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Abstract: Traffic flow prediction is one of the most interesting machine learning
applications in real-world problems that can help anyone move around. In this
study, we proposed a feature extraction structure for multivariate time series using
Elman recurrent auto-encoder. We added loopback from the encoder layer of the
normal auto-encoder to regard sequence information between successive data. The
feedback layer implemented using Elman neural network and GRU cells, then the
model is trained by different optimization algorithms. The models are also trained
using the Emotional Learning method in which we involve the derivative of the error
in the cost function to avoid local minimums and keep the last state of the network.
We used the proposed method for classification and prediction problems on traffic
data from the California Department of Transportation Performance Measurement
System (PeMS). The results show that our structure can successfully extract a
compact representation of traffic data useful for reconstructing of original data,
classification, and prediction. The results also show that adding the recurrent layer
to the feature extractor (auto-encoder) leads to better results in the classification
phase in comparison with standard methods that do not use the recurrence during
feature extraction.
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1. Introduction

Today, monitoring and analyzing traffic data are integral parts of every Intelligent
Transportation System (ITS), in which traffic information such as flow, occupancy,
and speed are stored and processed to have better insight into the transportation
systems. The ITSs are critical, especially in cities with a massive population and
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many vehicles, to avoid the problem such as congestion, accidents, and air pollution.
One of the advanced problems in this field is predicting future traffic; this is one of
the critical information that everyone needs because information such as current
state and prediction for a few hours later can help us choose better paths and have
a clearer sky.

Historical information on the traffic was needed to predict traffic flow; they
can be gathered from different sources such as radars, cameras, mobile global posi-
tioning systems, crowdsourcing social media, wireless magnetic sensors [6, 11]. So,
backed by the availability of exploding traffic data, the development of data-driven
traffic prediction methods becomes more popular and efficient. These data can be
used for discovering patterns and clustering, description and prediction of traffic,
and planning and recommendation for new routes. In addition to the analyses men-
tioned above, the data acquired from traffic data also can be used for visualization
purposes to get a more in-depth insight into them [5].

Nonlinear intelligent algorithms were used for traffic data analysis and behavior
investigation because traffic systems are complex systems.

In this study, a new method based on deep learning is developed and applied to
the traffic flow data. The proposed method is feature extraction and dimensional-
ity reduction method for multivariate time-series and based on an Auto-Encoder.
Learned features of the proposed method applied to traffic flow data in two case
studies: in the first one, learned features in a classification problem were used, i.e.,
classifying time-series into corresponding weekdays from which data gathered, and
in the second one is a multivariate time-series prediction problem in which it has
been tried to predict short-term traffic flow using available historical data.

After the introduction, the rest of the paper is organized as follows: Section 2
reviews some related works about the traffic flow prediction and analysis using
intelligent algorithms. Section 3 contains some preliminaries about deep learning,
auto-encoders, and recurrent neural networks needed to understand the rest of the
paper. The proposed method is presented in Section 4, results, dataset, and case
studies explained in 5, and finally, the paper concluded in Section 6 of the text.

2. Related works

During the last few decades, traffic becomes an inevitable problem in urban man-
agement systems, and many pieces of research using the different methods have
been conducted to solve the traffic problem. The methods used to deal with traffic
data can be classified into three categories: prediction, interpolation, and statistical
learning [22].

Prediction methods use historical data to build models for future or missing data
prediction. One of the commonly used methods of this type is the Auto-Regressive
Integrated Moving Average (ARIMA) [20, 25]. During the 2000s, several versions
of ARIMA are proposed and used as a prediction tool for traffic flow data, such as
ARIMAX [28], ARMA and space-time ARIMA [18], seasonal ARIMA [29].

Interpolation methods, or history models, use neighboring data or historical
data points to replace missing or corrupted data. Some simple methods, such as
filling missing data at the same time from previous days, are of this type [1]. As
another method that uses neighboring data points to interpolate missing data point
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in traffic flow, k-NN based methods can be mentioned [3]. Nonparametric methods
such as k-NN attracted many researchers in traffic flow prediction because they can
handle nonlinear and stochastic traffic flow behavior more conveniently [10,12].

Statistical learning methods use historical data to build a model to inference
missing or future data points. They reach the solution via solving an iterative
optimization problem in which a cost function will be minimized. Methods based
on neural networks [23] are the most common methods of this type. The proposed
method in this study is also a statistical learning method based on a recurrent
neural network for feature extraction.

With the success of some simple prediction methods, gradually more advanced
intelligent methods were welcomed in this field, methods such as Bayesian Network
[26, 31], Support Vector Regression (SVR) [17], Support Vector Machine (SVM)
[30] and Artificial Neural Networks [19]. Methods such as SVM and ANN are
nonlinear, these nonlinear intelligent algorithms were used for traffic data analysis
and behavior investigation because traffic systems are complex systems [27], and
a linear model cannot catch all nonlinearity of the system. In addition to analysis
purposes, an intelligent algorithm is applicable in monitoring scenarios such as
in [2], and the research was done by Lewandowski et al. based on information
gathered using low energy devices, namely Bluetooth beacons [21].

After the advent of deep learning methods, they have been used widely in traffic
data analysis, like many other applications; in the last part of related works, some
recent works are reviewed. In [34], factors such as weather and accident are also
considered to predict traffic flow. In [36], LSTM and GRU are used to predict traffic
flow in their vanilla form. The study in [33] used deep learning methods to tackle
Spatio-temporal elements that affect the traffic, such as sharp nonlinearities in
traffic flow behavior because of transitions between free flow, breakdown, recovery,
and congestion. In [35], traffic data analysis conducted using big data and DNN
based traffic flow (BTF); they also used an attention-based model to wight past
data importance. Another attention-based method is [37], in which the Conv-
LSTM network used for short term traffic flow prediction. The work of Zhang et
al. [38] is also is used deep convolution neural networks to extract Spatio-temporal
features from data and predict the short-term flow.

3. Deep Learning and RNNs: Preliminaries

During the last decade, Deep Learning methods were the most attractive field in
artificial intelligence; backed by the artificial neural network, deep neural networks
are more similar to our brain than ever before. Among different phases of a machine
learning process, the phase in which deep method can positively contribute is the
feature extraction phase of machine learning application; in other words, instead
of selecting/extracting features manually, deep learning methods can be used to
extract the best features for the data on the hand.

In the next subsections of the paper, some descriptions about deep learning
methods, auto-encoders, and GRU networks, is presented.
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3.1 Auto-Encoders

Auto-Encoders are unsupervised learning methods for learning representations: ex-
tracting features representing the original data. These features also can reproduce
the data with a minimum reconstruction error. Auto-encoders compress data in
the case of a lower dimension for extracted features; thus, they learn Compact
Representation of the original data.

Fig. 1 shows the structure of an auto-encoder. It has two main parts: encoder
and decoder. The encoder projects data into latent space in which data should
be reconstructed with minimum reconstruction error using the decoder. i.e., the
following equation holds about input and output of auto-encoder:

input = decoder(encoder(input)). (1)

The feature learned (the Coded version of input) is the bottleneck (hidden) layer
output. The auto-encoder will find any data structure and the correlation between
features through this mechanism and extract new features and compress the data.
The more dimensionality reduction can be acquired by stacking several encoders
together.

The auto-encoder structure has been discussed above lacks any solution to con-
sider recurrency and sequence information of samples. Thus, in this paper, we have
added a recurrent layer to it to do so.

Input Output

Code

Encoder Decoder

Fig. 1 A simple structure of auto-encoder.

3.2 Recurrent Neural Networks

Recurrent neural networks (RNNs), unlike feed-forward networks, can hold their
internal state (memory) and handle temporal information when dealing with se-
quential data, it makes RNNs suitable for applications such as Language Modeling
and Prediction [24], Speech Recognition [14], Machine Translation [4], and Image
Recognition and Characterization [32]. RNNs are also very useful for dealing with
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time-variant systems. It loops back the current output into the network; there-
fore, it has two inputs: the current input and the previous time step’s output.
This mechanism results in the extraction of information in the data sequence, i.e.,
information about what is happening next.

As another difference, RNN can map one-to-many, many-to-many, and many-
to-one, while feed-forward neural networks only map one input to one output.

Standard RNNs suffer from gradient vanishing problem, which is an issue during
the training phase of the neural networks in which gradient-based optimization
methods and Backpropagation is used; in these algorithms, the gradient becomes
vanishingly small for layers near the first layer of the network. Cho et al. [7]
proposed the GRU neural network, a variation of LSTM networks, to eliminate
this problem.

The GRU networks solve the gradient vanishing problem using its gates: Update
Gate and Reset Gate. They are responsible for deciding which information should
be passed to the output of the cell. This network’s training process consists of
training these gates to hold information from a long time ago and forgetting them.

Each GRU network cell has two inputs: xt and ht−1, which are current input,
at timestamp t, and output of the previous time-step (t − 1), receptively. The
following equation can be used to formulate the behavior of GRU networks for
updates and reset gates. The output of the update gate is as follows:

zt = σ(W (z)xt + U (z)ht−1). (2)

In which W (z) and U (z) are weight matrices for current and previous step inputs,
respectively. The formula in (2) determines how much information from the previ-
ous step should be passed to the future steps.

The output of reset is also as following:

rt = σ(W (r)xt + U (r)ht−1). (3)

In which W (r) and U (r) are weight matrices for current and previous step inputs,
respectively, nearly the same as (2). In both equations above (2 and 3), σ(·) is the
sigmoid function used as the unit’s activation function. The gate defined in (3)
decides how much information should be forgotten.

Regarding the gates defined in (2) and (3), the current memory context can be
calculated as the equation below

h′t = tanh(Wxt + rt � Uht−1). (4)

Thus, the final memory for the current step will be as follows:

ht = zt � ht−1 + (1− zt)� h′t. (5)

Now, the output in (5) can be used as an input of the next time step and repeat
Eqs. (2) through (5) for that time.

4. Algorithm of the proposed method

In this section, the overview and details of the proposed method are presented.
This method is based on normal auto-encoder, which its main application is feature
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learning and dimensionality reduction. We will also use it for this purpose, but it is
enhanced with a recurrent layer, as in Elman neural networks [13]. The idea behind
using the recurrent layer in the model is to involve time and sequence information
in the feature extraction process. To do so, as Fig. 2 shows, the network has a
feedback loop from the hidden layer to the input layer; it helps the auto-encoder
to deal more efficiently with sequential and time-series data.

tanh(.)

tanh(.)

ht

h(t−1)

X (t) Z(t )

W enc W dec

W h

e1(t)

e2(t )

e i(t )
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x i(t)
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X (t)

h1(t−1)

h2(t−1)

Fig. 2 The structure of the proposed model formulated above. Red lines are er-
ror backpropagation, blue lines are feedback paths, and black ones are feed-forward
paths.

Feed-forward pass of Recurrent Auto-Encoder (RAE) algorithm can be formu-
lated as:

net(enc) = X(t)W(enc) + b(enc), (6)

net(h) = h(t− 1)W(h), (7)

h(t) = f1(net(enc) + net(h)), (8)

net(dec) = h(t)W(dec) + b(dec), (9)

Z(t) = f2(net(dec)), (10)
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in which fi(·) for i = 1, 2 can be tanh(·) function. However, if a linear activation
function in the output layer (decoder) is preferred, you can choose a linear function
such as the Identity function for f2(·), X(t) is d-dimensional input of the network
at time step t, W, b are network parameters, and Z(t) is the output of the network
at time step t.

The cost function of the network mentioned above tries to minimize the recon-
struction error using Mean Squared Error (MSE) defined below:

J(t) =
1

2n

n∑
i=1

ei(t)
2, (11)

where

ei(t) = (Xi(t)− Zi(t)) (12)

and n is the number of training samples. Regarding the Eq. (11), the derivatives
and update equations of the network’s cost function can be calculated respect to
weights and biases as following:

∆W(dec)(t) = −η ∂J

∂W(dec)
(t). (13)

In which η is the learning rate. The right side of the equation above is calculated
as below:

∂J

∂W(dec)
(t) =

∂J

∂e

∂e

∂z

∂z

∂net(dec)
∂net(dec)

∂W(dec)
(t)

= e(t)(−1)f ′2(net(dec))ht(t) (14)

= −e(t)f ′2(net(dec))ht(t).

So, regarding equations (13) and (14):

∆W(dec)(t) = ηe(t)f ′2(net(dec))ht(t). (15)

For bias:

∆b(dec)(t) = −η ∂J

∂b(dec)
(t), (16)

in which ∂J
∂b(dec)

(t) is calculated as the equation below:

∂J

∂b(dec)
(t) =

∂J

∂e

∂e

∂z

∂z

∂net(dec)
∂net(dec)

∂b(dec)
(t)

= e(t)(−1)f ′2(net(dec))(1)(t)

= −e(t)f ′2(net(dec))(t).

(17)

According to equations (16) and (17):

∆b(dec)(t) = ηe(t)f ′2(net(dec))(t). (18)
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For the sake of simplicity and convenience in network training, W(enc) = transpose
(W(dec)); thus, only the output layer weights were trained except for Wh for which
there is no equivalent weight matrix in the output layer. The derivative of this
weight matrix can be calculated as follows:

∂J

∂W(h)
(t) =

∂J

∂e

∂e

∂z

∂z

∂net(dec)
∂net(dec)

∂ht

∂ht
∂net(h)

∂net(h)

∂W(h)
(t)

= −e(t)f ′2(net(dec))W(dec)f ′1(net(dec) + net(h))
∂net(h)

∂W(h)
(t).

(19)

In the last part of Eq. (19), in addition to neth, Wh can be seen in ht, ht−1, ht−2,
and so forth. Thus, there is a recursion on calculating the calculation of the deriva-
tive of Wh that makes derivation calculation a bit tricky. In situations like this, the
BackPropagation Through Time (BPTT) rule will be used in which the derivative
of variables like Wh are estimated through limited steps in time, so for the last
step of (19), there is:

∂net(h)

∂W(h)
(t) = h(t− 1) +

∂h(t− 1)

∂W(h)

≈ h(t− 1) +
∂h(t)

∂W(h)

= h(t− 1) +
∂h(t)

∂net(h)
∂net(h)

∂W(h)
(20)

= h(t− 1) + f ′1(net(dec) + net(h))h(t− 1).

Following Eqs. (19) and (20), the update rule for W(h) will be

∆W(h)(t) = ηe(t)f ′2(net(dec))W(dec)f ′1(net(dec) + net(h)) (21)

× (h(t− 1) + f ′1(net(dec) + net(h))h(t− 1)).

The cost function above will be minimized using Gradient Descent as in Eq. (22),
and the Adam Optimizer method; the results and comparison of these methods will
be described in Section 5 of the paper.

θnew = θold − η∇J(θ). (22)

In Eq. (22), θ is the updatable parameter (e.g. b(i) and W(i) for i = 1, 2 ) and η,
as mentioned previously, is the learning rate which is 0 < η < 1.

4.1 Emotional Learning

Also, the model presented in this study has been trained using the Emotional
Learning method [16], in which the error of the t-th step of the network is calculated
using the equation below:

J(t) =
1

2

n∑
i=1

(k1ei(t) + k2ėi(t))
2
. (23)
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In (23), k1 and k2 are weights that were assigned to the error e(·) and its derivative
ė(·) for the sake of the trade-off between them. The error function e(·) is defined as
Eq. (12). Thus, according to Eq. (12) and (23), the cost function of the Emotional
Auto-Encoder can be rewritten in the following form:

JAEEmo(t) =
1

2

n∑
i=1

((k1 + k2)ei(t)− k2ei(t− 1))
2
. (24)

The idea behind the training network using the emotional method is to avoid local
minimums by invoking the previous step’s error in the form of its derivative in the
cost function.

5. Results and analysis

This section of the paper presents results of case studies used for performance
evaluation of the proposed method. Two case studies have been used: classification
and multivariate time-series prediction, but before them, the experiments’ dataset
is introduced briefly.

5.1 Dataset

In this work, PeMS-SF [9] is used as a benchmark dataset. This dataset consists of
15 months (January 1, 2008, to March 30, 2009) daily traffic data downloaded from
the California Department of Transportation PEMS website1. These data sampled
every 10 minutes using 963 stations from San Francisco freeways. Thus, there is a
Time-series with a length of 144 (6 × 24) and the dimension of 963 for every day.
Some prepossessing and cleaning is applied to data, for instance, holidays removed
and all days from which data sampled are normal days; this results in a dataset
with 440 time-series labeled with {1, . . . , 7} which represents Monday to Sunday,
respectively. In the experiments, 267 data for the training phase and 173 out of
440 for test and performance evaluation were used.

5.2 Use Case 1: Classification

In the previous section of the paper, the PeMS-FS dataset is labeled by weekdays
from which traffic data gathered. Thus, the first problem which should be solved
is a classification problem using these data, i.e., the original task proposed with
the dataset is to classify the data instances as the correct day of the week. The
experiments in this section are conducted using the structure in Fig. 3; the figure
shows train and test data are projected using learned features from the feature
learner box (Fig. 2) and then fed to the classifier separately for train and evaluation

In the experiment, the first 100 features of the dataset out of 963 were selected
and their dimensionality reduced from 100 to 80, and finally to 60 dimensions using
stacked networks of the proposed structure. The network’s hidden layer’s activation
function is tanh(·), and the output layer is linear. The learning rate also is 0.01 to
0.05, and the time-step is 144. Then, learned features classified using two different

1Available at: http://pems.dot.ca.gov
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Feature LearnerData-set
Training Data

Projection Classifier

Test Data

Features

Training Data

Training Data
(in latent space)
Training Data
(in latent space)

Test Data
(in latent space)

Label

Fig. 3 The scenario in which classification use case experiments conducted.

classifiers: simple Multi-Layered Perceptron (MLP) and Recurrent Neural Network
(RNN). Two optimizers were also used to train the presented models: Gradient
Descent (GD) and Adam Optimizer (AO). Fig. 4 shows the proposed method’s
structure in the stacked mode that its output fed to the classifiers mentioned above.
Tab. I shows the details of the performance of each method.
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X (t)

W (h1)

henc1(t )x1
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xd

h1
(1)
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(2)

h1
(2)

hdh(2)

(2)

W (enc2)W (enc1)

Classifier

henc2(t)

W (h2)

Output

Fig. 4 The proposed method in stacked mode. Dashed lines show feedback paths,
and solid ones show forward paths.
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Despite the fewer dimensions and compact representation of features extracted
using the proposed method, Tab. I shows that the presented approach has bet-
ter classification performance regarding the average accuracy of five different and
independent runs and their standard deviations. The table also indicates Adam
Optimizer’s superiority over the Gradient Descent training method.

Only Our Our Our Method Our Method
Classifier Method Method (Emo.) (Emo.)

[100] [100,80] [100,80,60] [100,80] [100,80,60]

MLP/GD 75.14 ± 0.40 77.26 ± 2.03 77.46 ± 1.63 80.3 ± 0.73 78.93 ± 0.95
MLP/AO 76.81 ± 1.20 76.47 ± 1.21 75.72 ± 0.58 81.25 ± 0.64 78.17 ± 1.12
RNN/GD 55.10 ± 1.67 79.38 ± 0.67 67.62 ± 1.51 82.89 ± 0.46 80.40 ± 0.86
RNN/AO 76.59 ± 0.10 78.80 ± 0.67 76.68 ± 2.33 86.10 ± 0.42 83.22 ± 0.75

Tab. I Classification accuracy of classifiers using different learning methods.

Tab. II shows the confusion matrix for the classification of 173 test data using
the recurrent neural network, optimized by Adam optimizer; the model trained
using the Emotional Learning method. Fig. 8 depicts the emotional learning meth-
ods superiority compared with the normal learning process; as can be seen, the
emotionally minimized loss for the proposed method is far better than the nor-
mal one. Fig. 5 also represents the accuracy of the classifiers (MLP and RNN),
which learned using gradient descent and Adam Optimizer; during training, as you
can see, RNN classifiers need more training epochs to reach their best results, but
MLP classifiers in fewer epochs reach the best classification result. Fig. 6 depicts
the performance of the same structure learned using emotional learning algorithm.

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Mon. 28 0 0 0 0 0 0
Tue. 0 14 0 3 0 2 0
Wed. 0 2 8 4 0 0 0
Thu. 0 1 0 36 3 0 0
Fri. 0 0 0 5 15 2 0
Sat. 0 2 0 1 0 26 0
Sun. 0 0 0 0 0 0 22

Tab. II Classification confusion matrix.

The proposed approach compared with different methods, according to results
reported in [39], the results depicted in Fig. 7, which shows the method in the
current study, have better performance regarding the accuracy of classification.
According to the figure and the results summarized in Tab. I, emotionally trained
models have the best accuracy; it shows evolving the error of the previous steps
can improve accuracy. Almost all methods in Fig. 7 can be used for classification
and analysis of time series and have been applied to PeMS dataset. For instance,
Multivariate Long Short-Term Memory Fully Convolutional Network (MLSTM-
FCN) [41], Dynamic Time Warping (DTW) [40], and One Nearest Neighbor with
Euclidean Distance (1NN-ED).
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Fig. 5 Classification Accuracy on test data during training time. In (a) a Recurrent
Neural Network used as the classifier and in (b) an MLP classifier is used, both
classifiers optimized using Gradient Descent and Adam optimizer.
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Fig. 6 Classification Accuracy on test data during training using the Emotional
Learning method. In (a) a Recurrent Neural Network used as the classifier and
in (b) an MLP classifier is used, both classifiers optimized using Gradient Descent
and Adam optimizer.

5.3 Use Case 2: Time-Series Prediction

In the second experiment, the proposed method has been used to predict traffic flow
in short-time using historical data at the same place. The problem here is a type
of multivariate time-series prediction. In this use case, the first 20 features of the
PeMS-FS data is used as training samples, their dimensionality reduced from 20 to
15, 10, and finally to 5 using stacked auto-encoders, and finally a GRU Network [7]
used to predict the 10-minute traffic flow in the future.

The structure used for feature extraction is the same as in Fig. 2, and its
relation to the use case is similar to Fig. 3 except for the Classifier box; instead, in
this experiment there is a time-series predictor, namely GRU Network. The GRU
networks is selected for this experiments because they have better performance on
small datasets [8] and fewer parameters compared with Long-Short Term Memory
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Fig. 8 The loss of the minimization process of emotionally learned model and
normally learned model of the proposed method compared during 500 epochs.

(LSTM) networks [15]. The classifier has trained in batch mode with batch size of
100. Fig. 9 shows the network’s loss function during the training phase on test data
on a logarithmic scale; it is can be seen that the network successfully minimized
the cost function defined for it.

Some sample predictions of traffic flow are illustrated in Fig. 10; the GRU
network used for this experiment has a sequence length of 2, a learning rate of
0.001, 2 hidden layers, and 20 neurons in each layer. The network also uses an L2
loss function and regularization term with λ = 0.0001 as in equation below:
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L2Loss(t) =

n∑
i=1

(ydesire(t)− yprediction(t))2 + λ

k∑
j=1

W2
j . (25)

In (25), n is the number of training samples, k is the number of network layers,
and Wj is the network’s trainable parameters. The second term in (25) is the
regularization term and used to avoid model over-fitting on training data.
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Fig. 9 The loss for the second use case in which a GRU-RNN used to predict traffic
flow.
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Fig. 9: The loss for the second use case in which a GRU-RNN used to predict
traffic flow

relation to the use case is similar to Figure 3 except for the Classifier box; instead,
in this experiment there is a time-series predictor, namely GRU Network. The GRU
networks is selected for this experiments because they have better performance on
small datasets [8] and fewer parameters compared with Long-Short Term Memory
(LSTM) networks [15]. The classifier has trained in batch mode with batch size
of 100. Figure 9 shows the network’s loss function during the training phase on
test data on a logarithmic scale; it is can be seen that the network successfully
minimized the cost function defined for it.

Some sample predictions of traffic flow are illustrated in Figure 10; the GRU
network used for this experiment has a sequence length of 2, a learning rate of
0.001, 2 hidden layers, and 20 neurons in each layer. The network also uses an L2
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Fig. 10 The loss for the second use case in which a GRU network used to predict
traffic flow.

360



Mehralian S., Teshnehlab M., Nasersharif B.: Traffic data analysis using deep. . .

6. Conclusion

In this paper, a feature extraction method for multivariate time-series is proposed.
The proposed method is a deep model based on auto-encoder and recurrent meth-
ods. A recurrent layer has been added to the auto-encoder’s hidden layer to empow-
ers it to deal with time-series and extract time related information from raw data.
The proposed model’s recurrent layer was implemented by the Elman neural net-
work and Gated Recurrent Units. Performance of the proposed method evaluated
using two use cases: in the first one, learned features had been used in a classifi-
cation problem; two classifiers, MLP and RNN, are trained using gradient descent
and Adam optimizer algorithms, and used to classify learned features. Results
show that in both classifiers, learned feature could help to reduce dimensionality
and improve classification accuracy. Another learning strategy used in the study
was the Emotional Learning method; the idea behind this strategy was to avoid
local minima, which results in better accuracy in the classification use case. The
results of this use case compared with different methods to show the superiority
of our method. In the second use case, the features extracted using the proposed
method helped us to predict traffic flow in a time-series prediction problem. The
results of this experiment show that the proposed method successfully extracts
relevant information from multivariate time-series.
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