biomedical images. U-Net [21] is essentially a 2D deep convolutional neural
network for processing biomedical images in two dimensions. To process the volu-
metric data through U-Net, a third dimension is added to its layers with the same
parameters as used in two-dimensional U-Net implementation. For our research,
we adopted the 3D version of U-Net from this [3] research.

For retraining the 3D U-Net on our dataset, we used similar training conditions
and with the same parameters as used in our proposed model. Similar to our
proposed network, the 3D U-Net also accepts a 3D volume of 132× 132× 132× 1.
Since the dimension of our dataset is 496×496×496×1, we used the Random Patch
Extraction mechanism to randomly extract 16 patches from each of our 3D volumes
along with its ground truth and passed it to the input of the 3D U-Net as input.
The 3D U-Net has 70 layers with several downsampling and upsampling layers.
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The network eventually spits out a 44×44×44×1 response with categorical labels
for each voxel. For retraining the 3D U-Net, we used the same parameters that
we used to train our proposed network. As the optimizer, we used the adaptive
moment estimation (Adam) with an initial learning rate of 0.0001 with a drop
factor of 0.95 on every 5 epochs. Retraining the 3D U-Net on our dataset in fair
conditions yielded an accuracy of 95.71%, which is fractionally higher than the
accuracy yielded by our proposed network. More detail on the comparison, that
how our proposed model is still favorable is given in the results comparison section
later in this report.

3.7.2 3D ResNet

ResNet [8] is a popular deep neural network that essentially performs classification
on ImageNet 1000 class problem. In its essence, ResNet is a two-dimensional image
classification neural network. To train the ResNet, we adopted the 3D version of
the ResNet pre-trained model, used by the researchers to detect Alzheimer’s disease
in their research [5]. As compared to the promising results rendered by the model
we proposed, and the results produced by the 3D U-Net, the results produced by
the 3D ResNet are on the lower side. We achieved an accuracy of 80% in similar
training conditions.

3.8 Results comparison

Tab. I shows result comparison achieved by training the proposed method, 3D
U-Net and 3D ResNet. The training is performed using Adam optimizer. The
mini-batch size is 8 and the initial learning rate that we used is 0.0001 with a drop
factor of 0.95 after every 5 epochs. The results show that the proposed model is
by far favorable as compared to the other models.

A comparison of the 3 models is given in Tab. I.

3D U-Net DRNet 3D ResNet

Layers 58 38 71
Mean intersection over union (IoU) 0.60 0.70 0.48
Mean Dice score 0.86 0.90 0.36
Time to train [hours] 62 23 18
Validation accuracy [%] 95.75 95.54 80
Model size [MB] 70 4.3 121.4

Tab. I Training results comparasion.

The validation accuracy yielded by the 3D U-Net, the proposed model, and
the 3D ResNet are respectively 95.75%, 95.54%, and 80%. If we compare the
validation accuracy of the proposed model with the 3D U-Net, we do not see
any huge difference. However, if we compare the size of both the networks, the
proposed network model is significantly smaller in size. We infer that the proposed
model with a comparatively small size is as effective as 3D U-Net in terms of
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validation accuracy. However, with a small size and less time to compute, the
proposed method is favorable for this CBCT dental dataset. It is also noted that
the proposed model size after training is very small as compared to the competitors.
This makes the proposed model a better candidate for embedding directly into the
CBCT equipment and supporting hardware.

The performance of the proposed model is compared with the competitor models
in terms of mean intersection over union (IoU) and mean Dice score. Tab 1. shows
that the proposed model has outperformed the competitor models by a considerable
margin.

4. Conclusion

Segmentation of teeth in the computer-aided system in orthodontics and dentists’
practice is a useful tool for critical analysis of the patient’s condition. It helps
dentists in many ways. To the best of our knowledge, there is no pre-trained model
available publicly for segmenting teeth in 3D CBCT volumetric dataset. There is
no dataset available publicly for experimenting on 3D volumetric dental data. We
aim to produce a quality annotated 3D volumetric dental dataset and a pre-trained
model for segmenting teeth in 3D CBCT volumes. We obtained a dataset of 70
3D CBCT volumes from a local health care facility and produced an annotated
dataset. The accuracy of the annotation is certified by the health care facility
for accuracy. To perform the segmentation through deep learning on our dataset,
we designed a 3D deep convolutional neural network consisting of 38 layers and
trained it. Our model yielded a validation accuracy of 95.54%. To compare the
results that we achieved, we retrained 3D U-Net and 3D ResNet on our dataset
in the same scenario. The 3D U-Net produced an accuracy of 95.75%, which is
fractionally higher than the accuracy produced by our proposed model. But, the
proposed model is favorable because of the relatively smaller size, less time required
to train, and small model file size. The accuracy that the 3D ResNet produced is
80%, which is relatively lower than both the proposed model and 3D U-Net.
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