NEURAL NETWORK FOR THE
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Abstract: A neural network can be used in the identification of a given func-
tional dependency. An undetermined problem (with more degrees of freedom) has
to be converted to a determined one by adding other conditions. This is easy for
a well-defined problem, described by a theoretical functional dependency; in this
case, no identification (using a neural network) is necessary. The article describes
how to apply a fitness (or a penalty) function directly to the data, before a neu-
ral network is trained. As a result, the trained neural network is near to the best
possible solution according to the selected fitness function. In comparison to imple-
menting the fitness function during the training of the neural network, the method
described here is simpler and more reliable. The new method is demonstrated on
the kinematics control of a redundant 2D manipulator.
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1. Motivation

A typical use of a feed-forward neural network is the identification of a given
functional dependency. A feed-forward neural network (also known as a multilayer
perceptron) can perform the interpolation of a functional dependency for most
“reasonable” functions. The best behavior is for functions which are continuous
including their first derivation. In this case, a feed-forward neural network can
interpolate even very noisy data. If the problem is not uniquely determined (it has
more degrees of freedom) and if for any combination of potential inputs there are
an infinite number of possible solutions, it is necessary to convert the problem to
a determined problem by adding other conditions.

A special case in which a neural network is typically used is the inverted prob-
lem. The functional dependency from the input to the output (result) is known.
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The inverted function should calculate which input is required to obtain the re-
quired output. Many functions can be analytically inverted. For others, a neural
network can be used for their identification. After this, the trained neural network
can be used to generate the most probable input for the given output. In reality,
the feedforward neural network interpolates the source data using a smooth (mul-
tidimensional) function. While not necessary accurate, this feature is important
when noisy data are interpolated.

Any undetermined problem can be identified with the use of a feed-forward
neural network if there is a condition which compares which solution is better. This
condition corresponds to a fitness function used in genetic algorithms (a feasibility
function determines which individual is not feasible and should be erased from a
population; a fitness function allows the sorting of individuals to select the best).
In other methods of artificial intelligence, this function is known as a penalty or
cost function. To implement this classification of a potential solution, a reinforced
learning algorithm can be used [1]. The problem is that this approach completely
denies the use of a batch training method.

In the following text, another approach is proposed and its implementation to
solve a redundant manipulator kinematics problem is described. In this case, it is
easy to generate a huge amount of data in the possible range of joint angles using
a geometric virtual model. A large amount of data allows the implementation of
fitness and feasibility functions, as known from the field of genetic algorithms. The
proposed method applies the fitness function directly to sort and select the data
before the training of the neural network, instead of modifying the network training
method. After this data filtering, a standard batch training method can be used.

2. Redundant manipulators

The arm of most 2D manipulators has only two links (segments). This is sufficient
to reach any point in the working space. More links cause worse stiffness. There are
still many cases where the stiffness and thus the precision with respect to reaching
an accurate position are not so important, and, at the same time, there is some
limitation on the movement of the arm. A typical example is the car body painting
robot, where the car body itself represents an obstacle. The task is to avoid the
obstacle (by the whole arm) while keeping the required end-point trace. The typical
solution is still to use more robots, usually equipped with an arm with only three
links, each of the robots passing a part of the planned trace.

For some tasks for example, car body welding less stiffness would require some
advanced real position measurement and control, such as the use of image recog-
nition. However, obstacle avoidance could still be important and creates a very
complex problem when using standard methods of position control.

A robotic manipulator with more degrees of freedom than is necessary to reach
any required position is called a redundant manipulator [2,3]. The additional
degrees of freedom can be used to form the robot arm into a particular shape,
which allows the arm to avoid touching an obstacle. The advantage of a redundant
manipulator is its universality.
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Fig. 1 Schema of the task. Range of the manipulator r = 25 x 7 = 175. The
working area is situated in the range of coordinates x = (—90,90), y = (20, 120),
where the zero of the coordinates is at the base point of the arm.

3. Neural network with data preselection

The invention of the described method is based on an innovative form of data
preparation. While data are evaluated and filtered, the standard Matlab neural
network toolbox is used to prove the functionality of the method.

3.1 Model of a redundant manipulator kinematics

To demonstrate the new method, a very simple model was chosen: a planar ma-
nipulator with seven degrees of freedom (example of visualization in Fig. 12). For
this test, all of the links of the arm have the same length, a, and all joints have a
possible angle range +120°, denoted by 3 = {1, B2, ..., Br}. Zero coordinates
are defined as the position of the first joint (the base of the robot, Fig. 1). The
position of the second joint is:

x1 = acos fy,
y1 = asin [, (1)
ay = f3.
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Using this convention, the position of the i-th joint is

x; = xi—1 + acos(a; + B;),
Yi = Yi—1 + asin(o; + Bi), (2)
Qi1 = (Oéi + ﬁl)

This simple kinematics can be easily programmed. All the problems of obstacle
or other link avoidance can be solved in the next step. For testing the algorithm,
all the links have the same length, 25 (the program uses no unit).
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Fig. 2 Working area, divided into tiles, and the proposed path. Index numbers
(the outer scale) represent indices in Matlab, while the inner scale represents the
coordinates of the end-point of the manipulator.

3.2 Generation of the data

A random vector of position, 8 = {1, B2, ..., Br}, is generated in the required
range. Because the final use of a neural network can cause some extrapolation, the
real possible range of all the actuators should be bigger.

The method in which many possible solutions are randomly generated and only
the best is kept is known as the Monte-Carlo method [4], and can be used when
finding another approach is problematic, or because it is more reliable (because of
its simplicity) than deterministic approaches that are too complex. Monte Carlo
can also be used to test the final model [5].

Many artificial intelligence methods are dependent on the quality of the used
random generator (function), but, in this case, where data are used for a neural
network, which provides interpolation and noise reduction, a simpler generator can
be used [6].
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Fig. 3 Results of the first training. BR (Bayesian regularization, marked in black)
fits better than LM (Levenberg-Marquardt, blue). Red crosses represent required
position.

3.3 Feasibility functions

First, a set of feasibility functions should be applied. All impossible settings should
be discarded. The first feasibility function disallows any position where one arm
will cross another, or pass through an obstacle. The second condition is that the
end point of the manipulator must be in the working area. If a final readjustment
is required (when using camera control, or just when the exact setting should be
adjusted after positioning by the neural network), then the absolute value of the
last joint angle (87) should be bigger than some value (i.e. 20°) and the previous
joint angle should be the same value from its limits (in the described example, in
the range of £(120° — 20°) = £100°).

3.4 Data grouping

The working area was split into many tiles. The goal was that in each of the tiles the
best solution (in reality, the three to ten best solutions) would be used to train the
network. In this testing example, the working area starts 20 length units above the
robot base and contains 10 rows vertically, each 10 units in height. Horizontally,
9 columns to the left and to the right of the axis are defined, representing +90
length units (Fig. 2). Random combinations of the joint angles are generated and
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assigned to Eq. (1) and (2). If the resulting end-point coordinates fall outside this
area, the combination is abandoned. Otherwise, it is recorded to the data structure
of the indicated individual tile.
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Fig. 4 Trace (path) with an obstacle. The endpoint of the manipulator should move
along this required path, while no part of the manipulator should cross any part of
the obstacle, defined by the black marked rectangle.

In the main cycle of data generation, approximately thousands of possible com-
binations are generated for each of the tiles. A maximum amount per tile can be
set. The data generation is stopped when some preset amount of data cannot be
stored to the appropriate tiles, because they are full. The default value is a 1000
abandoned settings.

3.5 Fitness function

When enough data are generated individual generated combinations in each of the
tiles are sorted using the required fitness function. In the test described here, the
condition of the minimal sum of x-values of all the joints (3) was used.

6
f=>_w (3)
i=1
The end point coordinates were not included.

3.6 Smoothing condition

To maintain the possibility of physical realization, the neighbor solution should
represent only small changes of angles of the respective joints (the shape of the
manipulator arm should change only very little when moveing a small distance).
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The same condition is required if the feed-forward neural network is used for iden-
tification. A value of 0.5 radians for any joint was chosen as acceptable. This value
is disputable and different values should be checked.
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Fig. 5 Results for new data, generated after definition of the obstacle. Only relevant
part of the working area is on the graph. Two BR series (blue) represent two
independent trainings of the neural network with the same data.

First, some tile in the middle of the target area was chosen. In this tile, all
combinations which differed in any angle by more than 0.5 radians from the best
solution in the tile were deleted.

The next step was to propagate this condition horizontally. Each combination
in any tile which differed by more than the chosen 0.5 radians from the best com-
bination of the neighbor tiles was deleted. The content of the tile was then sorted.
After sorting, the process was repeated till the end of the line.

After values in the selected row were restricted using the described method,
the same process was repeated for each of the vertical columns, starting from the
processed row.

During tests, 1 to 3% of randomly generated solutions survived this process,
more of them in the tiles near the starting tile.

3.7 Neural network training

At this point, a standard set of training data was prepared and the standard Matlab
nftool toolbox was used. This toolbox guides the user through import data and
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parameter selection and offers three training methods (scaled conjugate gradient,
Bayesian regularization and Levenberg-Marquardt). The neural network used here
is the MLP (multilayer perceptron), with one hidden layer (see Fig. 6). The input
layer represents data assignment only. Each neuron in the hidden and output layers
executes the function (4):

y=1r <b+zxzwz> , (4)

where b is the bias, z; are the individual inputs (values from the previous layers),
w; are settable weights (trained by the selected algorithm) and f is the transfer
function. The hidden layer uses the tansig function Eq. (5), while the output layer
uses the so-called “purelin” function (the presence of no transfer function at all,
can be represented as multiplication by 1).

2
L —— 5
1_|_6—2m ()

The output layer uses no transfer function (defined in Matlab as the “purelin”
function). The general structure of MLP is shown in Fig. 6. This type of neural
network is described, for example, in [10], chapter 2.

tansig(x)

Fig. 6 Simple MLP (multilayer perceptron) neural network. Neurons are marked
1 as input, h as hidden and o as output.

For the described experiment, the output layer had seven nodes (angles to be
set to obtain a required position) and two input nodes (required position). The
corresponding minimum number of hidden neurons recommended by the Matlab
neural network toolbox was 10. In the test, 19 hidden neurons were used. In this
configuration, the used neural network has 19 x (2+1)+7 x (19+1) = 197 settable
parameters, including biases.

3.8 Results of training

In this first test of the proposed algorithm, up to 5000 samples per tile were pre-
pared. After all the steps (see points 3.3 to 3.6), the 3 best samples from each of the
tiles were used for neural network training. For these prepared data, each method
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Fig. 7 Halving the tile size. Up to 5000 samples per tile were generated in the orig-
inal set and the 7 best selected. Four training experiments (Bayesian regularization
used for training the neural network); red crosses represent the required values.

available in Matlab, was used for neural network training three times. In Fig. 3,
the results for Levenberg-Marquardt (LM) and Bayesian regularization (BR) are
displayed. For testing the trained results, a simple path (see Fig. 2) was proposed.
On this path, 13 points were chosen. The results are shown in Fig. 3. Red crosses
represent the required points. These values were used as the neural network input,
and angles generated by the neural network were used to calculate the simulated
end point value. The respective results are denoted BR and LM (Fig. 3). The third
method available in the Matlab nftool, scale conjugate gradient, did not return us-
able results.

4. Obstacle

In this simple case, a redundant manipulator is a good model for testing this
method, but a simpler solution for inverted kinematics can be used [2]. For example,
the rectangular coordinates of the destination could be converted to polar, r and
¢. To reach exactly this position (r and ¢), the length of the manipulator arm
has to be shortened by forming a regular arc from all of the links. To achieve
this, all of the link angles except the first must be assumed to be the same. Using
simple single-value optimization, this angle can be evaluated. The first angle (joint
position at the robot base, o) will be

a1 =¢—6-as. (6)

117



Neural Network World 2/2021, 109-124

85 T T T T T T T T T
a =} -

80F ot + + ay +

i +  target |
75 O  network

i}
70+ 1
65 .
> o
6OF  + 1
55 .
50 o ]
45 .
40 T ' = ' SIS ' SR — + 2
25 -20 15 -10 -5 0 5 10 15 20 25
X

Fig. 8 One of the series from the previous picture, including a more detailed path.
The cyan line is generated using the trained network for points in steps of two
units. The neural network can generate positions in any step, but an interpolation
is typical for this type of manipulator.

If the coordinates of the end-point of the manipulator are in the left side of the
working area, the negative solution is better. For a more complicated proposition
(different lengths of the links or a range of settings for the joints), a pseudo-Jacobian
method is often used [7].

None of these simple solutions can be used if there are obstacles in the working
area. A possible solution is described in [8]. The method proposed in the previous
chapter works, but the feasibility functions have to be changed, and the fitness
function should be reformulated.

4.1 A trace with an obstacle

In Fig. 4, the new proposition is defined.

In this second example, data were prepared exactly for the given trace (path).
In Fig. 4, the obstacle is in black. The data were prepared for the grey area only.
During random data generation, most of the randomly generated combinations for
the setting of the joints were abandoned because they fell outside the grey area.
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4.2 Feasibility functions

Additional feasibility functions were defined:

Neither any joint of the manipulator nor any part of the arm can be in the
obstacle area. The second condition was simplified by assuming the width of the
arm to be zero (this simplification can be compensated by extending the obstacle
dimensions). For targets above the obstacle, the last joint, connecting the last two
segments should have a higher y-coordinate, than the end point.
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Fig. 9 Generating even more points did not yield any improvement

4.3 Fitness function

The original proposition was that the fitness function was evaluated as the mini-
mum distance from the obstacle to any of the manipulator joints. This function
ignores the position of the other joints. When using data generated in this way,
the training of the neural network failed, because the target area was not continu-
ous. After reformulation, the fitness function sums the Euclidean distances of all
joints from the obstacle. Data generated in this way were useable with respect to
training the network, although this definition was shown not to be perfect (Fig. 5;
an example of visualization in Fig. 12). For this test, ten best points for each of
the selected tiles (in the gray area only) were used, i.e. (8 x 9 —12) x 10 = 600
samples.
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Fig. 10 Generator interface. Pink points persisted after smoothing, orange points
were later generated using additional feasibility functions. Finally, white points
were selected for neural network training.

4.4 Finer division

The first modification was to reduce the tile size to 5, half of the original. This
gave more points to the neural network training algorithm (seven best from each
of the tiles selected; (16 x 18 —4 x 12) x 7 = 1680 ). This better responded to
the number of parameters of the network, which was 197 (for 19 neurons in the
hidden layer and 7 in the output layer: 19 x (2+1)+7 x (19+ 1) = 197, including
biases). The result is presented in Fig. 7. The generation of the source data took
three times as long (about 30 minutes; up to 5000 samples per each of the tiles
before selection; data for the tiles outside the gray area (Fig. 4) were abandoned
using the modified feasibility function).

4.5 Improved data generation

The smoothing condition, defined in section 3.6, keeps the change of any joint
angle between two neighboring tiles to some value (0.5 radians in this case). After
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Fig. 11 Results of neural network after generation of additional points. Generation
was interrupted and data were sorted; then the best was selected, the smoothing
condition was implemented, and the generation of new solutions continued, but
with the smoothing condition as another (additional) feasibility function.

application of this condition, the possible range for each of the angles recorded to
this tile is known, so this new condition can be used during the generation of new
points.

Because a better solution than the current best can be found, it is reasonable to
repeat the whole sequence (including sorting and new smoothing). The result after
new data generation and new network training is shown in Fig. 11. The variability
of the training of neural networks is lower and the precision of the position is better
in comparison with Fig. 7.

In the next step, the process of adding new data was repeated. The generator
interface window after this step is shown in Fig. 10. The new set of data was
used for neural network training. The results of the newly trained networks are
shown in Fig. 9. In comparison with the previous result, only a small improvement
is evident, while the most problematic point, (—20;70), is even worse. Further
improvement by additional data generation would probably be very small, as the
method reached the limits of the current setting. Possible further improvement can
be achieved by changing the fitness function.
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Fig. 12 Tool for visualization. The thick line represents the arm of the manipulator;
segments are in black and blue color. The program prepared using Lazarus IDE
provides visualization of the movement along the required trace (path), marked by
the green crosses. For each of positions, red dots are placed. The screenshot was
taken after a few cycles of movement; at the start there was no red dot.

5. Conclusion

5.1 Redundant manipulator

Positioning accuracy can be measured in terms of the error of the end point po-
sition relative to the required position. In Tab. I, this relative error is evaluated
as an absolute error divided by the trained range (90 horizontally, 80 vertically).
Compared to the overall range of the manipulator, which was 175 at the highest
vertical approach, twice more than the horizontal, the error would appear even
smaller. If further improvement is required, the employed feed forward neural net-
work can be further trained using standard back propagation. In a real application,
only the points near to the required path (the tiles surrounding the required path)
can be used for this additional training. If a limited number of cycles of the back-
propagation algorithm are used, then there is a high probability that a manipulator
which is controlled by a neural network will maintain obstacle avoidance. After
additional training, this feasibility condition should be checked again. The method
described here can be a good alternative to other methods of neural network control
used for the control of manipulators [3,9].
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target x  target y nn x nny  error X errory error %
—10 80 —-9.115 81.660 0.885 1.660 2.30
—-20 80 —21.753 80.858 —1.753  0.858 2.22
0 40 1.273 38.972  1.273  —1.028 1.91
0 80 0.811 81.077  0.811 1.077 1.62
20 80 21.020 80.852  1.020 0.852 1.56

Target values were applied as inputs for the tested neural network. Angles
(the output of the neural network) were inserted into a geometric model.
Resulting end point coordinates are in the next two columns. Errors were
counted as the difference between required and resulting positions. Relative
error was counted as the Euclidean distance between the required and result-
ing positions relative to the size of the diagonal of the positive half of the
working area (Fig. 2).

Tab. I Example of errors of the training.

5.2 Neural network with data preselection

This example proves that if an inverted function of some problematic function is
required, its values can be generated and substituted by a neural network. If the
function is redundant, another condition for selecting a desirable solution can be
(and must be) added. If there are more conditions, they can be aggregated to one
fitness function. Even a highly non-linear function and its adjoined feasibility and
fitness functions can be used.

In many cases, as in the example of a redundant manipulator, data for training
a neural network can be prepared using simulation, while executing a pre-trained
neural network can be very fast. After theoretical evolution of the target position,
the required exact positioning can be achieved by a small change of two angles.
In real conditions camera monitoring should be used, because the stiffness of this
type of manipulator is typically low and requires feedback for an accurate setting.
This feedback (readjustment) can also comprise the error in this method.
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