
ONLINE CENTERED NLMS ALGORITHM
FOR CONCEPT DRIFT COMPENSATION

M. Cejnek∗, J. Vrba††

Abstract: This paper introduces an online centered normalized least mean squares
(OC-NLMS) algorithm for linear adaptive finite impulse response (FIR) filters and
neural networks. As an extension of the normalized least mean squares (NLMS), the
OC-NLMS algorithm features an approach of online input centering according to
the introduced filter memory. This key feature can compensate the effect of concept
drift in data streams, because such a centering makes the filter independent from
the nonzero mean value of signal. This approach is beneficial for applications of
adaptive filtering of data with offsets. Furthermore, it can be useful for real-time
applications like data stream processing where it is impossible to normalize the
measured data with respect to its unknown statistical attributes. The OC-NLMS
approach holds superior performance in comparison to the NLMS for data with
large offsets and dynamical ranges, due to its input centering feature that deals
with the nonzero mean value of the input data. In this paper, the derivation of
this algorithm is presented. Several simulation results with artificial and real data
are also presented and analysed to demonstrate the capability of the proposed
algorithm in comparison with NLMS.

Key words: gradient methods, adaptive algorithms, concept drift, streaming data

Received: July 16, 2020 DOI: 10.14311/NNW.2021.31.018
Revised and accepted: October 30, 2021

1. Introduction

The normalized least-mean-squares (NLMS) algorithm [9] is the most common
modification of least-mean-squares (LMS) for FIR filters [4]. In field of neural
networks, the LMS is the most known and used gradient descent (GD) algorithm,
used for various applications in the fields of cybernetics (e.g. signal processing and
computational intelligence). The GD algorithm is quite widely applicable in the
sense of system identification [3], neural network learning [7], echo cancelling [11],
time series prediction [10].

∗Matous Cejnek – Corresponding author; Dept. of Instrumentation and Control Engineering,
Faculty of Mechanical Engineering, Center of Advanced Aerospace Technology, Czech Technical
University in Prague, Technicka Street 4, 16607, Prague 6, Czechia, E-mail: matous.cejnek@fs.
cvut.cz

†Jan Vrba; Department of Computing and Control Engineering, University of Chemistry and
Technology in Prague, Czechia, E-mail: jan.vrba@vscht.cz

©CTU FTS 2021 329

mailto:matous.cejnek@fs.cvut.cz
mailto:matous.cejnek@fs.cvut.cz
mailto:jan.vrba@vscht.cz


Neural Network World 5/2021, 329–341

However, the mentioned algorithms are derived according to the independence
assumptions of adaptive filters analysis [12] and that is a problem for most of the
real-life applications, especially for neural networks working in real-time applica-
tions. According to these assumptions, the signal used by the adaptive filter should
be zero mean and stationary. Such conditions cannot be fulfilled in various cases
of online signal processing. If an adaptive algorithm is used offline, it is possible to
transform the data in a more suitable form (data normalization) to eliminate such
issues. For example z-score transformation is a frequently used operation. The
transformation stands as follows

xz(k) =
x(k)− x̄

σx
, (1)

where the x(k) ∈ R is a variable (input or target of filter), the x̄ ∈ R is mean
value of x(k), σx ∈ R is standard deviation of x(k) and k is the discrete time
index. This transformation is used during offline preprocessing because it may
decrease the condition number of used data. Hence, this transformation leads to
better performance of adaptive algorithms. However, in a lot of applications, it is
computationally demanding to use adaptive algorithms online. In this case, it is
not possible to transform the data according to statistical attributes that are not
known in a given time frame.

Methods how to deal with this issue have been developed in the past for analog
adaptive filters [6, 8], based on the necessity for DC offset compensation. However,
DC offsets in given applications are considered much smaller than the information
in a signal. Thus, the offsets do not represent a significant challenge. However,
this is not the case of digital signal processing of data streams, where the offsets
can be much bigger than the information in data. These issues have not been so
readily studied, hence algorithms as such that of the proposed are necessary.

This proposed method is an extension of the previously presented approach [2].
The previous method was designed for use only in cases where the filter output
was formed only from the history of the filter target. The proposed approach is
inspired by data centering. Because the statistical attributes of future data are
not known during real-time measuring of the data stream, the proposed approach
can use only the actual data or data from memory. This proposed modification
of learning is based on NLMS (instead of LMS) because of the NLMS ability to
scale the learning rate to preserve the convergence. In this paper, the proposed
algorithm is called OC-NLMS (online centered NLMS).

1.1 Review of NLMS

Assume the output of the adaptive filter ỹ(k) is given as

ỹ(k) = w1 · x1(k) + · · ·+ wn · xn(k) = xT(k)w(k), (2)

where (·)T denotes the transposition, ỹ(k) is the filtered signal, w = [w1(k), . . . ,
wn(k)] is a vector of adaptive filter parameters (at the beginning the parameters
are set to random numbers with normal distribution, zero mean and unit standard
deviation) and x is the input vector (for a filter of size n) as follows

x(k) = [x1(k), . . . , xn(k)]. (3)

330



Cejnek M., Vrba J.: Online centered NLMS algorithm for concept drift. . .

The NLMS algorithm is a modification of the classical least-mean-squares algorithm
(LMS), also known as stochastic gradient descent. The LMS weight adaptation is
given as follows

w(k + 1) = w(k) + ∆w(k), (4)

where ∆w(k) is

∆w(k) =
1

2
µ
∂e2(k)

∂w(k)
= µ · e(k) · x(k), (5)

where µ ∈ R is the learning rate (step size) and e ∈ R is error defined as

e(k) = y(k)− ỹ(k), (6)

where the ỹ(k) is the filtered signal and the y(k) is the original signal (target).
According to the general stability criteria of LMS [4]

|1− µ · ||x(k)||2| ≤ 1, (7)

the NLMS adaptation rule is given as follows

∆w(k) = η(k) ·w(k) · e(k), (8)

where η(k) is a learning rate normalized with ||x(k)||2 (input signal power) as
follows

η(k) =
µ

ϵ+ ||x(k)||2
, (9)

where ϵ ∈ R is a small positive constant (regularization term) introduced to preserve
stability for inputs close to zero [4]. The NLMS with ϵ is also called ϵ-NLMS. The
filter is stable if

0 ≤ µ ≤ 2 +
2ϵ

||x(k)||2
, (10)

or for the case without regularization term ϵ

µ ∈ ⟨0, 2⟩. (11)

It is important to highlight that the NLMS is beneficial over the LMS in the
case of suboptimal data. However, the NLMS scaling of the learning rate is used to
deal with both the offset and scale of the input data (and not just with the scale).
This is the limitation of the NLMS. Moreover, note that the normalized range (11)
for learning rate makes the NLMS much easier to apply then the LMS in real-life
scenarios.

2. Filter model

2.1 Data transformation approach

Assume the error caused by data offset [6] is given as follows

eo(k) = y(k)− (x(k) +mx)
Tw(k) +me, (12)

331



Neural Network World 5/2021, 329–341

where vector mx represents the offset of the input data and the me ∈ R is offset
of the error.

As mentioned before, the NLMS deals with offset as in a similar manner to
scale via the change of learning rate. The proposed algorithm extends the NLMS
with centering of the input vector. Thus, the proposed algorithm normalizes the
learning rate to deal with scale after the data offset described by (12) is removed
according to the actual or historical inputs of the filter.

During online signal processing, it is possible to use only historical data to
estimate the statistical attributes of data. Data attributes like the mean value are
changing during the process of filtering. This causes information loss, where older
data are centered on different values than newer data. Thus, making this approach
valuable only in the case where information loss is a smaller problem than a bad
condition number of the data (ill-conditioned input matrix).

2.2 Proposed algorithm

The proposed OC-NLMS algorithm is based on (2) extended with centering for
compensation of the offset described by (12) as follows

ỹ(k) = (x(k)− x̄)Tw(k) + ȳ, (13)

where the ȳ is the mean value of historic filter target, x̄ is a vector of mean values
of input variables. In practice the x̄ is replaced with x̄h estimated according to
known historic input data x and the same replacement have to be done with ȳh.
Therefore, such replacement yields the following conditions

x̄ ≈ x̄h, ȳ ≈ ȳh. (14)

Error e(k) of the proposed filter may thus be expressed as follows

e(k) = y(k)− ỹ(k) = y(k)− (x(k)− x̄)Tw(k)− ȳ. (15)

From this, it is possible to derive the OC-NLMS learning rule (in the same way as
the derived NLMS learning rule) as follows

∆w(k) =
1

2
η(k)

∂e2(k)

∂w(k)
= η(k) · e(k) · (x(k)− x̄), (16)

where the normalized learning rate is estimated in every step as follows

η(k) =
µ

ϵ+ ||x(k)− x̄||2
. (17)

2.3 Stability and convergence

For better readability, the following substitution is used in this subsection

xc(k) = (x(k)− x̄). (18)

To achieve the convergence of this OC-NLMS algorithm, the following condition
must be fulfilled

|y(k)− xc(k)
Tw(k)− ȳ| ≥ |y(k)− xc(k)

Tw(k + 1)− ȳ|. (19)

332



Cejnek M., Vrba J.: Online centered NLMS algorithm for concept drift. . .

The new weights w(k+1) may be obtained from equations (4) and (16). And after
simplification, the stability criteria stand as follows

|1− η(k) · ||xc(k)||2| ≤ 1. (20)

Note that OC-NLMS normalized learning rate η is described by (17), thus it is
different from (9) used by NLMS. For selection of the default learning rate, the
following criteria may be applied (10).

3. Experimental analysis

In this section, experiments and their results to prove the validity of the proposed
approach are described. In all experiments, the OC-NLMS was implemented with
memory for only the last 100 and 500 samples (according to the experiment).
The centering vector x̄h is estimated only in accordance with this memory. The
regularization term was set to ϵ = 0 because the introduction of the regularization
term did not improve the performance for all tested cases.

3.1 Identification of SISO system

The analysis compares performance of the proposed algorithm with the NLMS
algorithm for the task of unknown system identification. The unknown system has
10 randomly generated taps. The taps were taken from a distribution with zero
mean and unit standard deviation. The adaptive filter has the same order as the
unknown system (n = 10). The input of the system was both linear and nonlinear
signal u(k). The linear signal was formed by an auto-regressive filter, which may
be represented as follows

u(k) = 0.9u(k − 1) + q(k), (21)

where q(k) ∈ R is normally distributed random variable with mean value a ∈ R and
standard deviation b ∈ R. The non-linear signal was formed from the benchmark
system [5] with random variable q(k) ∈ R as follows

u(k) =
u(k − 1)

1 + u(k − 1)2
+ q(k)3. (22)

The Gaussian white noise v(k) ∈ R was added to output of the unknown system.
The mean value of this noise was 0, and the standard deviation σv ∈ R was adjusted
to achieve 30dB of SNR (signal to noise ratio) as follows

SNR = 10 log10
σ2
y

σ2
v

, (23)

where σy is standard deviation of the unknown system output.
For every experimental setup (type of signal, offset a, amplitude b) 100 exper-

iments were run and an average was made. The optimal default learning rate µ
for every experiment and algorithm was found by testing, where the criteria were

333



Neural Network World 5/2021, 329–341

an average of the mean-squared deviation (MSD) after convergence. The MSD is
estimated as follows

MSD = E||wo(k)−w(k)||2, (24)

where wo(k) are parameters of the target system. The used experimental setups
with simulation results are in Tab. I. Fig. 1 and Fig. 2 show the MSD curves for
OC-NLMS and NLMS in case of suboptimal inputs of the unknown SISO system.
In Fig. 2 it is possible to observe an increase of the OC-NLMS MSD around the
time index value of 2500. This increase is caused by the final error of the adaptive
parameters. This error is decreased at the end of the learning because the adaptive
parameters cross the correct parameter values (and thus they are temporally lower).
This behaviour of OC-NLMS adaptive filter is obvious from Fig. 3.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of iteration

40

30

20

10

0

10

20

M
S
D

 [
d
B

]

OC-NLMS NLMS

Fig. 1 Performance comparison between OC-NLMS and NLMS for identification
of system with linear input (mean value of 100 and standard deviation of 10).

System input µ average MSD

Type a b OC-NLMS NLMS OC-NLMS NLMS

linear 0 1 0.1 0.1 7.31E-4 3.37E-4
linear 100 10 0.02 0.9 1.14E-3 8.35E-2

non-linear 0 1 0.02 0.02 1.45E-3 9.02E-4
non-linear 100 10 0.02 0.01 1.23E-3 9.85E+0

Tab. I Identification experimental setups and results for SISO systems. Inputs of
the system are processed via linear (21) and non-linear (22) equations. The “a” is
a mean value and the “b” is the standard deviation of the system input.

334



Cejnek M., Vrba J.: Online centered NLMS algorithm for concept drift. . .

0 500 1000 1500 2000 2500 3000 3500 4000
Number of iteration

40

30

20

10

0

10

20

M
S
D

 [
d
B

]

OC-NLMS NLMS

Fig. 2 Performance comparison between OC-NLMS and NLMS for system with
non-linear input (mean value of 100 and standard deviation of 10).

Fig. 3 Detail on adaptation of the OC-NLMS algoritm individual adaptive weights
– example with SISO system identification.

3.2 Identification of MISO system

For this experiment, a MISO (multi-input-single-output system) was used. The
system may thus be represented via the following relation

y(k) = hTu(k) (25)

where h are randomly chosen constants (normal distribution, zero mean, unit stan-
dard deviation) and u(k) is the input vector. The input vector contains 3 previous
values from each 3 independent inputs – u1(k), u2(k), u3(k). Thus, the size of the

335



Neural Network World 5/2021, 329–341

system is n = 9. The independent inputs are formed as follows

u1(k) = 0.9u1(k − 1) + q1(k), (26)

u2(k) = 0.7u2(k − 1)− 0.1u2(k − 2) + q1(k), (27)

u3(k) =
u3(k − 1)

1 + u3(k − 1)2
+ q3(k), (28)

where q1(k), q2(k) and q3(k) are the normally distributed random variables (q̄1 =
100, σq1 = 10, q̄2 = 70, σq2 = 15, q̄3 = −80, σq3 = 6). To the output of the system
y(k) was added measurement noise to meet 30dB of SNR (23). The adaptive filters
used in this experiment use the same input vector as the system. The founded
optimal learning rates are 0.05 for OC-NLMS and 0.9 for NLMS. The results of
the experiment are shown in Fig. 4 in form of MSD curves

0 500 1000 1500 2000 2500 3000 3500 4000
Number of iteration

40

30

20

10

0

10

20

M
S
D

 [
d
B

]

OC-NLMS NLMS

Fig. 4 Comparison of performance between OC-NLMS and NLMS for MISO system
– inputs with different offset.

3.3 Time series prediction

This experiment uses an open-source data-set [1]. The featured time series are
records of the temperature in 36 cities, thus being nonstationary. The temperatures
contain an offset from 0, because they are recorded in degrees Fahrenheit. The
temperatures are recorded hourly in the years 2015 to 2017. The data set contains
corrupted areas in some series in the first half of the data. This problematic part
of the data was skipped for all cities to ensure that all series have the same length.
The adaptive filters were used in the prediction setup with one sample ahead the
prediction horizon (one hour future). The input of the filter consists of 4 days
history (4 ∗ 24 samples). The best learning rates µ for both tested algorithms
(OC-NLMS, NLMS) were found experimentally to achieve the best results for both

336



Cejnek M., Vrba J.: Online centered NLMS algorithm for concept drift. . .

measured metrics – mean-absolute-error (MAE):

MAE =

∑n
i=1 |ei|
n

, (29)

and root-mean-squared error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

e2i . (30)

Town
name

OC-NLMS NLMS OC-NLMS advantage
MAE RMSE MAE RMSE

MAE [%] RMSE [%]
Value µ Value µ Value µ Value µ

Vancouver 0.568 0.18 0.814 0.16 0.638 1.26 0.938 1.26 11.03 13.21
Portland 0.619 0.22 0.84 0.22 0.737 1.38 1.034 1.36 15.95 18.74
San Francisco 0.618 0.22 0.842 0.22 0.802 1.44 1.11 1.4 23.01 24.18
Seattle 0.547 0.22 0.735 0.24 0.609 1.4 0.856 1.4 10.25 14.12
Los Angeles 0.698 0.2 1.048 0.2 0.944 1.34 1.448 1.22 26.11 27.65
San Diego 0.714 0.18 1.052 0.18 0.87 1.28 1.398 1.2 17.99 24.71
Las Vegas 0.871 0.16 1.28 0.16 1.119 1.28 1.649 1.14 22.14 22.4
Phoenix 0.725 0.24 1.032 0.22 1.066 1.44 1.465 1.32 31.95 29.58
Albuquerque 1.014 0.16 1.38 0.16 1.256 1.3 1.719 1.24 19.22 19.7
Denver 1.001 0.22 1.38 0.22 1.156 1.36 1.636 1.3 13.42 15.68
San Antonio 0.751 0.22 1.07 0.22 0.868 1.38 1.252 1.36 13.46 14.51
Dallas 0.676 0.24 0.954 0.26 0.751 1.42 1.081 1.38 9.95 11.8
Houston 0.661 0.22 0.942 0.22 0.722 1.36 1.09 1.36 8.44 13.65
Kansas City 0.741 0.24 1.063 0.24 0.773 1.38 1.143 1.34 4.13 6.97
Minneapolis 0.656 0.28 0.905 0.28 0.656 1.42 0.968 1.38 0.05 6.55
Saint Louis 0.744 0.24 1.039 0.24 0.774 1.38 1.134 1.34 3.87 8.35
Chicago 0.629 0.28 0.868 0.3 0.615 1.4 0.898 1.4 -2.35 3.34
Nashville 0.802 0.22 1.117 0.22 0.844 1.36 1.231 1.34 5.03 9.3
Indianapolis 0.707 0.24 0.969 0.26 0.727 1.34 1.061 1.34 2.81 8.67
Atlanta 0.698 0.24 0.977 0.24 0.795 1.4 1.167 1.36 12.2 16.28
Detroit 0.653 0.24 0.891 0.26 0.654 1.38 0.949 1.36 0.12 6.12
Jacksonville 0.64 0.18 0.9 0.18 0.697 1.26 1.048 1.3 8.29 14.13
Charlotte 0.713 0.24 0.991 0.26 0.814 1.42 1.189 1.4 12.33 16.61
Miami 0.514 0.14 0.739 0.16 0.539 1.22 0.829 1.26 4.56 10.85
Pittsburgh 0.706 0.24 0.979 0.26 0.706 1.38 1.038 1.36 -0.04 5.67
Toronto 0.593 0.24 0.805 0.26 0.601 1.28 0.862 1.3 1.34 6.63
Philadelphia 0.665 0.26 0.938 0.28 0.695 1.4 1.047 1.36 4.19 10.42
New York 0.575 0.26 0.787 0.28 0.612 1.4 0.877 1.38 6.08 10.28
Montreal 0.657 0.24 0.914 0.24 0.668 1.28 0.982 1.3 1.62 6.9
Boston 0.64 0.26 0.875 0.28 0.642 1.42 0.927 1.38 0.31 5.59
Beersheba 0.718 0.22 1.105 0.2 1.294 1.04 2.206 1.0 44.52 49.91
Tel Aviv District 0.642 0.16 0.962 0.16 0.777 1.2 1.209 1.22 17.41 20.47
Eilat 1.154 0.12 1.662 0.1 1.604 1.04 2.518 0.86 28.03 34.0
Haifa 0.861 0.1 1.356 0.08 0.955 1.06 1.715 1.1 9.79 20.94
Nahariyya 0.851 0.08 1.364 0.06 0.901 1.02 1.739 1.08 5.57 21.57
Jerusalem 0.678 0.16 1.007 0.16 0.79 1.16 1.219 1.16 14.26 17.4

Tab. II Table provides the best values of MAE and RMSE and the corresponding
learning rates. The last two columns represent the difference between OC-NLMS
and NLMS error in percents. The rare cases where the NLMS outperform the
proposed OC-NLMS are highlighted.

337



Neural Network World 5/2021, 329–341

Both error metrics provide different information, thus both of them are presented
in the Tab. II. The diversity of the used data is shown in Fig. 5. As it is possible
to see in the Tab. II, the proposed OC-NLMS works generally better than NLMS.
Both error metrics (MAE and RMSE) are minimized with similar learning rates in a
given algorithm, while a different optimal learning rate is required per algorithm. In
terms of RMSE, the proposed OC-NLMS features better robustness to suboptimal
selection of learning rate than NLMS (Fig. 6).

Fig. 5 Overview of data [1] diversity – last 500 samples (hours) from every series
(since 2017-11-09 till 2017-11-30).

338



Cejnek M., Vrba J.: Online centered NLMS algorithm for concept drift. . .

Fig. 6 Influence of learning rate selection on MAE and RMSE in the prediction of
temperature (this plot is for Vancouver temperature time series [1]).

4. Discussion

4.1 Information loss versus condition number

The experimental results of OC-NLMS algorithm are promising, but it is important
to keep in mind that the proposed algorithm causes a small information loss. More
complete and diverse tests of general validity should be performed in the future
to determine the limitations of the OC-NLMS algorithm. In other words, further
research should be conducted to find the border between the importance of full
information in the data or better condition number of data.

4.2 Time complexity

In Tab. III is the number of iterations needed by individual algorithms (n is size of
input vector and them is the size of memory). As you can see from this comparison,
the OC-NLMS has about one-third more multiplications and significantly more
additions. However, an important notion is that the memory size m influence only
the additions and it is independent from input size n. Thus, the OC-NLMS time
complexity is still linear. A further important notion is that if the OC-NLMS

Multiplications Additions

NLMS 3n+ 2 3n− 1
OC-NLMS 4n+ 3 5n+ (n+ 1)(m− 1)

Tab. III Time complexity.

is implemented in a higher level programming language (e.g., Python, Java, or
similar), it is possible to use a numerical library for such computations. In this case,
the difference between NLMS and OC-NLMS reduces to a matrix operation which

339



Neural Network World 5/2021, 329–341

is much faster than rest of the computations that must be performed iteratively in
loops. The implementation of OC-NLMS used in the experimental analysis in this
paper is thus only 10% slower than NLMS due to this reason.

5. Conclusion

This paper proposed the OC-NLMS algorithm as an extension of the normalized
least-mean-squares algorithm. This proposed algorithm uses temporary statistical
attributes of the measured data to center the input data, what leads to better
performance with gradual concept drift like offsets and/or badly scaled data. The
simulation results validate this approach for SISO and MISO system identification
and for the prediction of nonstationary data.

Acknowledgement

Authors acknowledge support from the ESIF, EU Operational Programme Re-
search, Development and Education, and from the Center of Advanced Aerospace
Technology (CZ.02.1.01/0.0/0.0/16 019/0000826), Faculty of Mechanical Engineer-
ing, Czech Technical University in Prague. The used dataset [1] is publicly available
at Kaggle:
https://www.kaggle.com/selfishgene/historical-hourly-weather-data/.

References

[1] BENIAGUEV D. Historical hourly weather data 2012-2017. 2017. Available also
from: https://www.kaggle.com/selfishgene/historical- hourly- weather-
data.

[2] CEJNEK M., BUKOVSKY I. Online data centering modifications for adaptive fil-
tering with NLMS algorithm. In: Neural Networks (IJCNN), 2016 International
Joint Conference on, 2016, pp. 1767–1771.

[3] GHAURI S.A., SOHAIL M.F. System identification using LMS, NLMS and RLS.
In: Research and Development (SCOReD), 2013 IEEE Student Conference on, 2013,
pp. 65–69.

[4] MANDIC D.P. A generalized normalized gradient descent algorithm. IEEE Signal
Processing Letters. 2004, 11(2), pp. 115–118.

[5] NARENDRA K.S., PARTHASARATHY K. Identification and control of dynamical
systems using neural networks. IEEE Transactions on neural networks. 1990, 1(1),
pp. 4–27.

[6] NIN L., PEREZ-MEANA H., SANCHEZ-SINENCIO E., et al. A modular analog
NLMS structure for adaptive filtering. Analog integrated circuits and signal Pro-
cessing. 1999, 21(2), pp. 127–142.

[7] RUMELHART D.E., HINTON G.E., WILLIAMS R.J. Learning representations by
back-propagating errors. Cognitive modeling. 1988, 5(3), pp. 1.

[8] SHOVAL A., JOHNS D.A., SNELGROVE W.M. Comparison of DC offset effects
in four LMS adaptive algorithms. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing. 1995, 42(3), pp. 176–185.

340

https://www.kaggle.com/selfishgene/historical-hourly-weather-data/
https://www.kaggle.com/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/selfishgene/historical-hourly-weather-data


Cejnek M., Vrba J.: Online centered NLMS algorithm for concept drift. . .

[9] WIDROW B., STEARNS S.D. Adaptive signal processing. Englewood Cliffs, NJ,
Prentice-Hall, Inc., 1985, 491 p. 1985, 1.

[10] WILBUR W.J., KIM W. Stochastic gradient descent and the prediction of MeSH
for PubMed records. In: AMIA Annual Symposium Proceedings, 2014, pp. 1198.

[11] YADAV J., KUMAR M., SAXENA R., JAISWAL A. Performance Analyis Of Lms
Adaptive Fir Filter And Rls Adaptive Fir Filter For Noise Cancellation. Signal &
Image Processing. 2013, 4(3), pp. 45.

[12] YOUSEF N.R., SAYED A.H. A unified approach to the steady-state and tracking
analyses of adaptive filters. IEEE Transactions on Signal Processing. 2001, 49(2),
pp. 314–324.

341




