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Abstract: In order to better balance the detection accuracy and tracking speed,
we propose an online balanced multi-object tracking method (BalMOT), which
integrates object detection and appearance extraction into a single network, and
can simultaneously output detection and appearance embedding. We also model
the training of classification, regression, and embedding features as a multi-task
training problem and each part is weighted based on the task-independent uncer-
tainty method. In addition, we introduce the transition layer to optimize the re-
peated gradient information in the network and reduce the training cost. Through
the training, our BalMOT system reaches 71.9% multiple object tracking accu-
racy (MOTA) on the MOT17 challenge dataset, and the speed fluctuates between
17.4 ∼ 22.3 frames per second (FPS) according to the size of the input image.
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1. Introduction

Multi-object tracking (MOT), a system to predict and track the motion trajectories
of multiple targets in a video sequence, which has critical research significance in
many fields, i.e., transport, smart cities, and national security. The mainstream
idea of MOT research is divided into two steps: 1) the target detection step, the
output of which is the input of the tracking module; 2) object tracking step, which
includes target association and matching. The essence of tracking is to correlate
the same target in the connected frames of the video and assign a unique ID
value. The existing MOT methods such as [27, 32, 38, 37] are all composed of
two independent models: the detection model first detects the target and locate
multiple objects in each frame, then the association model extracts features based
on the re-identification (re-id) domain model. However, the current MOT field
has gradually abandoned this paradigm to balance tracking speed and accuracy.
In order to save computation and optimize the network structure, the method
combining detection with embedding/matching can be adopted, as shown in Fig. 1.
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Fig. 1 Comparison between the two-stage model and the BalMOT.

In [33], the framework of the joint detector and embedding (JDE) learning
is formally proposed for the first time. The architecture adopts feature pyramid
network (FPN) [17] to adapt to multi-scale detection. The detection part uses an
improved region proposal network (RPN) [28] network and introduces embedding
to achieve joint learning. Although it has achieved good results, much remains
to be improved. Initially the loss of feature information. Although FPN adopts
the top-down feature propagation mode, and uses the strong semantic information
of high-level features to improve the low-level features, the path from low-level
structure to top-level features is very long, which makes it more difficult to obtain
accurate positioning signals. Therefore, it is necessary to find a more appropriate
framework for the integration of different feature layers. Low-level features are
utilized in the system of [19, 18, 6, 10], but not propagated to enhance the whole
feature level.

Furthermore, in the previous study of re-id problem, the method of learning
high-dimensional features is usually adopted to obtain pedestrian appearance fea-
tures. However, this method relies on a large datasets, while the relevant re-id
datasets only provides cropped figure images, which is not conducive to the study
of MOT.

In addition, many algorithms commonly use the method of deepening or widen-
ing the model to improve the ability of the model to extract fine-grained features,
but it also brings a great test to the computing power of the machine and the
real-time performance of multi-object tracking.

This paper introduces a balanced algorithm BalMOT, which enables the net-
work to output the position of the bounding box and the embedding features of
the objects in the box concurrently. Our approach improve the accuracy while
ensuring the speed. Fig. 1 briefly illustrates the difference between the two-stage
approach and our approach. The separation of detection module and embedding
module lead to the poor alignment and much redundancy of the models. By shar-
ing the same network, our algorithm can reduce the complexity of the model and
further increase the accuracy of the MOT by promoting the fusion of sub-modules.
Compared with the Faster Region-CNN+Embedding model in the person of inter-
est (POI) algorithm, the optimized model achieves a running time of 18.16FPS on
the MOT16 test set, while the former only achieves <6FPS. Meanwhile, our model
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achieves MOTA = 71.9% on the MOT17 validation set, which is 3.2% higher than
the MOTA = 68.7% of QuasiDense [25] algorithm.

In order to build a more accurate real-time MOT system, our research is carried
out from several aspects of dataset selection, network architecture, learning objec-
tives, optimization strategies, and evaluation metrics. Firstly, in terms of data
selection, through pre-training, we determine three datasets, i.e., MOT17, CUHK-
SYSU, and PRW, to train our model. Secondly, we choose FPN as the infrastruc-
ture and discuss the influence of different networks on MOT performance. Then,
we model the training process as anchor classification, bounding box regression and
embedding problems of multi-task learning. We also adopt the task-independent
uncertainty [15] to balance the weight of each task. Finally, we use the follow-
ing public standards to evaluate the performance of the MOT. Clear [2] metric
is adopted to evaluate the overall performance of the MOT system. The average
precision (AP) is employed to evaluate the performance of the detector. The true
positive rate (TPR) is to appraise the quality of the embedding. Our method is
as fast as the joint detection and embedding (JDE), and our MOTA = 66.8%,
18.16FPS on the same MOT16 test.

The contribution of this paper can be summarized into the following aspects:

– We propose a balanced algorithm BalMOT, which makes the detection mod-
ule and the embedding module share the same network. Through the fusion
of sub modules, the algorithm improves the tracking accuracy while ensuring
the speed.

– We introduce a bottom-up path aggregation network (bPaNet) into the net-
work to enhance the feature level, and introduce a transition layer to reduce
the extra computation caused by model deepening.

– Experiments have confirmed that the use of low-dimensional re-id features can
better reduce the risk of overfitting caused by small data sets and improve
the robustness of multi-target tracking models.

– Experiments on MOT16 and MOT17 demonstrate the advantage of our method
over state-of-the-art MOT systems considering accuracy and speed.

2. Related work

With the development of deep learning technology, the application related to visual
multi-object tracking has made enormous strides. The framework of MOT based
on deep learning mostly presents two modes:

2.1 The tracking-by-detection model

With the continuous improvement of CNN model, deep learning has made rapid
development in image classification task. A number of excellent open source deep
neural networks, such as R-CNN detectors, SSD [18] and YOLO detectors [27, 5],
have greatly enhanced the ability of object detection. Due to the enhancement
of single frame image detection ability, MOT presents a trend from the initial
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data association optimization algorithms with complex computation, such as joint
probabilistic data association (JPDA) [16] and multiple hypothesis tracking (MHT)
[4], to the DBT model which depends on the detection results. SORT [3] is one
of the earliest MOT algorithms using CNN to detect pedestrians. Based on the
traditional Hungarian algorithm, SORT replaces ACF detection with Fast R-CNN
[11], which improves the accuracy of multi-object tracking by 18.9%. Deepsort
further extracts stable apparent features on the basis of SORT, which improves
the performance of the algorithm under object occlusion and greatly reduces the
speed of the algorithm. Yu et al. [37] proposed the POI algorithm and improved
the Faster R-CNN by de-pooling and multi-scale feature extraction technology, so
as to further improve the tracking accuracy and speed. Lu et al. [20] proposed the
associative long short term memory networks (LSTM), which uses SSD detector to
directly regress the position and category of the target, and generate association
features to solve the problem that traditional LSTM cannot fundamentally simulate
the association of objects between consecutive frames. Henschel et al. [13] proposed
a off-line MOT model, which added a head detection to increase the accuracy
under the condition that most of the human body is covered. Bergmann et al. [1]
proposed Tracktor, which predicts the object position of the next frame through
the regression head of the detector. However, the models in these tracking-by-
detection (TBD) algorithms are complex and adopt multiple sub-modules, which
ignoring the sharing information between modules.

2.2 The joint detection and tracking model

The joint detection and tracking algorithm emerged in recent two years not only
reduces the complexity of TBD model, but also improves the accuracy of MOT. Its
strategy is to integrate some functional modules in TBD model to reduce the extra
inference time generated by phased processing and to increase the coupling degree
between functional modules. Christoph et al. [9] first tried to improve the object
detection network by adding tracking branch. Then, base on the region-based fully
convolutional network (R-FCN) [7], the MOT task is transformed into the match-
ing problem of the relative offset of the target position in two adjacent frames,
which effectively improved the accuracy and speed of visual MOT. Nevertheless,
it is still a two-stage MOT algorithm. In order to further integrate the tracking
module, Bergmann et al. proposed a new joint detection tracking model, called
Tracktor++, which uses a simple and light weight data association algorithm to
match the bounding box and the prediction box, meanwhile, a deep neural net-
work is used to generate the results of whole tracking sequence. Through fusion,
the detection module has a greater impact on the MOT performance. Afterwards,
inspired by Tracktor++, Huang et al. [14] further improved the motion model,
the apparent model and the data association part to boost performance of Track-
tor++. However, these model have limitations: low degree of fusion between func-
tional modules. To address the problem, we propose a simple online multi-object
tracking fusion algorithm, which can output the detection and appearance embed-
ding simultaneously, and further improve the detection and tracking accuracy while
ensuring the real-time running speed.
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3. Technical methods

3.1 Backbone network

We use DarkNet53 [32] as our backbone to balance accuracy and speed. The size of
the convolutional kernel in front of each cross stage partial (CSP) connection is 3×3,
the stride = 2, which means a down-sampling operation. The output feature maps
of three sizes respectively connected to a prediction head, as shown in the Fig. 2.
Each prediction head consists of several stacked convolutional layers and outputs
a dense prediction map. Denote the size of input image as Himage ×Wimage, then
output three feature maps with 1

32 ,
1
16 ,

1
8 down-sampling rate respectively. The

dense prediction map is divided into three parts:

a) the classification prediction map of size 2A×Himage ×Wimage,

b) the bounding box regression coefficients of size 4A×Himage ×Wimage,

c) the embedding feature prediction map of size D ×Himage ×Wimage,

where A is the number of anchor templates allocated to each ratio, and D is the
dimension of the embedding vector. Also, we add a bottom-up path (bPaNet), as
shown in Fig. 3, to shorten the information path and use the precise positioning
signals existing in the low-level to enhance the feature pyramid.

(a) Backbone overview (b) Prediction head

Fig. 2 Overview of our one-shot tracker.(a) is the object detection part of the
network architecture, “⊕” indicates concatenation, (b) is the prediction head added
upon the bottom-up path augmentation.

Aiming at the problem of multi-scale image detection, cropping or stretching
methods are often used to meet the resolution requirements of the input image.
However, this approach will change the size and aspect ratio of the input image,
causing the original image to be distorted. Therefore, we connect an spatial pyra-
mid pooling (SPP) [12] layer to the last convolutional layer to effectively avoid
problems such as image distortion caused by image area clipping and scaling op-
erations. For input images of different sizes and aspect ratios, SPP pool arbitrary
size feature maps into fixed-size feature vectors. We set four pooling layers with
the size of {1× 1; 5× 5; 9× 9; 13× 13}, and stride equals to 1. It will output four
feature maps with the same size, thus improving the scale invariance of the image
and reducing overfitting.
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Fig. 3 bPaNet.

In order to solve the problem of increasing training time and decreasing track-
ing efficiency caused by the deepening of network layers, we introduce a transition
layer after the residual block. As shown in the Fig. 4, the conventional residual
block is composed of two convolution layers stacked, but this model introduces too
many parameters, which is only suitable for small networks. In DarkNet53, the
parameters of the residual block is modified, which is presented in Fig. 4(b). The
computation is greatly reduced through a convolution with the size of 1 × 1 and
the number of 32 channels. On the basis of (b), our model added a transition layer,
whose input features are firstly transformed through two-channel 1×1 convolution,
so as to improve the feature reusability and halve the number of channels to re-
duce the computation. Then, the balance between detection and speed is realized
through the residual block.

(a) PRB (b) IRB (c) RBTL

Fig. 4 The optimized residual block, which solves the problem of gradient disappear-
ance and a mass of parameters caused by network deepening. “PRB” is the abbre-
viation for plain residual block, “IRB” is for the improved residual block, “RBTL”
is for the residual block with transition layer.
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3.2 Detection branch

Our detection branch adopts a similar structure to RPN, but with two differences.
First, we redesign the anchors in terms of number, proportion, and aspect ratio so
that they could accommodate various targets (pedestrians). As a rule of thumb,
all anchors are set to an aspect ratio of 1:3. The number of anchor templates is
set to 12, corresponding to A = 4 for each scale, and the size of anchors range
from 8 × 2

1
2 ≈ 11 to 8 × 2

12
2 ≈ 512. Secondly, in the real-time detection of

moving targets, it is of great significance to use dual thresholds to distinguish
foreground/background and reduce the misseing detection. By visualization, we
determine the intersection of union (IoU) > 0.5, at which time the ground truth
is approximately regarded as foreground, and this value is also consistent with
the common settings of general object detection. Furthermore, IoU < 0.4 must
be satisfied, in which case the ground truth is considered as background. The
false alarm under severe occlusion can be effectively suppressed by dual-threshold
method.

Object detection includes two tasks: classification and regression, where the
classification loss function adopts the cross-entropy loss and the bounding box
regression loss function employs the smooth-L1 loss. The coding method of the
regression target is the same as [28].

3.3 Embedding branch

The purpose of embedding branch is to capture the features of different targets. Ide-
ally, the metric distance of the same target between any frames in a video is less than
different targets, indicated as d(ynt

, ynt+△t
) < d(ynt

, yn′
t+△t

),∀(ynt
, ynt+△t

, yn′
t+△t

)

∈ y(x), where y(x) ∈ Rn×D is the corresponding embedding vector extracted from
the dense embedding map, n is the number of targets in a single frame of video,
and D is the demension of the embedding vector. To achieve this goal, triplet loss
[29] can be used.

Ltriplet =
∑
i

max[∥y(xa
i )− y(xp

i )∥
2
2 − ∥y(xa

i )− y(xn
i )∥22 + α, 0], (1)

where xa
i represents the input anchor data, xp

i represents the positive samples of
the same category as xa

i , x
n
i denotes the negative samples of the different category,

and α is a margin item. For the convenience of research, the margin is ignored
here.

Although the triplet loss is widely used, it still has the slow convergence speed
problem, which needs to adopt the difficult sample mining method to accelerate
the training speed. Therefore, we apply the tuplet loss proposed by [30] to the
embedding model.

Ltuplet = log

(
1 +

∑
i

exp(y(xa
i )y(x

p
i )− y(xa

i )y(x
n
i ))

)

= − log
exp(y(xa

i )y(x
n
i ))

exp(y(xa
i )y(x

n
i )) +

∑
i exp(y(x

a
i )y(x

p
i ))

.

(2)

291



Neural Network World 6/2022, 285–300

The above equation is similar to the cross-entropy loss,

Ltuplet = − log
exp(y(xa

i )w(x
n
i ))

exp(y(xa
i )w(x

n
i )) +

∑
i exp(y(x

a
i )w(x

p
i ))

, (3)

where w(xp
i ) is the class-wise weight of positive samples, and w(xn

i ) is the weight
of negative samples. Therefore, we employ the cross-entropy loss to calculate the
embedding loss.

3.4 Joint training

In the object detection task, the learning objective of each prediction head can be
modeled as a multi-task learning problem. The joint target can be written as a
linear weighted form of different loss weights and individual component losses,

Ltotal =

M∑
i

∑
j=α,β,γ

ωi
jL

i
j , (4)

where M is the number of prediction heads, and ωi
j , i = 1, . . . ,M, j = α, β, γ are

loss weights.
Nevertheless, defining joint objectives in such a simple way would make the

setting of the loss weights too rigid. The fixed weight will along with the whole
training period and limit the learning of the task. As a result, in order to achieve
the optimal match as far as possible, we choose the automatic learning scheme
proposed in [15], where the learning objective can be written as:

Ltotal =

M∑
i

∑
j=α,β,γ

1

2
(
1

es
i
j

Li
j + sij)

=
1

2
(

1

es
1
regression

L1
regression +

1

es
2
classification

L2
classification +

1

es
3
identity

L3
identity

+ s1regression + s2classification + s3identity),

(5)

where sij refers to the task-independent uncertainty of each loss function, which
can be obtained through learning.

3.5 Online association

We follow the standard online tracking association strategy to associate boxes.
Firstly, we recognize the position of the detection and corresponding appearance
embedding in a frame of video. The detection boxes are filtered according to the
confidence and non-maximum suppression (NMS). After that, we use the Kalman
filter [34] to predict the mean value and covariance of the target in the current
frame position. Then the target is matched with the existing trajectory according
to the predicted results. Whether the targets are the same is determined by the
similarity of appearance features and the detected target position between adjacent
frames. We also update the appearance features for each matched target to improve
model accuracy and robustness.

292



Huang L., Shi X., Xiang J.: A method for joint detection and re-identification. . .

4. Experiment

4.1 Datasets and evaluation metrics

In our experiment, we use three training sets: PRW [38], CUHK-SYSU(CS) [36],
and MOT17 [22]. The PRW released the full frames with annotations. The CS
has detailed information of both the bounding box and the identity annotation,
including 11k pictures, 55k ground truth, and 7k identities. MOT17 contains 7
training sequences, each of which provides three detection methods: DPM, Faster
R-CNN, and SDP.

In order to evaluate the performance of the algorithm, we need to consider
three aspects of performance: detection accuracy, embedding discrimination ability,
and tracking performance of the entire MOT system. To evaluate the detection
performance, we calculate average precision (AP) with an IoU threshold of 0.5 on
the MOT17 validation set, and true positive rate (TPR) at a false accept rate of
0.1 for rigorously evaluating embedding features. We use the CLEAR metrics to
evaluate the tracking performance of MOT, including tracking accuracy (MOTA),
the total number of identity switches (IDs), the percentage of tracks tracked with
more than 80% of targets (MT), and the percentage of tracks lost with less than
20% targets (ML). In addition, the ID F1 score (IDF1) is also used to measure
the accuracy of trajectory recognition. In order to verify the robustness of our
algorithm, we also compare the model under the “private detector” protocol of the
MOT16 and MOT17 benchmarks.

4.2 Implementation details

We employ DarkNet53 as the backbone, and the network is trained with the stan-
dard stochastic gradient descent (SGD) method for 30 epochs. The learning rate
is initialized to 10−2 and decays to 10−3 at the 15th and 10−4 at the 23rd epochs.
The batch size is set to 16. The training step takes about 12 hours on eight GTX
1080 Ti GPUs. The testing and demo runs on a RTX 3080 GPU.

4.3 Experimental results

Performance analysis

On the basis of DarkNet53, we use the standard residual block and the residual
block with transition layer respectively. Meanwhile, we analyze the network param-
eters and inference speed of the model, the results are shown in Tab. I. The time
cost is measured for 1088×608 images using single RTX 3080 GPU and cuDNN v8
with Intel i7 10700KF@3.80GHz. When the transition layer is introduced into the
standard residual block, the accuracy of detection and tracking changes little, but
the inference time cost is reduced by 10.77ms. We can conclude that the model
after introducing the transition layer can not only guarantee the accuracy but also
avoid learning repeated gradient information, reduce the calculation amount and
improve the running speed. Besides, considering the influence of the backbone ac-
tivation function, we select a smoother Mish [23] function to further improve the
accuracy and generalization of the model. From Tab. I, the network with Mish
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activation function showed a better result, MOTA is increased by 1.1%, IDF 1 is
increased by 2.4%, ID switch number is reduced by 232, even more to the point,
these improvements only cost an extra 8.78ms on inference time.

Method MOTA↑ [%] IDF1↑ [%] IDs↓ AP↑ [%] Time cost (ms)↓
Darknet53-ResB-Relu 68.8 63.9 1452 82.18 56.47
Darknet53-ResB+TL-Relu 69.4 61.3 1662 82.98 45.70
Darknet53-ResB+TL-Mish 70.6 66.4 1220 81.40 54.48

Tab. I Ablation study on the validation set of MOT17.↑ means the larger the better,
↓ means the smaller the better. In each column, the optimal value is in bold, and
the sub-optimal is in italic. “ResB” represents the residual block, “TL” is short for
the transition layer.

We also use DarkNet53 (it only covers the backbone and three prediction heads
without any neck) as the baseline to discuss the effectiveness of different modules
of the network. The results are shown in Tab. II. We can see that using SPP alone
cannot improve the detection accuracy and MOTA. On the contrary, it reduces
AP and MOTA by 0.7% and 0.8% respectively. The best result is obtained when
bPANet and SPP are both introduced to the backbone, they combined to enlarge
the receptive field and enhance the feature fusion capability. Ultimately, we get
71.5% MOTA and 85.31% AP. However, with the deepening of the network, FPS
has been reduced to varying degrees.

Method MOTA↑ [%] IDF1↑ [%] FP↓ FN↓ IDs↓ AP↑ [%] FPS↑
Baseline 70.6 66.4 3728 28113 1220 81.40 18.73
Baseline+SPP 69.4 65.0 4956 28103 1271 80.70 17.88
Baseline+SPP+bPANet 71.5 66.4 5459 25115 1385 85.31 17.11

Tab. II Ablation study on the validation set of MOT17. ↑ means the larger the
better, ↓ means the smaller the better. In each column, the optimal value is in bold,
and the sub-optimal is in italic.

Re-id embedding feature dimension

As a rule of thumb, most of the previous pedestrian appearance embedding vec-
tor dimensions are set to 512. However, this is not necessarily applicable to all
networks. To prevent over-fitting, the high dimensional re-id features need huge
amounts of datasets to obtain fine-grained features. Due to the limitation of multi-
object tracking dataset, we try to reduce over-fitting by using the smaller feature
dimension of re-id to adapt to our network. From Tab. III, we can know that the
impact of re-id feature dimension on the quality of embedding feature extraction is
not monotonous. Generally, for the model trained by 512 dimensional embedding
features, the TPR is 80.69%. When the dimension is reduced to 256, the TPR
decreases by 1.54%. When the dimension decreases to 128, the TPR increases
by 5.24% to 85.93%. In addition, the change of dimension has little impact on

294



Huang L., Shi X., Xiang J.: A method for joint detection and re-identification. . .

MOTA. The MOTA of 256 dimension is 0.3% lower than that of 512 dimension,
and the MOTA of 128 dimension is 0.3% higher than 512 dimension. However, the
reduction of dimension makes the number of ID switch increase, and the robustness
of the model to object occlusion decrease.

Backbone dim MOTA↑ [%] IDF1↑ [%] IDs↓ FPS↑ TPR↑ [%]

DarkNet53 512 70.6 66.4 1220 18.73 80.69
DarkNet53 256 70.3 66.4 1267 19.31 79.15
DarkNet53 128 70.9 65.6 1395 19.47 85.93

Tab. III Ablation study on the validation set of MOT17.↑ means the larger the
better, ↓ means the smaller the better. In each column, the optimal value is in bold,
and the sub-optimal is in italic.

Comparison of the improved algorithm on the result of the loss

Fig. 5(a) shows the curves of the optimized algorithm and JDE in bounding box
regression loss, classification loss, and ID loss. The dotted line represents the loss
of each part under the JDE method, while the solid line denotes the improved
algorithm. It can be seen that both the regression loss and the classification loss
have significantly decreased, while the ID loss has little change. Fig. 5(b) is the
total loss results. By optimizing the detection model, the total loss is obviously
reduced, and the convergence is basically synchronized with JDE. The result of
ours tends to be stable around batch size = 25.

(a) (b)

Fig. 5 Comparisons results of different loss functions between our algorithm and
JDE algorithm. (a) is the comparison chart of loss function between JDE-1088
and optimized algorithm, (b) is the comparison chart of total loss function between
JDE-1088 and optimized algorithm.
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The comparison result of proposed BalMOT algorithm and JDE method

Our algorithm aims to use multi-layer feature fusion to solve the problem of feature
imbalance. We compare our MOT system to JDE. For a fair comparison, we use
the same embedding strategy and loss functions as JDE, introduce the optimized
network to compare and analyze the performance of our MOT system under three
datasets. In Tab. IV, we can get that the detection accuracy and the quality of
embedding features are both improved. BalMOT-864 increases 6.1% compared
with JDE-864 on MOTA, and IDF1 increases 7.1%. The higher the image resolu-
tion, the better our algorithm. When the input image is resized to 1088× 608, our
MOTA increases 7.1% compared with JDE-1088 and IDF1 increases 10.6%. Due
to the deepening of network layers and the increase of computational complexity,
the FPS decreases to some extent, but it still meets the real-time requirements.

Method MOTA↑ [%] IDF1↑ [%] MT↑ [%] ML↓ [%] IDs↓ AP↑ [%] TPR↑ [%] FPS↑
JDE-864 62.1 56.9 34.4 16.7 1608 80.48 85.18 24.1
JDE-1088 64.4 55.8 35.4 20.0 1544 82.47 85.89 18.8
BalMOT-864 68.2 64.0 47.6 7.5 1581 82.69 91.69 22.3
BalMOT-1088 71.9 67.8 55.1 7.7 1547 85.31 88.80 17.40

Tab. IV BalMOT vs JDE.Comparison of our improved algorithm and JDE-MOT
on the validation set of MOT17.

Comparison with the state-of-the-art MOT systems

Compare our algorithm with the state-of-the-art trackers under the “private data”
protocol of the MOT16 and MOT17 benchmarks, respectively. The trackers consist
of one-stage and two-stage. As can be seen in Tab. V, our method outperforms other
trackers on any single test set, and achieves near real-time speed while improving

Dataset Method MOTA↑ [%] IDF1↑ [%] MT↑ [%] ML↓ [%] IDs↓ FPS↑

MOT16

SORTwHPD16 [3] 59.8 53.8 25.4 22.7 1423 <8.6

DeepSORT 2 [35] 61.4 62.2 32.8 18.2 781 <8.1
RAR16wVGG [8] 63.0 63.8 39.9 22.1 482 <1.5
JDE [33] 64.4 55.8 35.4 20.0 1544 18.8
TAP [39] 64.8 73.5 38.5 21.6 794 <8.2
CNNMTT [21] 65.2 62.2 32.4 21.3 946 <6.4
POI [37] 66.1 65.1 34.0 20.8 805 <6
BalMOT(1088*608) 66.8 65.9 42.2 9.5 1516 18.16

MOT17

SST [31] 52.4 49.5 21.4 30.7 8431 6.3

Tube TK [24] 63.0 58.6 31.2 19.9 4137 3.0
CTrackerV1 [26] 66.6 57.4 32.2 24.2 5529 6.8
CSTrack 67.3 67.9 34.2 24.1 2994 16.9
QuasiDense [25] 68.7 66.3 40.6 21.9 3378 20.3
CSTrack++ 70.6 71.6 37.5 18.7 3465 15.8
BalMOT 71.9 67.8 55.1 7.7 1547 17.40

Tab. V Comparison with the state-of-the-art online MOT systems under the pri-
vate data protocol on the MOT16 and MOT17 benchmarks.
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tracking accuracy. Our results are all obtained under the condition that the input
image size is 1088 × 608. The running speed is affected by the size of the input
image. The higher the input image resolution, the slower the speed. Fig. 6 shows
the tracking results of our algorithm on partial test sets of MOT16 and MOT17.
MOT16 test results show that our model can still achieve good tracking results even
when the pedestrian density is high, and the real-time running speed is inversely
proportional to the number of pedestrian in a single frame. However, it is worth
noting that although our model has a certain improvement compared with these
trackers in the ID switching problem, the ID switching problem caused by a large
area of target occlusion for a long time is still worth further study.

(a) #frame18 #frame45 #frame1140

(b) #frame45 #frame233 #frame547

Fig. 6 Examples of the performance of our algorithm on the test sets of MOT16
and MOT17. Both images are arranged by a chronological sequence of video frames,
and different colors represent different IDs for tracking.

5. Conclusion

In this paper, we propose a new online balanced multi-object tracking (BalMOT)
algorithm that balances detection accuracy and tracking speed. We analyze the
losing feature information and unreasonable re-id dimension in the joint detection
and tracking framework, and further improve the detection accuracy and appear-
ance feature extraction ability. Further, in order to reduce the extra computing
cost caused by network deepening, we introduce a transition layer to solve a mass
of inference computing problems. The proposed BalMOT is comparable to the
state-of-the-art results. Our MOT system reaches 71.9% MOTA on the MOT17
challenge dataset, and the speed fluctuates between 17.4 ∼ 22.3FPS according to
the size of the input image. Later, we will focus on ID switching, and try to employ
self-supervised learning to enrich data information, so as to improve the learning
ability of the system.
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