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Abstract: The latest development of neural word segmentation is governed by
bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Re-
current Neural Networks (RNNs) as standard sequence tagging models, resulting
in expressive and accurate performance on large-scale dataset. However, RNNs
are not adapted to fully exploit the parallelism capability of Graphics Processing
Unit (GPU), limiting their computational efficiency in both learning and inferring
phases. This paper proposes a novel approach adopting Iterated Dilated Convolu-
tional Neural Networks (ID-CNNs) to supersede Bi-LSTMs for faster computation
while retaining accuracy. Our implementation has achieved state-of-the-art result
on SIGHAN Bakeoff 2005 datasets. Extensive experiments showed that our ap-
proach with ID-CNNs enables 3x training time speedups with no accuracy loss,
achieving better accuracy compared to the prevailing Bi-LSTMs. Source code and
corpora of this paper have been made publicly available on GitHub'.
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1. Introduction

Many nature languages are not automatically segmented. In other words, there
are no space between words, making it hard to process those languages for later
artificial intelligence tasks like Information Retrieval and Question Answering etc.
Chinese language is such a well known case with completely missing of explicit
word delimiters. Therefore, Chinese Word Segmentation (CWS) is a preliminary
pre-processing challenge prior to further Chinese language processing tasks.

After [1], CWS has been casted into a sequence tagging problem, involving
numerous supervised learning models such as Maximum Entropy (ME) [2] and
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Conditional Random Fields (CRFs) [3,4]. These early models lack the ability
of learning feature representations, instead requiring heavy hand-crafted feature
engineering within a fixed size window.

The latest advancement of deep learning has brought fresh air into this chal-
lenge. Neural word segmentation approaches arose to reduce efforts in feature
engineering. [5] embedded raw character into its vectorial representations as input,
adapted the sliding-window based sequence labeling method [6]. [7] extended [5] by
exploiting tag embeddings and bigram embeddings. [8] adopted LSTM to capture
long-distance preceding context, and an extra fixed-size character window for the
short-distance succeeding context. While these models are accurate, the processing
speed is limited even using cutting edge modern GPUs, due to the fact that LSTMs
are constrained to sequential processing with requiring O(n) time on sentences of
length n even under the condition of parallelism.

Instead, Convolutional Neural Networks (CNNs) provide parallelized runtime
independent of sequence length [9,10]. Rather than agglomerating representations
token by token, CNNs apply multiple filters in parallel across the entire sequence
at once, which only requires O(1) time. Although fast, CNNs suffer from the short-
age of effective input width limitation: one token representation is only effective
of limited number of input tokens. In single CNN layer, this limitation is the con-
volution width w. To overcome this issue, one common solution is to stack many
CNN layers. At layer [, the size of incorporated context tokens is increased to
r =1(w—1)+1. This formula states that the number of layers required to capture
the whole sequence grows linearly with the length of that sequence. To tackle this
scaling, another common approach is the pooling trick. However, though innocu-
ous in sentence classification, the reduction of output resolution using pooling is
pernicious for sequence tagging.

In response, [11] applied dilated convolutions [20] to sequence labeling. The key
of dilated convolutions is to skip over every d inputs, namely dilation width. By
stacking layers of dilated convolutions, the effective input width is exponentially
increased with dilation width, which is now given by 2! — 1.

When [ is big, deep neural networks tend to overfit small datasets. [11] proposed
iterated dilated CNNs architecture (ID-CNNs) to reuse the same block of dilated
convolutions. This parameter sharing trick is shown to be effective on a small NER
dataset as CoNLL 2003.

Under this context, this paper proposes a novel approach adapting ID-CNNs
for CWS. The contributions of this paper could be summarized as:

e Explored a novel neural architecture in replacement of Bi-LSTM.

e Fxtensive experiments showed the detail advantages over Bi-LSTM in speed
and accuracy.

e Extensive studies on state-of-the-art research papers and latest resources of
literature reviews [7,8,12-16] indicate that our work is the first successful
ID-CNNs approach with state-of-art scores and meanwhile achieves superior
3x runtime speed. Finally, we made the source code and corpora publicly
available on GitHub?.

2https://github.com/hankcs/ID-CNN-CWS
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The organization of this paper is follows: we first review the relevant related
papers in Section 2. Our approach is discussed in more detail in Section 3, and in
Section 4, the experimental results are discussed. Finally, in the last section we
present our conclusion.

2. Related work

In this section, a brief review of Chinese Word Segmentation is discussed.

Chinese Word Segmentation has been in the spotlight of researchers for decades
[28]. After the proposal to cast it into a character-based tagging problem by pi-
oneer [1], [4] employed CRF's as a strong sequence labeling model. Later various
sequence labeling based works [17,18,27,29] were proposed. Almost whenever a
new sequence labeling model is proposed, it will quickly make its way to CWS.
These early works require heavy hand-crafted feature engineering within a fixed
size window. Their feature engineering part often involves expert knowledge which
is domain-dependent and hard to transfer between domains. Feature templates
designed by experts usually applies to a fixed size sliding window which hinders
the global reasoning ability of their systems. Some of these templates generates
overabundance features which results in poor runtime performance.

Recently with new techniques of deep learning, neural word segmentation arose
to reduce efforts in feature engineering. Zheng et al. [5] adapted the sliding-window
based sequence labeling [6] with character embeddings. Their sliding-window model
still cannot capture long distance features. Pei et al. [7] extended Zheng et al. [5]’s
work by exploiting bigram features and tag embeddings. Their bigram embed-
dings suffer from data sparsity issue as the number of bigrams is the squire of
the number of characters. Inspired by the success of Recurrent Neural Networks,
Chen et al. [8] employed Long Short Term Memory (LSTM) network to capture
long-distance preceding context. Then, a novel word-based approach [12,24] was
proposed to directly model candidate segmented results. Unfortunately, both of
them applied pre-processing steps which either requires outer resources or alters the
testset. Zhou et al. [38] propose a simple method to train char embeddings on auto
labeled data, which brings significantly improvement. Yang et al. [37] demonstrates
the effectiveness of rich pre-training on external resources. With the help of con-
textualized embeddings like Bidirectional Encoder Representations (BERT) [32],
much progress has been made in the last 2 years toward delivery of high accuracy
CWS models. Huang et al. [30] propose a domain adaptive segmenter to exploit
diverse criteria datasets, which delivers the state-of-the-art accuracy. Qiu et al. [34]
and Ke et al. [36] encode each dataset [35] with the unified schema proposed in [35],
largely reducing number of decoders. Tian et al. [31] incorporate wordhood infor-
mation with BERT, demonstrating the robustness on smaller datasets. Their work
differ from us in that they focus on pushing the accuracy at the cost of runtime
speed, while we explore a method to balance both accuracy and speed.
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3. Approach

3.1 Word segmentation as sequence labeling

To treat CWS as a problem of character-based sequence tagging is common and
effective. Ome widely used tagging set is T = {B, M, E, S}, which respectively
represents for the begin, middle, end of a word, or single character which forms
a word. Then the corpus is converted to a sequence of characters along with
their tags. Upon which a general tagging model is trained. In testing phase, the
segmentation decision is made once the label sequence is predicted by the tagging
model. We will explain our sequence tagging models in this section.

3.1.1 Conditional probability sequence tagging

Given a sequence X with n characters as X = (x1,Xa, ..., X, ), the goal of sequence
tagging on CWS is to find the most possible tags Y* = {y7,...,y:}:

Y* = argmax P(Y|X), (1)
YeTn

where T = {B, M, E, S}.

Many sequence labeling models can be applied to this task. For example, [2]
applied Maximum Entropy Markov Model (MEMM), then the CRF's [3,4,14,16-18]
quickly took the charge. We also apply CRFs to capture interactions between
adjacent labels.

Next, we consider two factorizations of this conditional distribution depending
on whether decisions are made independently or not.

3.1.2 Conditionally independent inference

Given features representation h; for character x¢, conditionally independent prob-

ability is defined as:
T

P(Y[X) = [] P(yelf(x0)) (2)

t=1

where hy = f(x;) is the feature function.
As decisions are independent, prediction has linear time complexity O(n) and
can be parallelized across the whole sentence:

y; = argmax P(y¢|f(x¢)),
y:€T

Y = (y1,¥3:- -, ¥n)

3.1.3 Linear chain CRF inference

Strong dependencies across output tags are generated by the definition of tagging
set. For instance, begin can’t follow middle or single. Conditionally independent
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classification models are unaware of this interaction, leading to invalid label se-
quence. Therefore, a more appealing solution is to model labels jointly using a
Markov chain, or more concretely linear-chain CRFs [3].

Given contextual features representation h; for character x¢, CRF's firstly use
a linear score function s(X,t) € RI7! to generate a local score for each tag:

s(X,t) = W/ h, + by,

where W, € R *ITl and b, € RI7| are trainable parameters.
Then, for a sequence of predictions:

Y = (ylay27"',yn)a

first order linear-chain CRFs employ a Markov chain to compute its global score
as:

s(X,Y) = Z Ayiayi+1 + Z Py
=1

i=0
where A is a transition matrix. A;; represents for the score of a transition from
the tag i to tag j. yo and y, are the start and end tag of a sentence. A is therefore
a square matrix of size |T| + 2.
Finally, this global score is normalized to a probability in Eq. (1) via a softmax
over all possible tag sequences:

es(X,Y)

~ s X,? ’
ZYGYX € ( )

As first order linear chain CRF's only model bigram interactions between output
tags, so the maximum posteriori probability of label sequence Y* in Eq. 1 can be
computed using dynamic programming, both in training and decoding phase. This
inference process is illustrated as Fig. 1.

P(Y|X) =

Fig. 1 CRF layer.
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3.2 Neural feature extractors

Regarding the extraction of contextual features representation hy, two prevailing
approaches for neural feature extraction, Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs), are studied in this work.

3.2.1 Bi-LSTM feature extraction

Bi-LSTM Given a sentence (X1,Xa,...,X,) consisted of n characters, in which
each character is represented as a d-dimensional vector, Long Short-Term Memory

Networks (LSTMs) can only produce one representation h; for the left context at

every character t. For generating the missing representation of the right context hy,
a second LSTM reads the same sequence but in reverse order. One pair of forward
and backward LSTM is called bidirectional LSTM (Bi-LSTM) [19] in literature.
By concatenating its left and right context representations, the final representation
is produced as h; = [h_Z, }:]

The motivation behind extracting feature via Bi-LSTM is that, segmentation
decision depends on nonlocal context information from both preceding and suc-
ceeding characters. In early sequence model, a sliding window centered in current
character is quite common for feature extracting. Now Bi-LSTM hits the main-
stream. Our architecture for contextual feature capturing is shown in Fig. 2. This
contextual feature vector encodes both the meaning of a character and its context.

Contextual
Representation

LSTM H LSTM { LSTM H LSTM \

‘ LSTM ‘ LSTM ‘ LSTM ‘ LSTM
/ < Character
Representation

Fig. 2 Character LSTM layer.

3.2.2 Iterated dilated CNNNs feature extraction

In computer vision, a pixel is typically a vector with 3 channels: red, green and
blue (RGB). At meanwhile, one picture has two dimensions of pixels. In the case
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of Nature Language Processing (NLP), a word is represented by a vector with
hundreds of channels, whereas a sentence has only one dimension of words. As a
result, convolution filters [9] in NLP are typically one-dimensional vectors, applied
to a sequence of word vectors, or more precisely a matrix of the same width with

filters. Formally, output ¢; of convolutional operator applied to each word x; is
defined as:

ct = W @ Xt+k, (3)
k=0

where @ is vector concatenation, 2r+1 is the filter width w. Therefore, the effective
input width of every token is limited by w.

To enlarge effective input width, dilated convolution [20] transforms one token
every ¢ input, where ¢ is the dilation width. The dilated convolution operator is
defined as:

ct = W @ Xt+ks- (4)
k=0

In this way, dilated convolution with § > 1 can incorporate broader context
into the contextual representation than naive convolution, without increasing the
amount of parameters. To further capture global context, ID-CNN stacks multiple
dilated convolutions bottom up, then feeds the outputs from one filter to the next.

Iterated Dilated CNNs Although increasing the layers of stacked dilated con-
volutions can help to capture global context, it in turn introduces more parameters,
leading to over-fitting on small datasets. Strubell et al. [11] presented a method to
reuse the same filter but apply different § across layers. In its recursive pattern,
parameters amount remains constant while network goes deeper and deeper. This
variant is referred as iterated dilated CNNs (ID-CNN).

We applied iterated dilated CNN as a fast feature detector for CWS. The layer
architecture is shown in Fig. 3.

3.3 Training

The training procedure is to maximize the log-probability of the gold tag sequence.
Depending on wether it makes independent decision or not, the probabilistic models
in Section 2 are named as non-sequential or sequential model.

3.3.1 Non-sequential model

For conditionally independent model, the log-probability is:

log(P(Y|X)) = > log P(y¢ | he).

t=1
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Fig. 3 Iterated Dilated CNN with w = 3 and 6 = 4. Current token, effective inputs
and final contextual representation are highlighted.

3.3.2 Sequential model
For CRF model, this is:

log(P(Y|X)) = s(X,Y) — log Z e5(XY)
YeYx

= 5(X,Y) — logadd s(X,Y),
?EYX

where Yx represents all possible tag sequences for a sentence X. As only bigram
interactions between tags are modeled, we can compute the above summation by
dynamic programming.

4. Experiments

We conducted two parts of experiments to compare performance and speed of
the following models:

1. Bi-LSTM models with or without CRF layer.
2. ID-CNN models with or without CRF layer.
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4.1 Datasets

To explore these questions, we experimented on the 4 prevalent CWS datasets from
SIGHAN2005 [21], as these datasets are commonly available and used by previous
state-of-the-art works. Following conventions, the last 10 % sentences of training
set are used as development set. All datasets are preprocessed by replacing the
continuous English characters and digits with a unique token. Tab. I describes
statistics of the Sighan 2005 datasets used in our experiments.

Corpora #words Fchars# word types char types OOV
Train 2.4M 4.0M 75.4K 51K

MSRA  egt 0.1M 0.2M 11.9K 2.8K 1.32%
- Train 5.4M 8.3M 128.8K 5.8K

S AS Test 0.1M 0.2M 18.0K 3.4K  2.20%
2 Train  11M 1.8M 51.2K 1.6K

%  PKU Test 0.1M 0.2M 12.5K 29K  2.06%
Train 1.1M 1.8M 43.4K 4.2K

CITYU  egt 0.2M 0.4M 23.2K 3.6K  3.69%

Tab. I Details of the 4 datasets in our experiments. “O0V” is Out-Of-Vobulary
rate.

4.2 Pre-training

The corpus used for pre-training is Chinese Wikipedia dump of July 2017. Tradi-
tional Chinese characters inside are converted to Simplified Chinese via the popular
Chinese NLP tool HanLP?.

Instead of the commonly used word2vec [22], we utilized fastText [23]? to train
character embeddings. We chose SG model, 100 dimension, and set the initial
learning rate to 0.1.

4.3 Hyper parameters

Hyper parameters are tuned on development sets. Some crucial common hyper
parameters shared by all models are listed in Tab. II.

4.4 Implementation details

We implement our model in TensorFlow [33] and conduct all experiments on a
GeForce GTX TITAN GPU. Our codes are written in Python and requires a Linux
environment to run. Depending on model architecture and dataset size, each ex-
periment setting takes about 1 to 4 hours to train on our GPU.

3https://github.com/hankcs/HanLP
4https://github.com/facebookresearch/fastText
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Radical embedding dim d, =50
Character embedding dim  d, = 100

L2 regularization 12=10"°
Batch size b=128
Learning rate ep = 0.001
Max epochs n =100

Tab. IT Model settings

4.5 Results on SIGHAN bakeoff 2005

Four models are trained and tested on four datasets respectively. The final results
are shown in Tab. III.

Models PKU MSR CityU AS

Chen et al. [13]* 945 95.4 —~ —~
Chen et al. [8]*  94.8  95.6 - -
Chen et al. [16] 94.3 96.0 95.6 948
Caietal [12]* 958 97.1 95.6 95.3
8] - - 96.0  97.8
Yang et al. [37]F 963 975  95.7  96.9
Huang et al. [30]"F 96.6 97.9  97.6  96.6
Tian et al. [31]} 96,5 984  97.9  96.6
Qiu et al. [34] 96.4 98.1 969  96.4
Ke et al. [36]* 96.9 985 97.1  96.9

Bi-LSTM 94.3  95.7 94.6 95.0
Bi-LSTM-CRF 94.8  96.7 95.5 95.3
ID-CNN 95.2 96.7 95.6 95.1

ID-CNN-CRF 95.2  97.0 95.5 95.0

Tab. III Comparison with state-of-the-art models of results on all four Bakeoff-
2005 datasets. Multi-Criteria Learning' and BERT /silver data pre-training* are
orthogonal to our work.

Results with & used external dictionary or corpus. Results with # are from
Cai and Zhao [24]’s running on their released implementations without dictionary.
Results with { expurgated long words in test set. Note that PKU, CityU used by
Chen et al. [16] are from SIGHANOS, while others’ are from SIGHANO5. The scores
from recent works [30, 31,34, 36-38], which either or both use more training data
or adopt external large-scale pre-trained BERT, are also included for an indirect
comparison.

We also recorded the training speed of every model on a GeForce GTX TITAN
GPU in Tab. IV. The last column shows the relative training speed of neural models
without BERT. We are unable to experiment with the BERT models* due to their
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Model Speed
Adversarial NN [16]  1.00x
GRU [13] 3.21x
LSTM ] 6.73x
GCNN [12] 8.52x
Bi-LSTM-CRF 5.60%
Bi-LSTM 6.55 %
ID-CNN-CRF 12.76 %
ID-CNN 19.48 %

Tab. IV Relative training-time speed of tagging models on AS dataset.

requirement of computation resource. The BERT encoder itself is approximately
50 times larger than our largest model, which exceeds our GPU memory constraint.
We anticipate them to be approximately one or two orders of magnitude slower than
our models, based on the speed reported by Huang et al. [30]. Non-neural models
are not comparable since they are not GPU-optimized. The speed and performance
of our LSTM baseline model are very close to its LSTM counterpart [8]. Although
decoding speed usually drops when the model complexity increases, our models
are less sensitive as our improvement is mostly made on the data part instead of
model structure. After integration of CRF layer, the speed of our model slightly
decreases while still outperforms their models [12] of similar performance.

4.6 Analysis

ID-CNN has comparable or even better performance over LSTM With
or without CRF layer, ID-CNN models outperformed their BILSTM competitors.
On MSR and CityU datasets, ID-CNN repeatedly showed a dramatic 1 % advantage
over Bi-LSTM. Bi-LSTM is capable of capturing long term dependencies, while
the length of Chinese words are usually less than 2 characters. The dependency
on characters far away is less important than that of neighbor characters. Instead,
ID-CNN models the n-gram within a sliding window, which is enough for making
tokenization decisions without degrading the runtime speed.

ID-CNN has faster speed over LSTM With or without CRF layer, ID-CNN
models are 2x faster than their BiILSTM competitors, with no accuracy loss or
even better performance.LSTM suffers from dependency on outputs from previous
characters, where parallelization is impossible. ID-CNN only depends on previ-
ous layer and number of layers are much smaller than number of characters in a
sentence.

BiLSTM relies heavily on CRF layer Without CRF layer, BILSTM suffers
an accuracy loss up to 1 %. This unavoidable dependency on dynamic search leads
to an incompatibility with parallelization. CRF layer helps to penalize invalid
transitions of tags, which is important for sequence labeling task such as word
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segmentation. Without CRF, LSTM tends to over estimate the importance of
long term dependency without global optimization, which results to significant
performance drop.

CRF layer does tiny enhancement to tagging inference for ID-CNN
Without CRF layer, ID-CNN’s tagging inference is still accurate, with a loss of
accuracy between 0 to 0.3%. We also noticed that on CityU dataset, ID-CNN
performs slightly better than ID-CNN-CRF, which further reflects the accuracy of
ID-CNN. Generally, when individual decision is accurate, transition feature used in
CRF will be less important. By removing the dependency of CRF layer, parameters
are reduced, meanwhile ID-CNN can take more advantage of parallelization.

5. Conclusions and future works

5.1 Conclusions

In this paper, we have proposed a novel approach to replace BiLSTM with ID-
CNN in CWS systems. Our extensive experiments showed that ID-CNN has great
advantages in runtime speed while keeping the same or producing even better ac-
curacy. We also showed that ID-CNN relies less on CRF layer, thus it can generate
more accurate results solely on local features, which is in turn more appropriate
for parallelization.

5.2 Future works

The radical embeddings used by ID-CNN are trained with non-contextualized
methods, which could result in loss of poly-semantic information. The same rad-
ical could have multiple meaning in different context, while our current approach
assigns unique embedding to it. We are looking forward to incorporating recent
contextualized methods with our radical embeddings.

Our ID-CNN sequence tagging framework can be applied to extensive NLP
tasks like Part-of-Speech tagging and Named Entity Recognition (NER). These
tasks will benefit from faster runtime speed without performance loss. We have
made our work publicly available and encourage more applications of this promising
model.
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