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Abstract: The paper, devoted to continuous versatile function application in the
Genetic Programming Algorithm (GPA), begins with a discussion of similarities
between GPA with versatile function and neural network. Then, the function set
influence on GPA efficiency is discussed. In the next part, there is described a
hybrid evolutionary algorithm that combines GPA for structure development and
Evolutionary Strategy (ES) for parameters and constant optimization; which is
herein much more significant than in the standard GPA. There is also discussed
the setting of parameters of this hybrid algorithm and due to a different function
set. The original idea of a versatile function, which origins come from the area of
fuzzy control systems, is formulated and explained. Four different implementations
of this versatile function are discussed. On the base of experiments with the hy-
brid evolutionary algorithm providing symbolic regression of precomputed Lorenz
attractor system data representing its dynamic behaviour; the comparison of three
variants of versatile functions was formulated. The paper also presents ways how
to set up hybrid evolutionary algorithm parameters like population sizes as well
as limits of maximal population numbers for both algorithms: GPA for structural
development and nested ES for parameters optimization. The versatile function
concept is applicable but it requires the hybrid evolutionary algorithm use as it is
explained in the paper.
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1. Introduction

J. Koza formed Genetic Programming as an optimization problem in [7] extending
previous research of Nichael Lynn Cramer [3]. GPA in this task optimizes structure
and parameters of an arising model on the base of information in a training data
set or fitness function. The name Genetic Programming is given by the first idea to
develop evolutionary computer programs. One of the first applications published
by J. Koza 1994 [8] was symbolic regression (discovering of model described by
algebraic equation fitting training data). Later, many different application domains
were opened such as analogue electric circuit design [9], synthesis of topology for
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controller [10], application of GP to the synthesis of complex kinematic mechanisms
[11] and many others.

The paper starts with chapter one containing discussion of a similarity between
Neural Network (NN) and GPA with versatile function concepts and function set
influence on GPA efficiency and landscape space geometry. Then it continues with
the discussion of the study motivation in chapter 2. In the third chapter, the
versatile function is described. The fourth chapter is devoted to a description of
the GPAes algorithm used for tests of the versatile function concept including a
discussion of four versions of the Evolutionary Strategy (ES) optimizer. Then the
chapter describing experiments (and their results) is present. The 6th chapter deals
with result discussion and the 7th one with the conclusion.

1.1 Neural network and GPA with versatile function simi-
larities

Naturally, the use of only versatile function in equations developed by the GPA
tends to many homogeneous structures than the use of a typical set of many func-
tions containing e.g. “plus”, “minus”, “sine”, “cosine” and many other ones. In the
symbolic regression application this structure has the form of tree and it resembles
multiple input, single output layered neural network.

This is not the only similarity. Learning of such structure much more con-
centrates to the fitting of parameters than to the development of the structure.
This is inverse situation than e.g. in symbolic regression problem solving by GPA
with above mentioned typical function set, as it will be discussed below. Also, the
number of versatile functions is smaller than the number of typical GPA building
function ones. Typically, the only versatile function is used. This fact tends to in-
creased requirements to parameter optimization which extends beyond capabilities
of typical GPA. Thus, the application of hybrid GPA is felicitous. Until now, such
concept was not studied by information accessible to the author.

The above-described situation also changes the learning mechanism, where the
parameter identification plays a more significant role than in the standard symbolic
regression. It also underlines the sense of hybrid evolutionary algorithm applica-
tion. The effect of a significantly larger number of ES (parameter optimizer) cycles
than the GPA ones is demonstrated in the Experiments chapter. In the future,
alternative optimizers known in the deep learning area will be tested in the place
of ES parameters optimizer. If the GPA function is limited to random generating
of the initial population (or even the single individual), the random neural network
with neurons described by versatile function is learned by ES algorithm.

1.2 Influence of used function set

Many parameters and design choices are influencing resulting GPA behaviours and
properties. Requirements on them vary in dependency on the application domain.
In the first place, it is possible to mention the influence of terminal and function
set. This set must contain all fundamental terminals and functions needed for
solving the actual problem. There are two contradictory requirements. Terminal
and function sets should be minimalistic. If it is complicated, the probability of
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occurrence of the needed function is small and it decreases the efficiency of the
GPA. On the opposite side, if some useful function is missing it can be replaced
by any complicated equivalent of the Taylor series, or the GPA will end with a
large error of fitness function. It is also useful if the function set is free of mutually
interchangeable operators like twin sin() and cos() functions. The presence of both
is not needed (one is enough) and decreases the efficiency of GPA which tends to
swap them repeatedly without any positive effect on the fitness error.

2. Motivation

GPA works on discontinuous and non-linear space of functions. The use of versa-
tile function allows us to change the space of functions to a continuous space of
parameters. Thus, at the beginning of this work was the expectation that the GP
task will be easier if the problem domain is continuous.

The idea of a fuzzy gamma operator started at the beginning of this work. It
was introduced by Constantin von Altrock [1] to combine properties of fuzzy logic
AND operator and OR operator.

Genetic Programming was developed on the base of the Genetic Algorithm with
the idea, that programming is an optimization of randomly generated instructions
and parameters. State-space of GPA is discrete from the viewpoint of change of
operators like addition, subtraction or substitution during mutation and crossover
operations. Discrete spaces disqualify some optimization methods and complicate
the work of the remaining ones, as was discussed above. A possible way suggested
in this work is the use of only one kind of versatile function capable of continuously
changing its property depending on the magnitude of its control parameter repre-
sented by real numbers. A versatile continuous function for GPA presented in this
work is based on the weighted average of particular function results. The number of
control parameters of these functions is not limited. In this work, the structure of
the solution created from versatile functions is developed by GPA and parameters
set up by Evolutionary Strategy within the frame of the hybrid algorithm.

The final aim of this work will be a limitation of evolution on the level struc-
ture development and transformation of the whole symbolic regression problem to
the continuous optimization of a parameter set. Thus, it is the transformation of
the structure development problem onto the problem of estimation of the versatile
function parameters. These versatile functions shall have a lot of parameters de-
pending on their dimension – the number of simple binary functions they combine
into a final versatile one.

3. Versatile function concept

The term versatile function denotes in this paper a binary function combining
properties of several functions. Depending on parameter magnitudes, properties of
a versatile function are closer to one or another original function as in the case of
von Altrock’s fuzzy gamma operator. The main differences are in the combination
of any number of original functions and in the style of this combination, which is not
only proportional like in version 1, but can take the form of linear interpolation in
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versions 2, 3 and 4. During the work on the first application of the above-described
ideas, there were developed three different versions of a versatile function suitable
for the solution of the Lorenz attractor equation symbolic regression problem. As
well as for any other symbolic regression problem, there exists an optimal set of
functions containing all needed functions and no other. In the case of Lorenz
attractor equations, this set contains “+”, “−” and “∗” functions (6). During the
work, the following three different designs of a versatile function were formulated.

3.1 Version 1

The first version of versatile function was very close to the original von Altrock’s
gamma operator, especially in the two-dimensional (two functions) case, see (1).

r = λ1λ2f1(x1, x2) + (1− λ1)f2(x1, x2) + (1− λ2)f3(x1, x2) (1)

The Eq. (2) presents a combination of functions “+”, “−” and “∗” requiring two
independent parameters λ1 and λ2.

r = λ1λ2(x1 + x2) + (1− λ1)(x1 − x2) + (1− λ2)x1x2 (2)

Experiments with the first version were not very satisfactory. Especially, the evo-
lutionary process was very slow. The parameter magnitudes were going to proper
values for a long time, as will be presented in the experiment section. This situa-
tion was caused by the two main problem points of this concept: The first of them
is the composite influence of two independent versatile function parameters λ1 and
λ2 onto particular functions “+” and “−”. The second one is the impossibility
to express relations as a(x + y) + b(xy) directly, where a 6= (1 − b). In this con-
cept, additional functions (multiplication or even versatile function and additional
constants) are necessary. It complicates resulting structures and makes evolution
slower.

3.2 Version 2

The next version of versatile function uses linear interpolation of three binary func-
tions f1(x1, x2), f2(x1, x2), f3(x1, x2) in the form (3). Thus, it is hard to optimize
λ parameters, but it is faster to evaluate than previous version 1.

r = λ1f1(x1, x2) + λ2f2(x1, x2) + λ3f3(x1, x2) (3)

The version for functions “+”, “−” and “∗” for Lorenz attractor system symbolic
regression has the form (4).

r = λ1(p1 + p2) + λ2(p1 − p2) + λ3p1p2 (4)

Also, the related experiment description and comparison is described in the chap-
ter 5.
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3.3 Version 3

This version is derived from version 2. The interpolation between operators “+”
and “−” is replaced by the linear combination of parameters. It can make compu-
tation more efficient than in the previous version and cover a wide set of resulting
functions.

r = λ1p1 + λ2p2 + λ3(p1p2) (5)

4. Used GPA algorithm

To test this kind of building function for GPA, the problem of symbolic regression
was chosen for simple measurement of significant solution quality attributes like
computing time, the number of needed evolutionary steps or final fitness error. The
real misunderstanding can be caused by two different definitions of the Symbolic
Regression (SR) problem.

While some authors understand SR as the way to find any description of training
data set, other ones add requirements on precision of the model or its comparability
to a solution produced by humans. Such approaches [6] are more computationally
expensive but opens new application domains. To solve this Highly Accurate SR
(HASR) problems, it is sometimes efficient to use hybrid evolutionary algorithms
described in the next paragraph. In this work, the second approach to SR (and
concluding HASR) is applied.

4.1 Hybrid evolutionary algorithms in symbolic regression

Koza in his work [8] identified a weak point of the Genetic Programming application
when applied to symbolic regression in the identification of parameter (constant)
magnitudes. Till now, there were presented many modifications of GPA extending
its abilities by linear or non-linear optimization techniques such as [12] or [4]. Also,
the work [13] concludes with the recommendation to limit linear optimization to
few steps for its computing capacity requirements. These optimization techniques
can be replaced by a genetic or evolutionary algorithm with similar results – the
consumption of computing resources of a hybrid algorithm with optimization of
solution parameters is significant. The work [5] brings comparison of different
constant optimization methods influencing hybrid evolutionary algorithm efficiency.

4.2 Used hybrid GP Algorithm with Evolutionary Strategy
for parameters optimization

A used GPAes algorithm [2] consists of a standard GPA without automatically
defined functions, discussed in [8]. In each evolutionary cycle, the Evolutionary
Strategy is applied to optimize the parameters of each individual in the population.
The structure of the algorithm is outlined in Fig. 1.
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Fig. 1 Structure of used hybrid GP algorithm.

4.3 The different setting of hybrid genetic programming
algorithm for versatile function

It is legitimate to expect that a versatile function will ask different behaviour of a
hybrid algorithm because it has a lot of parameters to be optimized in non-linear
continuous space. On the opposite side, there is smaller pressure to the structure
development due to the presence of only one versatile function and two terminals.
Thus, it is possible to expect, that it will be useful to run the parameter optimiza-
tion part of the hybrid algorithm with more iteration cycles than for standard GP
function set. Thus, the following experiments will include more different parameter
optimization ES cycle limit magnitudes than in the case of the standard function
set.
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Fig. 2 Lorenz attractor used as a test case.

5. Experiments

As it was mentioned above, the Lorenz attractor system served for the first testing
of a versatile function concept. This system produces chaotic behaviours for some
parameters and it means it is sensitive to errors in the estimation of the model.
The equations describing this model are as follows:

x′(t) = σ(y(t)− x(t))

y′(t) = x(t)(r − z(t))− y(t)

z′(t) = x(t)y(t)− bz(t)
(6)

Used parameters had magnitudes σ = 16.0; r = 45.92; b = 4.0 and initial point has
position {x, y, z} = {19, 20, 50}.

As was described above in Chapter 3, the testing consists of four different
experiments with four minimalistic function sets. They consist of one version of
a versatile function and also two terminals representing a constant or variable.
Constants and variables were not added into the versatile function, because they are
unary, not binary – but such construction is also possible in the future applications
of the versatile function concept. Three series of experiments for different function
sets were executed. Each set contained constant and variable terminals and a
binary versatile function of proper version 1 to 3. A variable training data vector
contains 500 samples. The magnitude of constants is a result of optimization by a
nested evolutionary strategy algorithm. There were three different tests with the
parameters represented by the Tab. I.
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Parameter
Parameter Parameter Parameter

group 1 group 2 group 3

GPA population size 100 100 100
GPA populations limit 10 20 20

ES population size 40 40 40

Tab. I Versatile function test parameters.

The ES cycle limit was tested for numbers of [1, 4, 10, 40, 100] cycles. Each
experiment was repeated 10 times for different PRNG seed magnitudes prom the
range 〈1, 10〉 to eliminate random influences. Results are summarised for each
versatile function version in the following proper chapters.

5.1 Experiments with versatile function version1

The first group of experiments was computed for function set 1. The sums of
residual error squares for all three variables x, y, and z of Lorenz attractor obtained
during symbolic regression for different hybrid evolutionary algorithm settings are
displayed in Fig. 3 to 5.

Fig. 3 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 1 and parameter group 1.

5.2 Experiments with versatile function version 2

The second set of experiments tested versatile function implemented as linear com-
bination of addition, subtraction and multiplication. It eliminates some weak points
of the previous one.
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Fig. 4 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 1 and parameter group 2.

Fig. 5 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 1 and parameter group 3.

5.3 Experiments with versatile operator version 3

The third set of experiments replaces “+” and “−” functions by multiplication of
particular arguments by a related constant. It gives bigger expressivity and allows
the description of a wide set of expressions, but it also needs three parameters.
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Fig. 6 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 2 and parameter group 1.

Fig. 7 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 2 and parameter group 2.

Thus, it is hard to optimize them. E.g., the best solution for x variable gives solu-
tion x′(t) = −16.2983 ∗ x(t− 1) + 16.386 ∗ y(t− 1) + 0.00526773 ∗ x(t− 1) ∗ y(t− 1)
with sum of square errors for 500 samples equal to 0.631018 on the place of precise
solution x′(t) = 16 ∗ (y(t− 1)− x(t− 1)).
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Fig. 8 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 2 and parameter group 3.

Fig. 9 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 3 and parameter group 1.

6. Discussion

The number of fitness function evaluations in the above-presented graphs was the
function of the number of evolutionary cycles and individuals in the population.
The above-presented results of experiments point out that the number of fitness
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Fig. 10 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 3 and parameter group 2.

Fig. 11 Lorenz attractor regression sum of residual error squares for versatile func-
tion version 3 and parameter group 3.

function evaluations influences the resulting remaining error much more for ES
than for GPA components of the hybrid evolutionary algorithm. Such observation
agrees with above-presented expectation, that the versatile function will require a
different proportion of GPA and ES cycles than for a typical set of functions used
in the standard GPA or HGPA. While the best efficiency for a typical function set
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occurs for 2 or 3 constant optimization cycles, a versatile function requires tens
or even hundreds of evolutionary cycles for its complicated structure. Similarly,
it is sufficient to use tens of GPA cycles, and a bigger number does not bring
improvements justifying the increase of computing resources use.

In the presented 3 groups of experiments with different versatile function im-
plementations, there is no significant difference between them. Only the versatile
function version 1 was slightly worse in the presented experiments, but on the base
of only one test case – symbolic regression of the Lorenz attractor from the pre-
computed data set. On the opposite side, versatile function version 1 is the best
for small numbers of iteration cycles, but for higher precision of solutions, it loses
its efficiency.

The application of a versatile function requires a different proportion between
GPA and ES cycle limits. While for a typical function set containing many different
functions, the number of ES cycles limit between 2 and 50 is enough (and the GPA
cycle limit is between hundreds and many thousands). In the case of versatile
function application, the situation is the opposite.

7. Conclusion

The presented paper discusses the idea of a versatile function application in genetic
programming. It identifies a requirement for use of a hybrid genetic evolutionary
algorithm combining a genetic programming algorithm for structural development
and an evolutionary strategy algorithm for tuning of constants. These require-
ments are observed because some of the versatile function parameter changes are
equivalent to structure modification in standard genetic programming. The evolu-
tionary strategy used for tuning of solution equation parameters can be replaced
by optimization techniques known from Artificial Neural Networks learning due to
the only versatile function presence. This idea will be tested in future works. The
application of a versatile function is demonstrated on the Lorenz attractor system
symbolic regression.
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