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Abstract: Graph generative adversarial network has achieved remarkable effec-
tiveness, such as link prediction, node classification, user recommendation and
node visualization in recent years. Most existing methods mainly focus on how
to represent the proximity between nodes according to the structure of the graph.
However, the graph nodes also have rich attribute information in social networks,
the traditional methods mainly consider the node attributes as auxiliary infor-
mation incorporate into the embedding representation of the graph to improve the
accuracy of node classification and link prediction. In fact, in social networks, these
node attributes are often sparse. Due to privacy and other reasons, the attributes
of many nodes are difficult to obtain. Inspired by the application of generative
adversarial network in image field, we propose an innovative framework to discover
node latent attribute. Through experiments, we demonstrate the effectiveness of
our proposed methods.
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1. Introduction

More and more attention has been paid to network representation learning in re-
cent years. It learns a low-dimensional embedding vector to capture highly nonlin-
ear network structures, especially for large-scale networks such as social networks
and citation networks, which benefits some network downstream tasks, such as
clustering, link prediction, visualization, user recommendation in social network,
community discovery, product recommendation of e-commerce website, etc.

In the past decades, a large number of network embedding methods have been
proposed to discover the latent structural proximity of networks. DeepWalk [1] first
introduces deep learning to network embedding task, which utilizes unsupervised
features to represent learning and obtains the local network structure representa-
tion through random walk and skip-gram. Specifically, it maximizes the likelihood
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probability distribution of a given node. LINE [2] proposes the breadth-first search
(BFS) strategy to discover the first-order and second-order proximity of weighted
and unweighted networks. Node2Vec [3] extends this idea further, using both
breadth first search (BFS) and depth first search (DFS) to learn network struc-
tures. DANE [4] is proposed by designing an AutoEncoder to learn the similarity
of the topology of the attribute network.

In addition to the above these deep learning model, affected by the generate
adversarial network which has successfully applied in the image field [5–8], gen-
erate adversarial network is introduced into the network representation learning.
However, different from the image, the complexity, disorder and discreteness of
the graph structure hinder the application of GAN in the graph structure rep-
resentation learning, especially the discreteness prevents these classical methods
from being used on the graph structure. Therefore, some improved methods are
proposed, such as GraphGAN [9] using the policy gradient Monte-Carlo search al-
gorithm for network presentation learning, NetGAN [10] using Wasserstein distance
to generate network subgraph, ProGAN [11] using the triple representation method
to capture network proximity, HeGAN [12] extending the application domain to
heterogeneous information network.

Although these methods have been successful in network representation learn-
ing, most of the current algorithms only focus on the proximity of network struc-
ture, the connection distribution between nodes, clustering analysis, and ignore
the rich description information in attribute network. However, these descriptions
contain very important content. As shown in Fig. 1, in social networks, user A is
connected to user B, and user B is connected to user D through C. The attribute
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Fig. 1 An example of attribute network.
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information of user A, C and D, such as college, place and hobbies, is known, but
the attribute of B cannot be obtained. How to generate the corresponding attribute
through the node connected to B? Through the graph, we can intuitively infer the
attribute of B. in the real world, B is more closely connected with A and C (the
distance is shorter), so B may have more common attributes (hobbies) with A and
C. However, we can reasonably infer that B may also have some common attributes
(hobbies) with D.

In order to address above intuitionistic and interesting problem, inspired by the
application of GANs in image, we propose a robust attribute generate adversarial
network (AGAN) to generate the attributes of nodes according to the given node
with context network information. As far as we know, this is the first to apply
GAN to the generation task of graph network attributes. In this paper, we generate
corresponding attribute information according to the neighboring information of
nodes in social network, such as users’ political tendency, interest and hobbies,
etc. However, graph network structure information and attribute text information
belong to two different modal data structures, so how to integrate these two kinds
of information is a challenge. Our contributions as follows:

(1) We propose an AGAN neural network framework to generate the attributes
of network nodes. We solve the challenge of discover node latent attribute
through highly nonlinear network structure with given node context, and
propose an improved variant Bi-AGAN method.

(2) Under the condition of no strong assumption, the attribute of given node is
generated smoothly by AGAN, which makes it approximate to the attribute
distribution of network node in the real world.

(3) We establish a data set of our own, and carried out extensive experiments
on this data set. By comparing with the baseline method, experiment proves
the effectiveness of our method.

2. Related Work

So far, network representation learning has attracted more and more attention,
and different network representation learning methods have been proposed. In this
section, we will review these related work.

Network embedding maps network structure or node data to a low dimensional
latent space. Perozzi et al. [1] proposed a seminal method for embedding deepwalk
networks. It employs random walk to obtain node sequences, and uses skip-gram
model to learn node representation. Inspired by this method, a large number of
network representation methods based on deepwalk have emerged. For example,
Grover et al. [3] proposed a node2vec method, which uses breadth first and depth
first methods to preserve local and global proximity. Cao et al. [13] proposed the
grarep method to preserve the high order approximation of nodes.

However, most of these methods are only based on network topology, ignoring
the importance of node attributes. Therefore, some researchers propose joint em-
bedding methods of attribute and network topology. For example, Yang et al. [14]
proposed a linear inductive matrix decomposition method which combines network
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topology and attributes, and Huang et al. [15] utilized the method of graph Lapla-
cian to jointly embedding from topology and attribute learning. Cao et al. [4]
proposed a deep attribute network embedding method, which can preserve prox-
imity of topological structure and node attributes.

Recently, some researchers propose a network embedding method based on
GAN [16–19], which is used to learn robust latent representation in various ap-
plications. GANs used the idea of adversarial learning, through the competition
between discriminators and generators, learning the latent data distribution of the
network, making the model more robust to sparse or noisy data. For example,
Wang et al. [9] proposed GraphGAN simulates the probability of each individual
edge. Bojchevski et al. [10] proposed a NetGAN model using Wasserstein GAN to
train targets, which can generate graphs of known network patterns.

Most of the aforementioned methods are aimed at the prediction, classification
and visualization of network nodes. Although some researches consider the infer-
ence of network node attributes by explicit probability model. For example, Gong
et al. [20] proposed a social behavior attribute (SBA) network model, and estab-
lished a voting distribution attack based on SBA model to infer the attributes of
social network users. Jia et al. [21] proposed a Markov random probability model
based on the definition of social network structure, and used the loopy belief prop-
agation (LBP) to infer the attributes of users. However, these methods are all
shallow models, and there is little work to generate the attributes of network nodes
through deep learning.

3. Preliminaries

Long short term memory (LSTM) network has shown significant improvement in
some NLP applications [22–24]. In order to better capture the potential depen-
dence between vertices and attributes and improve the generalization ability of the
model, we use one-dimensional convolutional neural network to extract feature in-
formation, and then use bidirectional long short term memory (Bi-LSTM) [25–27]
to automatically capture and characterize the information of nodes and attribute
text sequences. Thus, we review some foundational knowledge about Bi-LSTM.

Generally, a typical LSTM recurrent neural network consists of four compo-
nents: one input gate it with corresponding weight matrix Wi and bias vector bi;
one forget gate ft with corresponding weight matrix Wf and bias vector bf ; one
memory gate ct with corresponding weight matrix Wc and bias vector bc; one out-
put gate ot with corresponding to the weight matrix Wo and bias vector bo, ht−1

denotes the previous state, ht denotes the current state, ⊙ denotes element-wise
multiplication, and the detailed calculation formula as follows:

Input gate:
it = σ(Wi · [ht−1, xt] + bi). (1)

Forget gate:
ft = σ(Wf · [ht−1, xt] + bf ). (2)

State update:
c̃t = tanh(Wc · [ht−1, xt] + bc), (3)
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ct = it ⊙ c̃t + ft ⊙ ct−1. (4)

Output gate:

ot = σ(Wo · [ht−1, xt] + bo), (5)

ht = ot ⊙ tanh(ct). (6)

Bi-directional LSTM (Bi-LSTM) consists of two LSTMs, which considers the
input characteristics of the past and the future. The calculations of Bi-LSTMs can
be formulated as follows:

h⃗t = LSTM(xt, h⃗t−1),
←
ht = LSTM(xt,

←
ht−1),

ht = h⃗t +
←
ht.

(7)

4. Deep attribute generate adversarial network

In this section, we describe our AGAN—a deep attribute generate adversarial net-
work framework and the implementation of generator and discriminator. Then we
present the training strategy.

4.1 AGAN framework

The overall framework of our model is shown in Fig. 2. The generator receives
node contexts and noisy attribute distribution, and then generates the joint em-
bedding representation as the output. The discriminator utilizes the node contexts
(real node and synthesized node) and node attribute (real attribute text and noise
attribute text) to learn the context and attribute joint embedding matrix. Fur-
thermore, LSTM indicates long short term memory network, LN indicates layer
normalization.

As same as other classical GAN model, our AGAN has two components: a
generator and a discriminator. Because the node structure and the attribute text
of node are discrete, we use DeepWalk to sample the node context to generate the
node context sequence set. The attribute text of node forms the attribute text set,
and then uses LSTM coding respectively. We adversarial train generator (G) and
descriminator (D) based on node attribute feature.
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Fig. 2 The framework of our proposed model.
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In the GAN model, the generator and the discriminator can be regarded as
two players playing a maximum-minimum game. The generator tries to generate
false sample data to deceive the discriminator D, while the discriminator tries to
distinguish false and real samples. Specifically, in our model, the generator tries
to perfectly fit the real attributes distribution of vertices, while the discriminator
tries to detect which are the attributes of vertices generated by G and which are
the real attributes of vertices. A typical GAN is defined as follows [16]:

minϕmaxθV (G,D) = Ex∼p(x)[logDθ(x)] + Ez∼p(z)[log(1−Dθ(Gϕ(z)))], (8)

where p(x) represents the latent distribution of real sample space, p(z) denotes dis-
tribution space of prior sample, Gϕ(·) andDθ(·) denote generator and discriminator
respectively. Goodfellow et al. proved effectiveness of Eq. (5) [16]. Theoretically,
there is a Nash equilibrium in which the generator will generate a distribution that
approximates real distribution. In other words, generator G can map the prior dis-
tribution p(z) to the complex real distribution p(x). However, we want to generate
attributes for vertices, not just approximate the real distribution. Therefore, origin
GAN does not solve this problem.

In our propose an AGAN framework, different from the original GAN, we denote
the real node as V, the synthesized node as V , the real attribute text as T, and
the noise attribute text as T . Discriminator D can distinguish true and false
from three types of data, which are the real node context pair with real attributes
(V, T ), the synthesized node context pair with real attributes (V , T ) and the real
node context pair with noise attributes (V, T ). Through optimization learning, the
discriminator can provide auxiliary signals to the generator. Our objective function
can be defined as follows:

minϕmaxθV (G,D) = Ex∼p(x)[logDθ(V, T )] + Eϕ∼p(ϕ)[log(1−Dθ(Gϕ(V , T )))

+ log(1−Dθ(Gϕ(V.T )))]. (9)

4.2 Node contexts and node attributes deep joint embedding

Definition 1. (Graph) A graph is defined as G = {V,C, T, L}, where V =
{v1, v2, . . . , vn} represents n nodes, C = {c1, c2, . . . , cn} represents a set of node
context which random sample by DeepWalk, T = {t1, t2, . . . , tn} represents node
attribute text and L = {l1, l2, . . . , ln} represents node class.

As the same as previous multimodal works [5], in order to obtain a discriminator
vector representation of given node contexts and attributes, we learn a deep joint
embedding of node contexts and node attributes. Specifically, we employ the inner
product of two LSTM feature encoders to learn the corresponding functions of node
proximity and node attributes. In short, by maximizing the loss of matching node
contexts and node attributes and minimizing the loss of node attributes and other
node contexts, the loss function is defined as follows:

L =
1

N

N∑
i=1

∆(li, fc(ci)) + ∆(li, ft(ti)), (10)

where ∆ is the 0− 1 loss. Classifiers fc and ft are defined as follows:

fc(c) = argmaxl∈LEt∼T (L)[ϕ(c)
Tφ(t)], (11)
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ft(t) = argmaxl∈LEt∼C(L)[ϕ(c)
Tφ(t)], (12)

where ϕ and φ represent node context encoder and node attribute text encoder (e.g.,
LSTM) respectively. T (L) is the set of node attribute texts of class l and likewise
C(L) for node contexts. In order to minimize equation 11, we used character-level
convolutional networks for text classification [28,29].

4.3 Discriminator for AGAN framework

Three types of node context and attribute text pairs, such as node context pair
with real attributes, synthesized node context pair with real attributes and real
node context pair with noise attributes were employed. In order to evaluate score
of these pairs, the discriminator D is modeled the interaction between the observed
node context and the corresponding node attributes, in which three neural network
frameworks are used: long short term memory layer, residual neural network and
full connection layer, as shown in Fig. 2.

In the discriminator, node context and node attributes are mapped to two
different embedding spaces which are related to each other. Cr×d denotes node
context embedding matrix, Tm×k denotes node attributes embedding matrix, and
r and m representing the number of node and attribute texts respectively. It is
worth noting that k = d in this paper, that is to say, the dimension of node context
and node attribute embedding matrix is equal to the given node.

The layer normalization which is a classic regularization layer is connected after
the node context encoder and attribute text encoder to avoid over-fitting [30], and
the output vectors of the two encoders are denote as Eϕ ∈ Rr and Eφ ∈ Rm

respectively. Then the Eϕ and Eφ are connected and input to the later network
layer. In order to accelerate convergence and avoid gradient vanish, the residual
network is used. Finally, through the calculation of the full connection layer by the
discriminator, the score can be formally expressed as follows:

D(C, T ) = Concat(Eϕ, Eφ) ·M · F ·K, (13)

where M ∈ R(r+m)×k denotes residual network for feature mapping and extraction,
F ∈ Rk×n denotes full connection layer, K ∈ Rn×1 denotes a vector which is
utilized to calculate the final score.

4.4 Generator for AGAN framework

The goal of generator G is to generate a graph topology by sampling a given node
with random walk. A series of random walk sequences with length t of node v is
randomly extracted from graph G, that is, the context set c of node v, the node
context embedding ϕ(c) is obtained by node context encoder ϕ, the node attributes
embedding φ(t) obtained by attribute text encoder φ which generate by Z. Utilizing
layer normalization to normalize embedding vector ϕ(c) and φ(z) respectively, and
then connect the two embedding vectors. Using G(ϕ(c), φ(t)) to generate the joint
embedding representation V of node context and node attributes.

The traditional stochastic gradient descent method is suitable for continuous
real value space. But our graph structure and node attribute text are discrete, we
can’t use the traditional GANs stochastic gradient descent method to optimize.
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Specifically, the discriminator uses the calculated gradient to guide the generator
to approach the real distribution through slight changes. In the field of computer
vision, for example, the RGB three channel image is continuous in the real value
space R ∈ [0, 255], but for the discrete text, the discriminator can’t propagate the
gradient back to the generator, resulting in the loss of the training direction of
generator.

Several studies have proposed to address aforementioned application problems
of GANs. One is to use the Gumbel distribution method proposed by Jang et
al. [31], which uses a gradient estimator to replace the non differentiable samples
in the distribution with the differentiable samples Gumbel softmax distribution; an-
other method, based on reinforcement learning(RL), utilizes policy gradient method
proposed by Yu et al. [17]. To avoid the non differentiable problem of generator,
the random strategy in RL is used to model generator and update policy gradient
and return to the intermediate state through Monte Carlo search. Following this
idea, Wang et al. proposed an improved GAN framework for graph network using
policy gradient.

Inspired by the policy gradient, we utilize the policy gradient to optimize our
generator. The policy gradient derivation of AGAN generator is calculated as
follows:

∇ϕLGϕ
= ∇ϕEϕ∼p(ϕ)[log(1−Dθ(Gϕ(V , T ))) + log(1−Dθ(Gϕ(V, T )))]

=
N∑
i=1

∇ϕpϕ(Gϕ(V i, Ti) log(1−Dθ(Gϕ(Vi, Ti))) +

N∑
i=1

∇ϕpϕ(Gϕ(Vi, T i) log(1−Dθ(Gϕ(Vi, T i)))

=
N∑
i=1

pϕ(Gϕ(V i, Ti)∇ϕ log pϕ(Gϕ(V i, Ti) log(1−Dθ(Gϕ(Vi, Ti))) +

N∑
i=1

pϕ(Gϕ(Vi, T i)∇ϕ log pϕ(Gϕ(Vi, T i) log(1−Dθ(Gϕ(Vi, T i)))

= Eϕ∼p(ϕ)[∇ϕ log pϕ(Gϕ(V , T ) log(1−Dθ(Gϕ(V , T ))) +

∇ϕ log pϕ(Gϕ(V, T ) log(1−Dθ(Gϕ(V, T ))]

≈ 1

M
[∇ϕ log pϕ(Gϕ(V , T ) log(1−Dθ(Gϕ(V , T ))) +

∇ϕ log pϕ(Gϕ(V, T ) log(1−Dθ(Gϕ(V, T ))]. (14)

where distribution p(ϕ) is determined by the parameter ϕ of generator. When the
parameter ϕ is updated in each iteration, the new distribution p(ϕ) is approximate
to the real distribution. M denotes the number of samples, for more details in
Algorithm 1.

166



Zhang M., Xu P.: AGAN: Attribute generative adversarial network

Algorithm 1 Attribute generative adversarial network based on policy gradient.

while AGAN not converge do
for G-steps do
Sample the node deepwalk sequence and node noise attribute text
G generates synthesis node V
Update G parameter according to Eq. (9) and Eq. (14)

end for
for D-steps do
Sample real node context pair with real attributes (V, T )
Sample the synthesized node context pair with real attributes (V , T )
Sample the real node context pair with noise attributes (V, T )
Update D parameter according to Eq. (9), Eq. (13) and Eq. (14)

end for
end while

5. Experiment Settings

In this section, we firstly establish our own data set, and then compare the per-
formance of our proposed framework AGAN and variant method Bi-AGAN with
baseline methods.

5.1 Data set

In order to evaluate the performance of our proposed framework, we investigate
several public attribute networks, such as Facebook and twitter datasets. These
datasets are anonymously transformed into bag vectors for privacy reasons, which
is not suitable for our experiment.

We worked with a talent website to create a new dataset for this trial. We invite
users to participate in our experiment by email, and fill in user attributes online. In
order to make the attribute data rich and diverse, we selected 10 attributes (such
as school, major, political inclination, hobbies, employers, etc.) for the invited
users to fill in. About 12,000 people were sent an invitation email and asked them
to forward their circle of friends to invite them to attend. About 50,000 users and
about 100,000 connections were collected. College and work place information is
extracted through education and place.

5.2 Comparison methods

In our experiments, we randomly select 10%, 20%, 30%, 50%, 80% users as the
training set and remove rest users attribute as the testing set respectively. We
employ Accuracy, Recall and F-Score as evaluation metrics. A node may have
multiple attribute; we define that a node is correctly predicted if the predicted
value matches any of its ground truth attribute.

To show the effectiveness of our co-profiling algorithm, we compare our proposed
model AGAN and variant model Bi-AGAN with two typical attribute reasoning
baseline methods of social network. These methods briefly introduce as follow:
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VIAL [20]: VIAL defines the attribute reasoning of network nodes as an at-
tack on the privacy information of network users and proposes a social-behavior-
attribute (SBA) net-work model and design the vote distribution attack (VIAL)
to perform attribute inference based on the SBA model.

Attr-Infer [21]: Attr-infer is a Markov random probability model based on the
definition of social network structure. It infers a posteriori probability by using
loopy belief propagation (LBP), and then infers the attributes of users by using a
posteriori probability.

AGAN: Our framework of attribute generation model, which is an implicit GAN
model. It uses node context and node attribute text to generate the missing at-
tribute information of vertices.

Bi-AGAN: An improved AGAN variant method, which replaces LSTM with Bi-
LSTM, and uses one-dimensional convolutional neural network to extract features
of input information, and then input it into Bi-LSTM network.

5.3 Parameter settings

The parameter settings of VIAL and Attr-Infer are as same as the original pa-
per. We apply the Adam optimization method for AGAN training. The hyper-
parameters of our model mainly include learning rate l = {1e−2, 1e−3, 1e−4}, Node
contexts and node attributes deep joint embedding dimension d = {50, 70, 100, 150},
batch size m = {32, 64, 128, 256}, deep walk length s = {10, 30, 50, 60, 80}. The grid
search method is used to determine the hyper-parameters, and the optimal config-
uration of model parameters is obtained on the validation set. The final optimal
parameters are {l = 1e−3, d = 100,m = 128, s = 50}.

6. Results and Analysis

method 10% 20% 30% 50% 80%

VIAL 30.12 40.37 54.29 57.12 60.32
Attr-Infer 31.35 45.45 56.33 58.76 67.67
AGAN 32.46 50.66 63.64 68.83 75.75
Bi-AGAN 34.85 54.71 67.01 74.95 84.85

Tab. I Accuracy performance of user’s college attribute of different method (%).

In this section, we depict our experiment results. In this paper, limited to space,
we only show the college attribute of the generated node, and compare our method
AGAN conclusion with the other baseline methods.

As described in Algorithm 1, the input data of our model are: real node context
and real attribute college (V, T ), synthesized node context pair with real college
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method 10% 20% 30% 50% 80%

VIAL 30.63 32.42 33.93 34.27 45.04
Attr-Infer 32.78 34.58 36.15 49.86 55.32
AGAN 34.66 38.82 45.97 55.78 66.58
Bi-AGAN 35.71 41.88 50.49 63.84 75.97

Tab. II Recall performance of user’s college attribute of different method (%).

method 10% 20% 30% 50% 80%

VIAL 23.12 27.23 34.04 36.12 55.32
Attr-Infer 28.61 33.51 35.48 38.52 58.94
AGAN 31.46 34.68 37.64 48.83 65.98
Bi-AGAN 31.96 37.52 39.93 53.87 73.37

Tab. III F-score performance of user’s college attribute of different method (%).

attribute (V , T ), the real node context pair with noise college attribute (V, T ), and
the predicted variable is node’s college attribute. We run each method five times
and calculate the average value as the final evaluation result. Tab. I to Tab. II
show the accuracy, Recall and F-score performance indicators of these four algo-
rithms. It can be seen from Tab. I that AGAN method is slightly better than
VIAL and Attr-Infer methods when the training set is 10%. With the increase
of training data set size, the accuracy rates of the four methods are improved.
When the training set reaches 80%, the accuracy of AGAN is 15.43% and 8.08%
higher than that of VIAL and Attr-Infer methods, respectively. The improved vari-
ant Bi-AGAN method has better performance than VIAL, Attr-Infer and AGAN.
When the training set is 10%, the advantage is not obvious. When the training
set reaches 80%, the accuracy of Bi-AGAN is 9.1% higher than AGAN. Compared
with the traditional explicit models, such as reasoning method and probability
model, implicit generation model AGAN has better performance. However, com-
pared AGAN framework with LSTM network, variant Bi-AGAN framework with
one-dimensional convolutional neural network and Bi-LSTM models can extract
network features and capture the latent distribution of node attributes better.

Through in-depth analysis, we found that the same attribute in different nodes
have different descriptions, such as abbreviations, singular and plural problems,
which affect the accuracy of prediction. It is worthwhile to further study that
AGAN combined with the semantics of node attribute text.

In order to have a more intuitive display of the generated node attributes, we
draw the attribute fraction of nodes (users) having a common college. Different
colleges are represented by index, as shown in Fig. 3. It can be seen from Fig. 3 that
the distribution of the real value could be well reflected by our proposed model,
which has a good stability and robustness.

In terms of computational time complexity, the computational time of Attr-
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Fig. 3 College fraction of user.

Infer is composed of the time needed to compute the prior probability by logistic
regression and the time needed to copute the posterior probability by iteration.
The time complexity of the second part is O(t · |V |), where t is the number of
iterations. VIAL computes the stationary probability distribution of random walks
in the augmented graph starting from the target node. The time complexity of
VIAL is O(t · (|V | + m1 + m2) · nt), where t is the number of iterations required
for random walk convergence, m1 is the total number of attributes of all nodes,
m2 is the total number of behaviors of all nodes, and nt is the number of nodes.
When the number of nodes increases, it has higher time complexity than Attr-Infer.
The time complexity of our model AGAN is determined by the convergence times
of generator, discriminator and deep walk algorithm, and the time complexity
of AGAN is O(t · (|V | log |V |), where t is the number of iterations required for
AGAN convergence. Obviously, like other deep learning model, AGAN has higher
time complexity but higher prediction accuracy compared with attribute reasoning
model VIAL and Attr-Infer based on Markov probability model.

7. Conclusion

In this paper, we propose an attribute generate adversarial network framework
called AGAN for the node attribute generation problem. In this framework, we
use context encoder and attribute text encoder to encode and incorporate for dif-
ferent modalities. The implicit distribution for latent representation is modeled
in a generate adversarial learning method. We further evaluate the quality of
generated note attributes through generating three different node attributes. The
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experimental results show that this method is superior to other explicit modeling
method.
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