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Abstract: Schizophrenia is a complex mental disorder associated with a change
in the functional and structural of the brain. Accurate automatic diagnosis of
schizophrenia is crucial and still a challenge. In this paper, we propose an auto-
matic diagnosis of schizophrenia disorder method based on the fusion of different
neuroimaging features and a deep learning architecture. We propose a deep-multi-
modal fusion (DMMF) architecture based on gated recurrent unit (GRU) network
and 2D-3D convolutional neural networks (CNN). The DMMF model combines
functional connectivity (FC) measures extracted from functional magnetic reso-
nance imaging (fMRI) data and low-level features obtained from fMRI, magnetic
resonance imaging (MRI), or diffusion tensor imaging (DTI) data and creates la-
tent and discriminative feature maps for classification. The fusion of ROI-based
FC with fractional anisotropy (FA) derived from DTT images achieved state-of-the-
art diagnosis-accuracy of 99.50 % and an area under the curve (AUC) of 99.7 % on
COBRE dataset. The results are promising for the combination of features. The
high accuracy and AUC in our experiments show that the proposed deep learning
architecture can extract latent patterns from neuroimaging data and can help to
achieve accurate classification of schizophrenia and healthy groups.
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1. Introduction

Schizophrenia (SZ) is a highly debilitating mental illness that is marked by ob-
stacles in thinking, behavior, perception, emotions, etc. [1]. The World Health
Organization (WHO) estimates that about 20 million people worldwide are living
with schizophrenia disorder. This mental illness imposes a heavy burden on pa-
tients, their family members, and society. Therefore, it is crucial to investigate
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the exact method of diagnosing schizophrenia disorder [2]. Although psychiatrists
generally diagnose schizophrenia based on the history of the disease and mental
status examination [3], many researchers have recently attempted to provide the
basis for automated diagnosis of schizophrenia. Most of these studies have utilized
extracted features of neuroimaging data along with machine learning techniques [4].
For instance, Ardekani et al. [5] derived fractional anisotropy (FA) and mean diffu-
sivity (MD) maps from diffusion tensor imaging (DTI) data. They applied Fisher’s
linear discriminant analysis (LDA) as a classifier method. Chyzhyk et al. [6] used
resting-state functional magnetic resonance imaging (rs-fMRI) data and extracted
functional connectivity (FC) measures, regional homogeneity (ReHo), and frac-
tional amplitude of low-frequency fluctuations (fALFF) as derived features from
them. Their proposed approach is consists of dimensional reduction, feature selec-
tion, and classification with SVM steps. In contrast to the methods that have used
single neuroimaging modality, some studies have suggested using multi-modal neu-
roimaging data [7]. Although these methods may require additional time, cost,
and information, they achieved higher accuracy because of the use of comple-
mentary data. Cetin et al. [8] used fMRI and magnetoencephalography (MEG)
data and derived static and dynamic functional network connectivity (FNC) from
them to diagnose schizophrenia patients from healthy controls. Their experiments
showed that combined fMRI and MEG features improved the classification accu-
racy (achieved accuracy is 85.71 %) compared to using each modality data alone
(achieved accuracy is 75.82%). Qureshi et al. [9] combined some structural mea-
sures extracted from sMRI and four functional connectivity based features gathered
from fMRI. They achieved an accuracy of 99.3% for classifying SZ/HC with the
extreme learning machine (ELM) classifier. Zhuang et al. [10] used sMRI, DTI,
and rs-fMRI features for diagnosis of drug-naive first-episode schizophrenia (FES).
They reported a classification accuracy of 84.29 % with the SVM method. Liang
et al. [11] combined MRI and DTI features for classifying FES/HC with an ac-
curacy of 75.05 %, which was better than achieved accuracy from single modality
measures. Deep learning is a new branch of machine learning that nowadays in-
creasingly employs in medical studies. In many recent works on the automated
diagnosis of brain disorders such as schizophrenia, Different methods of deep learn-
ing were used [13-15]. Convolutional neural network (CNN) is a supervised deep
learning framework and has hierarchical architecture. CNN models have a 2D
structure that suitable for applying on 2D data such as images. Ji et al. [10]
used 3D-CNN for video classification that is 3-dimensional data. Similar to video
data, some neuroimaging data such as MRI or extracted features from them have
a 3-dimensional essence; thus, some studies employed 3D-CNNs [12, 13,17, 18] to
learn discriminative hidden features from this type of data. Recurrent neural net-
works (RNNs) [19] are other deep learning methods that are capable of modeling
temporal data. RNNs consist of recurrent units. These units create an internal
memory. Internal memory makes RNNs suitable for processing arbitrary sequences
of inputs. Recently, in many medical applications, RNNs and their derived models
such as long short-term memory (LSTM) [20] and gated recurrent unit (GRU) [21]
employed. Yan et al. [22] proposed a multi-scale CNN-GRU model for discrimi-
nating schizophrenia using time courses of fMRI data. They obtained an accuracy
of 83.2%. Dakka et al. [23] used an LSTM framework with segments of 4D fMRI
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recordings for diagnosis schizophrenia and reported 74 % accuracy. Cui et al. [24]
proposed an architecture by combination CNN and bidirectional gated recurrent
units (BGRU) layers to longitudinal analysis of MRI images for AD diagnosis.
Wang et al. [25] proposed an RNN model for recognizing brain states from fMRI
data. Dvornek et al. [26] used the LSTM network with resting-state fMRI time-
series for diagnosis autism disorder. Functional connectivity (FC) is a temporal
correlation between region of interest (ROI) or voxel time series of different brain
portions from fMRI data [27]. Although any pair-wise criterion can beneficial to
measure of similarity between different ROI or voxel time series, the majority of
studies employ Pearson’s correlation coefficient for this end [28]. FC is useful in
detecting brain abnormalities in a state of illness [29]. More studies showed struc-
tural and functional connectivity changes in schizophrenia [30], and thus, FC can
be considered as a biomarker to diagnose it [31]. In this paper, we present a deep-
multi-modal classification framework based on combination CNNs and GRUs for
diagnosis schizophrenia. As far as we know, the proposed model is the first attempt
to the fusion of functional connectivity data and other extracted neuroimaging fea-
tures with a deep architecture. We firstly use an GRU-CNN model to create a
feature map from ROI-based fMRI-FC measures, on the other hand, a sequence
3D-CNNs designed to learn latent features from DTT data and creating a new fea-
ture map. Then, we combine obtained feature maps to use for the classification.
In this study, we examine various features extracted from MRI, fMRI, and DTI to
find the best combination for diagnosis schizophrenia.

2. Material and method

2.1 Convolutional neural network (CNN)

The convolutional neural network is a special implementation of the neural network
which exclusively handles array data such as images; thus, frequently is used in
computer vision and medical image processing. The architecture of a CNN typically
consists of convolution layers, pooling layers, and non-linear activation units. The
input of a convolution layer convolved with some kernel and create distinct feature
maps. The dimension of each feature map is reduced to a smaller matrix by pooling
the adjacent values. Activation units allow multiple layers stacked to create a deep
neural network. In this paper, we use both 2D and 3D CNN to find the latent
feature maps from input data. The basis of 2D and 3D CNNs is similar, except
that in 3D-CNN, kernels have three dimensions. The 3D-CNNs are successful in
learning local patterns and spatial information modeling for 3D input data [16].
It is noteworthy that to maximize the performance of the network and to prevent
overfitting. Thus a compromise must be made between the number of convolutional
layers and the number of features maps in each layer [17].

2.2 Gated recurrent unit (GRU)

GRU models are a specific type of recurrent neural networks. GRU uses gates that
regulate the flow of data and learn long-term dependency on them, the same as in
the long short-term memory (LSTM) model. However, there are some structural
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differences between GRU and LSTM models. An LSTM cell block has three gates:
input gate, forget gate, and output gate. On the other hand, the GRU structure
has two types of gates: the reset gate (r:), which controls the effectiveness of a
candidate’s state from a previous state, and the update gate (u;), which determines
the amount of retaining the stored data as well as the amount of new data added
[32]. Thus, GRU is simpler than LSTM and has fewer parameters than it. However,
the performance of both is about the same [33]. Fig. 1 shows the structure diagram
of the GRU model. If we consider: z; as the network input, h; as the new hidden
state, hy_1 as the previous hidden state and h; as the current new state, the GRU
transition equations define as follows [21]:

uy = sigmoid (Wyxy + Uyhy—1 + by) (1)
ry = sigmoid (W,xy + Uphy—1 + b)), (2)

hy = tanh (Whay + e © (Unhe—1) + bp) (3)
he=(1—u) ® hy_1u; © hy (4)

In these equations, W,,, U,, b,, W,., U, b,., Wy, and U}, are learnable GRU parame-
ters.
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Fig. 1 The architecture of GRU cell applied in DMMF model.

2.3 Dataset and pre-processing

In this study, we use the ‘Center for Biomedical Research Excellence’ (COBRE)
dataset [34], which is publicly accessible on the website (www.schizconnect.org).
We select only subjects from the dataset that all modalities (sMRI, fMRI, and
DTI) available for them. Thus, the applied dataset in our experiments contains 81
samples in healthy control (HC) class and 64 samples in the schizophrenia-strict
(SZ) class. There are 21 females and 60 males with an average age of 37.98 in HC
class and 13 females and 51 males with an average age of 38.92 in SZ class.
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2.4 sMRI data acquisition and pre-processing

The T1-weighted images in the COBRE dataset are scanned using a single 3T
SIEMENS MAGNETOM TrioTim Syngo B17 MR scanner. Parameters of the
used multi-echo MPRAGE (MEMPR) sequence with are as follow: TR = 2530 ms,
flip angle = 7°, FOV read = 256 mm, FOV Phase=100 %, Slices per slab = 192,
Voxel size = 1 x 1 x 1mm, TE = [1.64, 3.5, 5.36, 7.22, 9.08] ms, TI=1200 ms.
We first register MRI images to the MNI152 template then apply the BET tool
from Functional Magnetic Resonance Imaging of the Brain Software Library (FSL)
(http://www.fmrib.ox.ac.uk/fsl) software to registered images for eliminating
none brain regions. We use an MRI 3D patch with no further pre-process in our
experiments.

2.5 fMRI data acquisition and pre-processing

The fMRI scanning parameters are: echo time TE = 29ms, voxel size = 3.8 x
3.8 x 3.5 mm, slice thickness = 3.5 mm, number of slices = 33, FoV read = 240 mm,
FoV phase = 100 %, flip angle = 75° and repetition time TR = 2000ms. All the
fMRI images pre-process using the Data Processing and Analysis of Brain Imaging
(DPABI) toolbox [35]. Pre-processing steps are as the following: (1) discard the
initial ten volumes to ensure that the fMRI signal reached steady state (2) slice
timing by adjusting the measured signal in each slice according to the midpoint
slice at the of each TR. (3) Realignment using a least-squares approach and a six
parameter (rigid body) spatial transformation (4) apply a 4-mm FWHM Gaussian
kernel for spatial smoothing. After pre-processing, we extract some of the most ref-
erenced features from fMRI: amplitude of low-frequency fluctuations (ALFF) [36],
fALFF [37], ReHo [38], Voxel-Mirrored Homotopic Connectivity (VMHC) [39] and
ROI-based functional connectivity (FC) according to the Automated Anatomical
Labeling (AAL) atlas [36].

2.6 DTI data acquisition and pre-processing

In COBRE dataset the diffusion tensor imaging (DTI) acquisition parameters are
set as: no. of slices = 72, FoV read = 256 mm, FoV phase = 100 %, slice thick-
ness = 2mm, TR = 9000 mm, TE = 84 ms, b-value = 800s/mm, and voxel size
= 2 X 2 x 2mm. We pre-process DTI images using FSL. The pre-processing steps
include (1) Eddy current correction, which not only corrects distortions in diffusion
MR images generated by different gradient directions but also removes the effects
of head movement and realigns all 3D scans to a standard reference for each sub-
ject; (2) brain extraction, the non-brain tissue and background noise removed by
applying BET tool from images. After pre-processing, we calculate DTI metrics,
including FA [40], MD, and mode of anisotropy (MO) [41].

2.7 Proposed method

Fig. 2 shows the architecture of the proposed DMMF model for diagnosing schizop-
hrenia, which consists of two main channels.The fMRI and DTI belonging to the
same person, are the input of the proposed model. In the first channel, after
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pre-processing fMRI data as stated in the previous section, the FC measures are
calculated based on a standard atlas. In this study, we calculate FC feature maps
according to AAL standard atlas [36]. The number of brain ROIs in this atlas is
116; thus, for 140 time-course in each fMRI data, we obtain a 140 x 116 matrix
as input. These feature maps are the input of a recurrent neural network with
GRU units. We set the number of GRU units equal to fMRI time courses. In
this way, the outputs of GRU units are hidden feature maps that are used as
the input of a 2D-CNN with a convolution layer, ReLu activation function, and a
max-pooling layer. CNN obtains a comprehensive representation from the input
signal by recognizing the local features. We apply 16 different 2D kernels with
a size of 3 X 3 and a 2 x 2 max-polling for 2D-CNN. On the other hand, in the
second channel after pre-processing MRI, fMRI, and DTI modalities and extracting
related features, as discussed in the previous section, the extracted feature maps
are fed into a 3D-CNN with three layers. Each of the 3D-CNN layers consists of
a convolution layer, ReLu activation function, and a max-pooling layer. We use
16 different 3D kernels with the size of 3 x 3 x 3, 32 different 3D kernels with the
size of 5 x 5 x 5 and 64 different 3D kernel with the size of 3 x 3 x 3, respectively.
We set the size of all 3D max-poolings as 2 x 2 x 2. The initial weights of the
2D and 3D convolutional kernels are randomly set with a Gaussian distribution.
We apply cross-entropy [42] as a loss function to update the weights and biases
parameters and the network architecture train via Adam algorithm [43] with an
initial learning rate of 0.001. The outputs of 2D-CNN and 3D-CNN were flattened
and were concatenated. Finally, two fully connected, dropout, and softmax layers
were used for classification. The softmax layer generates a probabilistic score over
each class. We set 1000 hidden units in the first and 100 hidden units in the second
fully connected.

Calcubte
> Data functional
proprocssing comnectivity
(FC)

Concatenate layer
Fully connected 1
Dropout
Softmax

Fully connected 2
!

Data
preprocessing

Feature
extraction

Fig. 2 The flowchart of the proposed deep-multi-modal fusion algorithm.
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3. Experiments and results

3.1 Experiments setup

We implemented our proposed deep-multi-modal method in Python with Keras li-
brary [44] and used the Google Colaboratory (https://colab.research.google.
com/) system for running our model. To determine the effectiveness of our pro-
posed model and comparison with other studies, we calculate the accuracy of clas-
sification (ACC), sensitivity (SEN), specificity (SPE), area under ROC (AUC),
and demonstrate the receiver performance curves (ROC) [9]. We use a ten-fold
cross-validation manner, eight folds for the training step, one for the validation,
and one for testing step. The validation part is used to end the training process
when obtaining the optimized weight for the model. We repeat all experiments for
ten times and report the average performance measures. In this study for brevity,
we have named ROI-based FC, according to AAL atlas as AAL-FC. The network
input size for AAL-FC is 140 x 116, and we set 116 hidden states for the GRU
network. In all experiments, the batch size is set to 16.

3.2 The fusion of functional connectivity measures and fMRI
features

In this section, we combine AAL-FC with fMRI extracted features (ALFF, fALFF,
VMHC, and ReHo) in separate experiments. We set the size of all these features
as 61 x 61 x 61. This size is the closest to all features that include all values. Thus,
the input of the first 3D-CNN is 61 x 61 x 61. Tab. I shows the performance of our
deep-multi-modal method to classification SZ/HC by fusion of FC features and the
most referenced fMRI features. Fig. 3 shows the ROC curves in this experiment
based on FC measures.

Sensitivity [%] Specificity [%] Accuracy [%] AUC [%)]

AAL-FC, ALFF 99.14 97.25 98.35 99.2
AAI-FC, fALFF 98.41 96.88 97.78 98.9
AAI-FC, VMHC 95.98 93.26 94.85 97.9
AAI-FC, ReHo 99.63 99.13 99.42 99.7

Tab. I Comparison of classification performance on the fusion of FC measures and
fMRI features.

3.3 The fusion of functional connectivity measures and DTI
features

To determine the best combination of features with the DMMF model, in this
section, we test the fusion of FC measures, and DTT extracted features in separate
experiments. The DTI features that we use in our experiments are FA, MD, and
MO. We set the dimensions of each of them as 128 x 128 x 128 value. This size is
the closest to all features that include all values. Tab. IT shows the obtained results
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Fig. 3 The ROC curve of the fusion of fMRI features with AAL_FC.

of the SZ/HC classification with the fusion of FC measures and all DTT features.
Fig. 4 shows the ROC curves related to these experiments.

Sensitivity [%] Specificity [%] Accuracy [%] AUC [%)]

AAI-FC, FA 99.75 97.13 99.50 99.7
AAI-FC, MD 98.78 97.40 98.21 99.1
AAL-FC, MO 99.51 98.44 99.07 99.4

Tab. II Comparison of classification performance on the fusion of FC measures
and DTI features.

3.4 The fusion of functional connectivity measures and MRI
data

To reduce complexity, we use MRI patches with a size of 70 x 70 x 70 to fusion with
FC measures. In these experiments, MRI data is used with no further processing.
3D-CNNs can extract and learn latent features from MRI patches and provide for
fusion with FC features. Tab. III shows classification results in these experiments
and Fig. 5 illustrates the corresponding ROC curves.

3.5 Comparison with existing methods

To compare the performance of the presented approach in this study, we have listed
some previous studies on the classification of schizophrenia and healthy control
in Tab. IV We report the result of the fusion of AAL-FC and FA data in this
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Fig. 4 The ROC curve of the fusion of fMRI features with AAL_FC.

Sensitivity [%] Specificity [%] Accuracy [%] AUC [%)]
AAl-FC, MRI 96.46 89.78 93 96.70

Tab. III Classification performance on the fusion of the FC measures and MRI
patches.

table. Note that, due to differences in the size and data acquisition parameters
of the datasets, and different approaches to extracting features, comparison of
characteristics of different methods is not entirely fair. However, our approach
uses only two feature from fMRI and DTI modalities and have no hand-crafted
features. Our approach with this promising performance can be used in practical
applications for the automatic diagnosis of schizophrenia.

4. Discussion

Some studies have shown that schizophrenia occurs because of the disconnection
between different brain regions [45]. Functional connectivity analysis is a powerful
technique for investigating functional brain connections [46]. Many researchers have
focused on diagnosing schizophrenia based on different types of fMRI functional
connectivity. For example, in [47-49] researchers used ICA based connectivity
maps that are a type of Data-Driven Analysis. Data-driven methods for estimat-
ing functional connections do not require specifying predefined brain regions or
voxels [29]. Some approaches used model-driven approaches, such as ROI-based
functional connectivity [50]. These methods are based on prior knowledge, such
as predefined atlases. Functional network connectivity (FNC) analysis combines
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Fig. 5 The ROC curve of the fusion of fMRI features with AAL_FC.

model-driven and data-driven methods and is another method used for classifying
SZ an HC sub-groups [51,52]. In the present study, we presented a new approach
that uses ROI-based functional connectivity measures and combines them with a
neuroimaging feature to find robust and latent features for diagnosing schizophre-
nia. The proposed DMMF architecture uses the benefits of recurrent neural net-
works (RNNs) and convolutional neural networks (CNNs) to extract and learn
hidden features. In the experiments, we examined ROI functional connectivity
based on the AAL atlas. AAL atlas is a spatially normalized and single-subject
atlas that consists of 116 ROIs. The best-achieved result in our experiment was
from the fusion of fractional anisotropy and AAL-FC as 99.65%. The finding of
some studies shows a significant difference between FA measures in SZ and HC sub-
jects [53,54]. This difference is the result of white matter deficits in schizophrenic
patients. Thus, we can use FA as a discriminative feature. We extracted latent
patterns from fractional anisotropy maps with 3D-CNNs and combined them with
extracted features from AAL-FC measures. The promising result of the “FA-AAL-
FC” experiment shows that FA can complement ROI-based FC for the diagnosis
of schizophrenia. Results of the combination of MO and MD are almost similar
to that of FA, possibly due to their interdependence; however, this issue needs
further research. The next promising result was obtained from “ReHo-AAL-FC”.
Xu et al. [55] and Xiao et al. [56] showed that the ReHo measure could be used as
a biomarker for diagnosing schizophrenia. In our experiments, we find that ReHo
complements AAL-FC to this end. This finding is important because instead of
using multi-modal data, only fMRI data is enough to achieve good diagnostic ac-
curacy. This method saves time and cost and provides a less diagnostic system.
Finally, the relatively good result of “MRI-AAL-FC” is considerable because no
need to combine hand-crafted features, and only the 3D-CCNs extract MRI fea-
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A
Study Modality Samples Method ci%acy
fMRI SZ : 35
Ref. [57] DTI HC: 28 mCCA+ jICA model 79
sMRI
Deep discriminant
) SZ : 474 auto-encoder
Ref. [14] rs-fMRI HC : 607 Neural network with 8
sparsity constraint (DANS)
fMRI, Single
- nucleotide ~ SZ : 20
Ref. [58] polymorphism HC : 20 Support vector machine 87
(SNP) data
Linear discriminant classifier (LDC)
Ref. [8] fMRI, MEG SZ : 46 Naive Bayes classifier (NBC) 90
HC : 45 non-linear SVM (nSVM)
. rs-fMRI, fMRI
Ref [47] SZ : 28  Kernel principal component analysis %
HC : 28 Fisher’s linear discriminant analysis
MRI, fMRI  SZ : 72
Ref. [18] HC : 72 3D-CNN 98.09
’ sMRI, fMRI SZ: 72
Ref. [9] HC : 72 ELM 99.29
fMRI SZ : 98
5¢ i
Ref. [59] HC : 102 Transfer Learning, VGG16 84.3
Proposed sMRI, DTI SZ: 64 . .
method HC : 81 Deep-multi-modal architecture 99.50

Tab. IV Performance comparison with existing methods.

tures automatically from MRI patches. Deep learning methods are powerful tools
in processing high-dimensional data and are successful in many medical image pro-
cessing. However, most deep techniques, such as CNN, need training data and are
prone to overfitting. The significant limitation of our study is the small sample
size of the dataset applied for training the model. Due to the sensitive nature
of medical images, it was not reasonable to use any data augmentation as [18] to
avoid overfitting during training our model; Therefore, further dropout layers after
GRU, 2D-CNN, and 3D-CNN layers were considered.

5. Conclusion

In this paper, we presented a deep-multi-modal method based on deep learning
for diagnosing schizophrenia disorder. We, for the first time, combined functional
connectivity measures with hand-crafted features extracted from fMRI, DTI data,
or MRI patches. Our deep multi-modal method applies the GRU network and
2D-CNN respectively to construct a feature map from FC measures and use 3D-
CNNs for the extraction of latent patterns from neuroimaging features. Then
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these features combine to classify SZ/HC subgroups. We achieved state-of-the-art
performance to diagnosis schizophrenia. Additionally, we found that not only the
fusion of the AAL-FC and FA features (fMRI and DTT modalities) yields the best
performance, but the fusion of AAL-FC and ReHo (both are fMRI features) is also
very promising, this meaning that only fMRI data can be used with this model to
detect schizophrenia. In the future, we will compare the fusion of other types of
functional connectivity with neuroimaging features and use a multi-site dataset to
train deep architecture.
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