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Abstract: The purpose of this study was to investigate degree distributions of
functional brain networks. Particular functional brain networks were constructed
from the fMRI measurements of three groups of participants namely, young healthy
participants, elderly healthy participants and elderly participants with Alzheimer
disease. Functional brain networks were constructed for three different correla-
tion thresholds of voxel activity correlated over time. We have noticed that the
character of degree distribution changes when the value of correlation threshold
decreases. In order to explain the degree distribution changes with the changes of
value of correlation threshold, we created two different, yet related network models.
The crucial factor both models contain is an increasing noise as the voxel activity
correlation threshold is lowered, which in our models corresponds to an increase of
the number of random correlations between the voxels – nodes of the functional
network. The models account for how initially scale-free character of the degree
distribution changes as the correlation threshold is lowered based on the processes
of network growth and edge addition. The two models differ in the manner of
preferential and random edge addition while the second model is a refinement of
the first one. On average, the second model leads to a better quantitative match
with the data. To our knowledge, such functional brain network models, which
take into account the correlation threshold as an independent variable have not
been introduced before.
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1. Introduction

1.1 Functional brain networks derived from fMRI treated as
graphs

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive measurement
technique, which captures high resolution images of neural activity in the brain
with an acquisition time of around 1–3 seconds. The level of neural activity is in-
ferred from the blood-oxygen-level-dependent (BOLD) signal [7]. Recorded fMRI
images consist of a series of three dimensional slices representing cross sections of
the brain in a serial order. Each slice is comprised of a rectangular grid of discrete
3D regions known as voxels (volumetric pixels) of about 3 mm3 or less, depending
on the scanner. A full 3D spatial image of the brain activity is a result of combining
all the slices together. Since fMRI data is comprised of fMRI time-series data of
activity of thousands of voxels, fMRI is often used for deriving functional connec-
tivity of the brain based on voxels exhibiting similar activity over time [32]. By
modeling this functional connectivity as a network (i.e. functional brain network),
we have decided to use techniques from the graph theory to explore their topo-
logical characteristics. In the network analysis of the functional brain networks,
different anatomical brain regions can become the nodes. However, we have chosen
the individual voxels as nodes of the functional brain network. As for the edges,
the most commonly used measure of similarity is correlation, which is based upon
the concept of covariance. Covariance is a measure of the extent to which two
random variables vary together or, in other words, a measure of their dependence:
the extent to which knowledge of one variable could be used to predict the other.

Mathematical representation of the network is a graph. Graph G(V,E) consists
of N = |V | nodes, connected by m = |E| edges [35] , while V and E denote node
and edge sets respectively. In this study we will deal with the so-called binary
networks, which are networks having undirected unweighted edges. An important
notion is the degree of a node, which is the number of edges incident with the node
in question. The degree distribution is the probability distribution of the degrees
over the whole network. The most elaborated graph theory is that of random
graphs [12]. However, due to the specific properties of real-world networks, random
graphs are often not a good model for them. As has been shown by Barabási
and Albert [3] and others [10, 19, 28, 34], real-world networks, like social networks,
Internet, language lexicon, etc., have usually small-world and scale-free character,
and other properties like e.g. modularity and others.

We were interested in topological characteristics of the brain functional net-
works, which are real-world complex networks, especially whether they have a
scale-free character. This property is reflected in the degree distribution, which
has a power law character. For the normalized number of nodes with the degree k,
the probability P (k) decreases as a power law with the scaling exponent γ, i.e.

P (k) ∝ k−γ (1)

Barabási and Albert [3] showed that the scale-free structure develops due to a
specific network dynamics. This dynamical principle, based on a preferential node
linking, is common for many real-world networks and can be expressed as “the rich
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get richer” rule. If a new node comes to the network, it links to the node with a high
degree with higher probability than to a node with a small degree. Two seminal
papers in the complex network analysis by Watts and Strogatz [34] and Barabasi
and Albert [3], triggered a wide range of work across many disciplines in search to
find evidence of ‘small-world’ and ‘scale-free’ networks in both the natural and man-
made worlds. Other influential papers introduced complex measures for network
analysis [10, 26]. These papers also helped to popularize the use of networks, or
graphs, as the data structure of choice for many forms of data analysis. Networks
are also an intuitively appealing structure to analyze functional connectivity of
the brain: Anatomical parts of the brain or voxels are represented as nodes in a
network, and interaction (e.g. correlation) between them as edges [15,25].

Egùıluz et al. [11] was one of the first who used fMRI to extract functional net-
works connecting correlated voxels while subjects were performing different tasks
like finger tapping or listening to music. By using a correlation measure between
any pair of voxels they built a correlation matrix that was thresholded to construct
large-scale brain networks with thousands of nodes. They found that these net-
works were scale-free networks with power law degree distributions, i.e. Eq. (1),
with γ ∼ 2. On the other hand, Achard et al. [1] analyzed fMRI time series ac-
quired from healthy subjects in the resting state. They found that these networks
do not display a scale-free topology. Instead they found that the best fit for the
degree distribution was an exponentially truncated power law, i.e.

P (k) ∝ k−γe(−k/kc) (2)

with exponent γ = 1.8 and cutoff degree kc = 5. There is a theoretical work to
account for these results, namely by Portillo and Gleiser [27]). In their model,
anatomical regions in the brain are represented by microscopic nodes. To account
for the latter degree distribution Eq. (2), they start from a small random network,
which grows by the addition of new nodes with fixed number of connections. The
new nodes are linked at random, but then the connections are adaptively rewired
according to coherence between the nodes. They show that the model is able to
describe topological characteristics of the human brain networks obtained from
fMRI studies described by Eq. (2). However, most of the studies of functional
brain networks derived from fMRI data lead to networks, which have a small-world
character but not the scale-free topology [4, 32]. Thus, there is a discrepancy in
the overall topological studies of the brain functional networks. Some studies show
they are scale-free [11], some show they have a degree distribution described by
an exponentially truncated power law [1] and some claim there is no scale-free
property at all [4].

We have noted an important fact that in all the above mentioned studies, the
authors used experimental data of various origin (data acquisition parameters, par-
ticipants of different ages, different preprocessing and analysis methods), obtained
under different conditions (task-free, different tasks), and using different methods
of brain functional networks derivation including different thresholds for thresh-
olding the correlated activity between the network nodes. However in this study,
we concentrate on the effect of thresholding the correlated voxel activity upon the
scale-free topology of the functional brain networks derived from a coherent fMRI
dataset obtained and derived under the same conditions from three different groups
of participants.
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1.2 The goals

Our aim in this paper is to study and model degree distributions of functional brain
networks by means of the methods of the graph theory. We use the functional brain
networks derived from the brain fMRI data of healthy young (HY) participants,
healthy elderly participants (HE) and elderly participants with Alzheimer disease
(AE). The original data were collected by by Buckner et al. [5]. All participants
were performing the same visual motor task. In particular our goals are:

• First, to analyze the degree distributions of functional brain networks. The
goal was to find out whether there are differences in their characteristics
depending on the age / health state groups of participants, i.e. HY, HE and
AE, depending on different correlation thresholds of voxel activity.

• Second, to develop unifying network models that explain the changes in the
degree distributions at different correlation thresholds for all groups of par-
ticipants.

• Third, to test by computer simulations, which model accounts better for
changing degree distributions at different correlation thresholds.

2. The Data

2.1 The fMRI Dataset

Buckner et al. [5] acquired the raw structural and functional MRI data from
41 subjects in total (data set no. 2-2000-118W from the fMRI Data Center:
http://www.fmridc.org). In their study, there were three groups of participants:
healthy young (HY), healthy elderly (HE) and elderly with diagnosed Alzheimer’s
disease (AD) of mild or very mild severity (AE) [18]. The HY group had 14 sub-
jects (9 females/5 males) with the mean age 21.1 years (SD 2.0). The HE had 15
subjects (9 females/6 males) of the mean age 75.1 years (SD 6.9). The AE group
had 12 subjects (7 females/5 males) of the mean age 77.1 years (SD 5.3). There
was no statistically significant difference in the mean age of the latter two groups.
The participants in the HE and AE groups were clinically assessed for the presence
of dementia using the Clinical Dementia Rating (CDR) [16]. All individuals in the
HE group had a CDR = 0. Of the 12 individuals in the AE group, seven had CDR
= 0.5, corresponding to a diagnosis of probable AD; the remaining five had CDR =
1, corresponding to a diagnosis of mild AD. Each participant underwent four fMRI
recording sessions performing a simple visual motor task. This valuable dataset of
three groups of participants of different age and brain health condition has later
been used in numerous studies, and has generated a wide range of findings (see
e.g. [8, 13,24,33]).

One of disadvantages of the fMRI method lies in a fact, that the fMRI signals
are extremely noisy and the signal to noise ratio is rather low. BOLD related
changes generally make up only a few (∼ 5) percent of the overall signal [7]. Two
main sources of noise are in question: noise caused by the scanner itself and various
types of physiological noise (breathing, heart beat, even a very subtle movement
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of the subject in the scanner causes a problem, etc.). That is why, the data are
prepossessed before being used in subsequent studies. Preprocessing applied to the
fMRI data [5] is described in detail in [23]. It consisted of the steps briefly listed
below, together with references for more detailed information:

1. The first step in data preprocessing consisted of slice-timing correction. Since
each slice of fMRI data is taken in a different time, the Fourier interpolation
technique was used provided by the 3dTshift tool, namely AFNI [9].

2. To correct for scanner drift, a high-pass temporal filter was applied to every
volume, with a pass frequency of 1/42.88 ≈ 0.02 Hz with the fslmaths utility,
provided with FSL [31].

3. There is always a motion, even a slight one involved in the scanning. Thus,
the motion correction was applied to each volume using the FSL’s mcflirt

utility [17].

4. The next step of preprocessing was the so-called intra-session alignment. The
fMRI images from every session were aligned to the first image of the first
session in order to allow for averaging across sessions and trials. For that the
flirt utility provided by FSL is used.

5. During the process of brain segmentation, the non-brain matter, e.g. skull
tissue, was removed from the structural MRI image. The bse utility provided
with BrainSuite was used for this purpose [29].

6. To extract voxels that belong to the brain tissue, the tissue classification was
performed. Each MRI voxel was classified as white matter, grey matter or
cerebrospinal fluid, based on field inhomogenities, using BrainSuite’s bfc and
pvc utilites. In our current work we used functional networks consisting of
the voxels of gray and white matter only.

7. Each participant’s brain is different. Thus, the next step, the intra-subject
registration, deals with this problem. Using the FSL’s flirt utility, a mean
fMRI image was created from every structural fMRI volume.

8. After creating the mean fMRI image, the spatial normalisation was applied.
First, using FSL’s flirt, a 12 parameter affine transformation from the
structural MRI image to the 2 mm3 MNI152 T1 standard brain template
was calculated. This transformation was then used to initialise a non-linear
transformation using the fnirt utility also provided with FSL [2].

2.2 Functional brain networks

The prepossessed fMRI data were used in [23] to create functional brain networks
for each participant in all three groups (HY, HE, AE). The same functional brain
networks are the basis of novel analysis performed in the present work. Preliminary
analysis and results were published in [21,22]. These networks are unweighted and
undirected loopless networks. The process of creation of these functional networks
is briefly described below.
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Functional brain networks are based on temporal correlation of activity between
the voxels [11]. Thus, the derived functional brain network exists only during given
time when the temporal correlation of activity is calculated. During this time, the
brain may be involved in performing some task. Thus, the derived functional
network reflects the functional cooperation of different brain areas. Because the
smallest activity unit of the fMRI brain volume is the composite signal of neurons
contained in one voxel, voxels are natural and most appropriate choice for the nodes
of functional brain network as argued by Hayasaka and Laurienti [14]. If any two
voxels functionally cooperate, based on the underlying physical connectivity, their
BOLD signal should be highly correlated over time. Like Egùıluz et al. [11], we
have chosen the Pearson correlation coefficient r(i, j) to estimate the amount of
activity correlation for each pair of voxels (i, j):

r(i, j) =
〈V (i, t)V (j, t)〉 − 〈V (i, t)〉〈V (j, t)〉

σ(V (i))σ(V (j))
, (3)

where V (m, t) is the BOLD activity of the m-th voxel at time t, 〈.〉 denotes the time
average, and σ2(V (m)) = 〈V 2(m, t)〉 − 〈V (m, t)〉2. An edge between the pair of
voxel nodes is established if |r(i, j)| > θ, where θ is a given correlation threshold (see
Fig. 1). We have chosen an absolute value of correlation to derive a functional link
between voxels. This means that both strongly positively and strongly negatively
correlated voxels are included in the functional network. Because the correlation
r(i, j) is a symmetric function, the networks are undirected. After applying the
correlation threshold θ, we treat the networks as undirected and binary, i.e the
edge either exist or not.

3. Results

3.1 Whole brain functional networks – data analysis

Here, the basic analysis of functional brain networks is presented for the three
groups of participants. Particular three correlation thresholds for which the func-
tional networks were derived were: θ1 = 0.819398, θ2 = 0.899876 and θ3 =
0.962249. Justification: For these whole brain functional networks, McCarthy et
al. [23,24] calculated average properties, like the number of nodes, degree, density,
small world index, clustering coefficient, shortest path, local and global efficiency,
and assortativity. These average characteristics were statistically compared in or-
der to look for differences between the three groups of participants. Statistical
null hypothesis consisted of no difference, for any functional network characteris-
tics, between each pair of groups. McCarthy et al. [23, 24] have estimated that
the statistically significant differences between average network measures at the
α = 10−2 level occurred for the functional networks created with the threshold
θ1 = 0.819398, at the α = 10−3 level for θ2 = 0.899876, and at the α = 10−5 level
for θ3 = 0.962249. We have decided to use the networks extracted by McCarthy et
al. [23, 24] at the same values of thresholds for the inference of our models too.

Fig. 2 shows degree distributions of the HY functional brain networks for all
correlation thresholds. For the lowest correlation threshold θ1 = 0.819398, the
average number of nodes is NHY

1 = 10487, with the individual values lying in the
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Fig. 1 Stages of creation of the functional brain network. A: Based on a chosen
voxel activity correlation measure, a correlation matrix was calculated. This was
done for the fMRI volume of each participant. B: Three unweighted, undirected
networks were extracted from each correlation matrix, using three different corre-
lation thresholds θ1 < θ2 < θ3. Based on which correlations crossed the given
correlation threshold in the matrix of correlations, the resulting networks contain
different number of nodes and edges.

interval [9850, 11140]. As we can see in Fig. 2, for θ1, the tail of the distribution is
too short in order to estimate the power law scaling exponent correctly. Thus, we
conclude that the degree distribution for the lowest correlation threshold θ1, the
functional brain networks are not scale-free because they do not have a power law
character.
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Fig. 2 HY group. Degree distributions of the functional brain networks of partici-
pants from left to right: the lowest correlation threshold θ1 = 0.818398, the medium
threshold θ2 = 0.899876, and the highest threshold θ3 = 0.962249. The figure shows
that the scale-free character of the networks at the highest threshold is gradually
being destroyed as θ gets lower and lower.

For the medium correlation threshold θ2 = 0.899876, the average number of
nodes in the functional brain network is somewhat lower, i.e. NHY

2 = 10426. All
individual networks have number of nodes in the interval [9842, 11140]. As we can
see, there is a pronounced power law tail for the medium correlation threshold,
with the average scaling exponent γHY2 = 1.14. The scaling exponent is calculated
as an average of all scaling exponents of all individual distributions.

For the highest correlation threshold θ3 = 0.962249, the average number of
nodes in the functional brain network is the lowest, i.e. NHY

3 = 7280. Individual
values are in the interval [6482, 8582]. At the highest correlation threshold, the
situation changes dramatically. All the functional brain networks have a power law
degree distribution with the individual values of γHY3 in the interval [0.9346, 1.7812].
They have a well defined scale-free structure, with the average scaling exponent
γHY3 = 1.36.

Next, we depict the degree distributions at the three correlation thresholds for
the HE group (Fig. 3). For the lowest correlation threshold θ1, the average number
of nodes was NHE

1 = 9486. The individual values lie in the interval [8458, 10179].
The tail of distribution is too short to estimate the power law scaling exponents
correctly. Thus, we conclude that the functional brain networks for θ1 are not scale-
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Fig. 3 HE group. Degree distributions of the functional brain networks of partici-
pants from left to right: the lowest correlation threshold θ1 = 0.818398, the medium
threshold θ2 = 0.899876, and the highest threshold θ3 = 0.962249. The figure shows
that the scale-free character of the networks at the highest threshold is gradually
being destroyed as θ gets lower and lower.

free, because they do not have a power law character. For the medium threshold
θ2, the average number of nodes is NHE

2 = 9467. The number of nodes for the
individual network lies in between the values [8420, 10156]. The degree distribution
for θ2 reveals more pronounced tail in the log–log plots. However, it also shows
more variability between individuals than the θ2 degree distribution of the HY
group. Five individuals do not have the power law tail long enough to find a
scaling exponent correctly. Therefore, they were not included in calculating the
average γHE2 = 2.27 exponent. For θ3, the average number of nodes is NHE

3 = 7034
and the number of nodes is in the interval [5280, 8382]. Analysis of the networks
generated for the highest threshold θ3 reveals their scale-free character. The average
scaling exponent γHE3 = 1.3609. All the individual scaling exponents lying in the
interval [1.0500, 2.0396]. However, also for θ3, there is a higher variability among
HE individual networks than in the HY group.

Finally, we analyzed the functional brain networks of the AE group (i.e. elderly
participants with diagnosed mild or very mild Alzheimer’s disease) for all three
thresholds (Fig. 4). We would like to point out even greater individual variability
of degree distributions for all three thresholds compared to the first two groups,
namely HY and HE. Our analysis shows that even not all of the networks have a
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Fig. 4 AE group. Degree distributions of the functional brain networks of partici-
pants from left to right: the lowest correlation threshold θ1 = 0.818398, the medium
threshold θ2 = 0.899876, and the highest threshold θ3 = 0.962249. The figure shows
that the scale-free character of the networks at the highest threshold is gradually
being destroyed as θ gets lower and lower.

scale-free property for the medium and highest thresholds. Here are the numerical
results: For the lowest correlation threshold θ1, the networks are not scale-free. The
average number of nodes in the group is NAE

1 = 8956, the interval is [7825, 10204].
For the medium threshold θ2 threshold the average number of nodes is NAE

2 =
8905, having the individual values in the interval [7825, 10204]. The average group
γAE2 = 0.8641 and the individual values lie in the interval [0.5313, 1.1520]. Four
out of 12 individual distributions have no power law tail and thus were excluded
from the calculation. At the highest correlation threshold θ3, the average number
of nodes is NAE

3 = 6679 with the individual values in the interval [5575, 8394].
The degree distribution of the majority of networks has a power law character.
The exception is just one outlier. The average scaling exponent is γAE3 = 1.3429
(interval [0.8046, 2.1867]) (Fig. 4).

The results of degree distribution analysis are qualitatively similar for all groups
of participants. The scale-free network structure at the highest threshold is gradu-
ally being destroyed as the correlation threshold θ gets lower and lower. In addition,
compared to those of the HY group, the data of HE and AE groups are far less
coherent due to a large individual variability between participants in these aged
groups.
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4. Models of changing degree distributions

Our data analysis described in the previous section has revealed that the character
of the functional brain networks depends on the value of correlation threshold. In
particular, when the correlation threshold is the lowest, the degree distributions
are not scale-free, but rather have a characteristics of the random graph. As the
correlation threshold increases, the degree distributions gradually develop more
and more pronounced power law tails (see Figs. 2, 3 and 4). Thus, we are inter-
ested in developing the models that explain the changing degree distribution of
the functional brain networks with the correlation threshold and not time being an
independent variable.

In the following analysis we are inspired by the work of Scholz et al. [30], who
developed a model for the scale-free networks in which the noise increases and the
degree distribution changes. The authors started from a scale-free network. The
number of nodes was fixed to N0, and the initial number of edges to L0. Then
the network was disturbed by some type of noise reflected by random link removal,
random link exchange and random link addition. The authors have developed a
model how the degree distribution drifts from the power law character to random-
ness with increasing the noise (randomness applied to edges) in the network over
time.

However our goal is to explain the changes in degree distribution depending
on the value of correlation threshold. For this purpose we assume the noise is
affecting the degree distribution when the threshold of correlations between the
voxels changes its value. Unlike the original model of Scholz et al. [30], in addition
to changes in the number of edges, we assume an increase in the number of nodes as
the threshold of correlation decreases. First, let us suppose, we lower the threshold
step by step such that at each iteration corresponding to a small threshold change,
one new node comes to the system. Thus, each step or iteration is marked by
addition of a new node.

In the following equations, n denotes the number of network growth steps. Let
us first look at the effect of the random link addition as described by Scholz et
al. [30]. The impact of random link addition is described by this rate equation:

P (k, n+ 1) =
2

N0
P (k − 1, n)(1− δk,0) +

(
1− 2

N0

)
P (k, n). (4)

P (k, n) is the normalized number of nodes having the degree k at the iteration n.
N0 denotes the initial number of nodes and δk,0 is the Kronecker delta function.
The first term is a gain term; each end of the new edge can be added with the
same probability to each of N0 nodes. The second term is a loss term. Number 2
in nominator means, that each added link has two ends. Each edge end chooses
randomly between available nodes. The asymptotic degree distribution for the
latter rate equation is P (k, n) = A(k, n)k−γ(k,n), where k denotes the degree and
n stands for the iteration. The analytical solution of this equation shows, that the
scaling exponent γ changes as (Scholz et al., 2005):

γ(k, n) = γ0e
( 2n
N0k ). (5)
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Based on this, we assume that lowering the correlation threshold corresponds to
increasing the probability of addition random edges between the nodes in functional
network. This in turn causes that the degree distribution looses its power law
character. We have utilized this insight and developed two different yet related
models based on the data and assumption of increasing the noise which affects not
only the number edges but also the number of nodes as the correlation threshold
is lowered.

Thus, we develop our model as follows. We start at the highest threshold θ3,
at which the network is scale-free and has N0 nodes, L0 edges and the power law
degree distribution. Then the threshold is lowered step by step. At each iteration
step in lowering the correlation threshold, new nodes and edges are added to the
network by both the preferential and random linking. In our model, a new node
is added to the network when its signal is now correlated with any node (voxel)
already present in the network, provided they were not previously correlated at
the higher threshold to avoid duplicity. We assume, that each threshold’s discrete
and infinitesimally small change is accompanied by only one new node and on
average the same number of new edges per iteration. In addition, each new node
brings a1 new edges that are linked preferentially and a new edges that are linked
randomly. Thus at each iteration, the total amount of edges brought by one node
is a + a1. This sum should be at least one, otherwise the node is not connected.
At the same time, we assume that yet another process takes place. Namely, as the
threshold decreases, some correlations between the pairs of nodes already present
in the network become significant because now their value crosses a new value of
the threshold. Therefore new edges are distributed preferentially (b1) or randomly
(b) among the nodes beeing already in the network at the previous value of the
higher threshold.

Thus, unlike the previous model (Eq. 4), both the number of nodes and edges in
our network model increase. We created two models, let us call them the model A
and the model B, which differ in certain details and are described below. First, we
start with the network at the highest threshold with N0 nodes, which is scale-free.
As the threshold lowers, new nodes and correlations (edges) emerge.

The rate equation describing the above mentioned dynamic processes in both
models is:

P (k, n+ 1) = pk,k−1(n)P (k − 1, n) + (1− pk+1,k(n))P (k, n). (6)

In the model A, the transition term pk,k−1(n) reads:

pk,k−1(n) =
a+ 2b

N0 + n
+

(a1 + 2b1)(k − 1)

2L0 +A(n)
, (7)

where A(n) = 2(a+ b+ a1 + b1)n.
In Eq. (6), P (k, n) is the normalized number of nodes having the degree k at

iteration n. This number changes, due to the fact that some nodes having at the
previous iteration n the degree k − 1, gain a new edge. This is expressed in the
first term of the Eq. (6). The second term expresses the situation that for some
nodes having the degree k at iteration n with the probability 1−pk+1,k(n), no new
edges are added. In Eq. (7), N0, L0 denote initial number of nodes and edges, a, b
are the number of randomly added edges per iteration, where a is the number of
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Markošová M. et al.: Network models for changing degree distributions of. . .

edges fetched by a new-coming node and b is the number of edges added between
older network nodes. Similarly, a1 denotes the number of edges by which a new
node links preferentially to the network and b1 is the number of edges linking older
nodes preferentially. Factor two at the coefficients denotes, that these edges are
linked by both of their ends, unlike to those edges, which have just one edge end
linked to the new-coming node. The transition term pk+1,k(n) describes how the
number of nodes having the degree k changes due to the above mentioned dynamic
processes. The first term of pk+1,k(n) says that (a + 2b) edge ends are linked
randomly, with equal probability 1

N0+n
to the node in the network. The number

of nodes in the network at iteration n is N0 + n, because as stated before, at
each iteration (threshold step) exactly one new node appears. The second term
of pk+1,k(n) describes preferential attachment of (a1 + 2b1) edge ends with the
probability proportional to the node degree. The normalization factor is the sum
of all node degrees 2L0 + A(n). The first term of the Eq. (6) is a gain term and
the second one is a loss term. In the model A, we neglect what happens with the
other links. In other words, we only pay attention to the fact how link addition
affects the degree k (Eqs. 6, 7) .

We also created a more refined model B, in which we do care about what
happens to the other links. If a link is added to a certain k-degree node, the other
links have to attach elsewhere.

Eq. (6) is still valid in the model B, but the pk,k−1(n) term is different:

pk,k−1(n) =
a+ 2b

N0 + n

(
N0 + n− 1

N0 + n

)a+2b−1(
2L0 +A(n)− (k − 1)

2L0 +A(n)

)a1+2b1

, (8)

+
(a1 + 2b1)(k − 1)

2L0 +A(n)

(
N0 + n− 1

N0 + n

)a+2b(
2L0 +A(n)− (k − 1)

2L0 +A(n)

)a1+2b1−1

.

Here also A(n) = 2(a + b + a1 + b1)n and the other terms denote the same as
previous.

This model describes the probability of the situation, in which exactly one edge
links by the defined manner (either randomly or preferentially) to a node having
the degree k, while other edges in this model cannot attach to any k-degree node,
but somewhere else to the nodes with different degree. This might be seen as a
first step of model refinement. The second one could be to allow one or two edges
to link to the node with the degree k and the other edges linking elsewhere. We
leave this and other possible variants to the discussion.

5. Results of numerical simulations

We simulated both models A and B (Eqs. 7, 8) numerically. Simulations were
done for the average functional brain networks from the HY, HE and AE group of
participants with respect to the thresholds θ2 and θ1. The results for all groups
are presented in Figs. 5–10. First, we used the experimental data to find the
parameters of initial power law degree distribution at the highest threshold θ3
(Eq. 9) corresponding to the initial number of iterations n0 = 0, i.e.
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Fig. 5 HY, fit at the threshold θ2. Left: Model A fit for the average functional
brain network,‘+’ – data, ‘x’ – simulation. 800 iterations, parameters a = 0.0259,
a1 = 1.7545, b = 5.3677, b1 = 286.0118, MSE = 0.4059. Right: Model B fit for the
same average functional brain network,‘x’ – data, ‘+’ – simulation. 400 iterations,
parameters a = 0.0004, a1 = 9.9534, b = 5.4668, b1 = 277.7394, MSE = 0.3366.

Fig. 6 HY, fit at the threshold θ1. Left: Model A fit for the average functional
brain network,‘+’ – data, ‘x’ – simulation. 800 iterations, parameters a = 0.01628,
a1 = 3.4091, b = 22.3423, b1 = 546.9023, MSE = 0.9642. Right: Model B fit
for the same average functional brain network,‘x’ – data, ‘+’ – simulation. 400
iterations, parameters a = 6.0300, a1 = 0.6902, b = 19.6874, b1 = 546.2624,
MSE = 0.8563.

P (k) = ck−γ . (9)

Both parameters c and γ were derived from the data. Next, the power law distri-
bution function P (k) (Eq. 9) has been normalized by the constant z based on the
data and calculated from the equation

z =

∫ ∞
1

P (k)dk, (10)
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Fig. 7 HE, fit at the threshold θ2. Left: Model A fit for the average functional
brain network,‘+’ – data, ‘x’ – simulation. 800 iterations, parameters a = 0.0012,
a1 = 6.8472, b = 5.6091, b1 = 435.3524, MSE = 0.5211. Right: Model B fit for the
same average functional brain network,‘x’ – data, ‘+’ – simulation. 400 iterations,
parameters a = 0.0393, a1 = 17.1701, b = 5.7155, b1 = 424.8850, MSE = 0.4693.

Fig. 8 HE, fit at the threshold θ1. Left: Model A fit for the average functional
brain network,‘+’ – data, ‘x’ – simulation. 800 iterations, parameters a = 0.0453,
a1 = 0.9549, b = 18.1390, b1 = 1439.9307, MSE = 0.9544. Right: Model B fit
for the same average functional brain network,‘x’ – data, ‘+’ – simulation. 400
iterations, parameters a = 0.9991, a1 = 0.0060, b = 17.9520, b1 = 1440.1210,
MSE = 0.8975.

so that the sum of all probabilities of the initial distribution is close to one after
the normalization. We excluded the networks, for which the integral (Eq. 10) does
not converge. In fact, there was just one case in the HY group.
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Fig. 9 AE, fit at the threshold θ2. Left: Model A fit for the average functional
brain network,‘+’ – data, ‘x’ – simulation. 800 iterations, parameters a = 0.0475,
a1 = 0.9529, b = 5.405, b1 = 236.9792, MSE = 0.5374. Right: Model B fit for the
same average functional brain network, ‘x’ – data, ‘+’ – simulation. 400 iterations,
parameters a = 0.0018, a1 = 3.3738, b = 5.5351, b1 = 234.4743, MSE = 0.5188.

Fig. 10 AE, fit at the threshold θ1. Left: Model A fit for the average functional
brain network,‘+’ – data, ‘x’ – simulation. 800 iterations, parameters a = 0.0061,
a1 = 2.0289, b = 17.8595, b1 = 929.5204, MSE = 0.9189. Right: Model B fit
for the same average functional brain network,‘x’ – data, ‘+’ – simulation. 400
iterations, parameters a = 0.0121, a1 = 0.0025, b = 17.4500, b1 = 931.9510,
MSE = 0.8933.

In our simulations, we first used the models A and B to simulate the change
of degree distribution from the highest correlation threshold θ3 to the medium
threshold θ2. Each model has been iterated N2–N0 times, where N0, N2 denote
the number of nodes for the threshold θ3 and at the the correlation threshold θ2,
respectively. In each network growth step (a discrete small threshold change and

addition of one node) a fixed number of edges is added, namely (L2−L0)
(N2−N0)

, where L2

is the number of network edges obtained from the measured data at the threshold
θ2 and L0 is the initial number of edges. To find the best values for the set of
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parameters a, b, a1, b1 we used the hill climbing algorithm. The mean square
error (MSE) between the measured and simulated data has been calculated as an
optimization function. Each hill climbing simulation started from seven different
initial values. Then, from the best fit parameters, fifteen new sets of parameter
values were derived by slight perturbations of the currently best fit parameter set.
This is a standard procedure in the hill climbing optimization algorithm. The hill
climbing algorithm was iterated 800 times for the model A, while only 400 times
for the model B were necessary. Next, we did the same optimization as before to
account for the data at the lowest threshold θ1. The hill climbing algorithm was
iterated N1 −N0 times, where N1 is the number of nodes at the lowest threshold
θ1 . Consequently, the number of edges added in each threshold (network growth)

step is equal to (L1−L0)
(N1−N0)

, where L1 is the number of edges at the threshold θ1.

6. Summary and discussion

We analyzed the characteristics of degree distributions of functional brain networks
which were created for the three different correlation thresholds of the activity
correlation between each pair of voxels. Functional brain networks were extracted
from the fMRI data obtained for the HY (healthy young), HE (healthy elderly)
and AE (elderly with Alzheimer disease) participants. We have found that:

• At the highest correlation threshold θ3 the degree distributions can be consid-
ered as scale-free with developed power law tails (Figs. 2, 3, 4). This is espe-
cially well seen for the degree distributions in the HY group (Fig. 2). This re-
sult corresponds to previous studies done on different fMRI data sets [11,20].

• In general, the character of the degree distribution of the functional brain
networks changes depending on the value of correlation threshold of pairwise
voxel activity. As the correlation threshold decreases, the power law tails in
the degree distributions are less and less pronounced. Thus, the functional
brain network looses its scale-free structure as can be seen in Fig. 2, Fig. 3,
Fig. 4.

• There are individual differences in the functional brain network degree dis-
tributions in each of the three groups of participants (HY, HE, AE group),
while the HY group exhibits the smallest individual differences thus is the
most coherent (Fig. 2) compared to the HE and AE groups (see Fig. 3 and
4). Nevertheless, the degree distributions in all of the three groups change in
a similar way with the changing correlation threshold.

• To explain the degree distribution changes with the decreasing threshold, we
created two models A and B, while the model B is a refinement of model
A. The crucial factor both models contain is an increasing noise as the ac-
tivity correlation threshold is lowered, which in our models corresponds to
an increase of the number of random correlations between the voxels. In all
simulations model B gives better results then the model A, based on MSE.
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• Once the parameters a1, a, b1, b are established, the models enable one to
predict, how the degree distributions will look at the intermediate correlation
thresholds, for which we do not have the numerical data.

The main contribution of our work is creation of novel mathematical network
models developed to address the question which network wiring processes can cause
the scale-free functional brain networks to loose the their scale-free topology. Both
models describe the dynamic processes that occur in the growing, initially scale-free
network. Increasing the noise in both models is reflected by the random distribu-
tion of a constant number of edges among the nodes being already present in the
network. On the other hand, the preferentially distributed edges among the nodes
already in the network, still support the scale-free structure. At the same time,
the network also grows by the node addition, while each node brings a constant
number of new edges, which are distributed either preferentially or randomly.

Both models reflect a specific view on the data, in which the role of independent
variable is played by changing the threshold. The threshold (network growth)
steps are adjusted to allow exactly one new node to appear in the network, as
described previously. We started with the scale-free degree distributions at the
highest threshold θ3. The parameters c and γ of the degree distribution are derived
from the data at the highest threshold (Eq. 9). Then, we simulated both models
numerically, optimizing their parameters to fit the data at lower thresholds θ2 and
θ1.

In general we can state that in the group of young healthy participants the
model B, which is a refinement of the model A performs better. That means that
the model B gives, in average, better fit to the data even for lover number of
iteration steps, namely 400 (model B) versus 800 (model A). The quality of the fit
is measured by the MSE. In the Appendix we present the best and the worst fits
for the threshold θ1 and θ2, together with MSE.

We made a check of an averaged functional brain networks degree distributions
in another groups of participants, namely HE and AE, and we found that for the
HE and AE group both models are qualitatively correct. Also here the model B
gives better outcome. More research is necessary to explain individual quantitative
differences in data fits. The question is, to which extend are these differences
caused by the variable and noisy data sets and to which extend they are due to
the processes not yet captured by our models. We leave these studies to the future
research.

As we have stated before, in real biological data it is difficult to derive accurate
conclusions, because the data themselves are riddled with noise arising from exper-
imental measurement. In addition, there is also variability arising from individual
brain differences, which seems to increase with the age of participants and with
the onset of the brain disease. We therefore mostly speak about tendencies. We
get better fits at the correlation threshold θ2 in comparison to the data fits at the
lowest threshold θ1. This indicates, that the simplification, that at each network
growth (threshold) step a constant number of edges is distributed may not be com-
pletely valid. This can be derived from particular functional brain networks. It
turns out that that the number of edges increases far more quickly between the
thresholds θ2 and θ1 than between the thresholds θ3 and θ2. On the other hand,
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the difference in the number of nodes between θ2 and θ3 is measured in hundreds
and only in units or tens between the thresholds θ2 and θ1.

These findings indicate, that the number of edges distributed at each network
growth step (i.e. threshold change) is threshold dependent quantity, which should
be taken into account in a future model. Also the possibility to measure each
iteration by a newly appearing edge should bring another view to the dynamic
processes. This also needs an estimation of the probability with which a node
appears at a certain edge addition. Another possibility is to refine the existing
models even more and allow at most two edges to link to a node with the degree k
and check, whether a new model improves the data match at the lower thresholds
or not. If yes, we can check a model which allows at most three edges to link to a
node with the degree k, etc. If not, then further model refinement, which of course
enhances the model complexity will not be necessary. We leave this to the future
investigation.

We created two mathematical models (A, B) of noisy growing networks inspired
by the changes of degree distribution of functional brain networks derived from the
fMRI brain scans of healthy young, healthy elderly participants and elderly partic-
ipants with Alzheimer disease. Both models capture degree distribution changes
at different correlation thresholds and fit the data well, both qualitatively and to a
certain degree also quantitatively. This is remarkable given the data were collected
from different age groups and also from the subjects with starting Alzheimer dis-
ease. In conclusion, we would like to point out, that our models show in general,
what kind of local processes can destroy the initially scale-free structure in complex
networks.
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7. Appendix

To demonstrate the robustness of our models, we numerically simulated both mod-
els A and B (Eqs. 7, 8) for individual networks in the HY group. Each simulation
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was compared to the experimental data data for the thresholds θ2 and θ1. In
Figs. 11 – 15, we present the individual best and the worst fits for the thresholds
θ2 and θ1.

Fig. 11 HY, the best match for the threshold θ2. Left: Model A for the functional
brain network of the participant No. 29, ‘+’ – data, ‘x’ – simulation. Number of
iterations is 800, parameters a = 0.0148, a1 = 3.58178, b = 4.4640, b1 = 240.1464,
MSE = 0.296. Right: Model B fit for the functional brain network of the same
participant. ‘x’ – data, ‘+’ – simulation. Number of iterations is 400, parameters
a = 0.0455, a1 = 1.2881, b = 4.4422, b1 = 242.4312, MSE = 0.1957.

Fig. 12 HY, the worst match for the threshold θ2,, ‘+’ – data, ‘x’ – simulation.
Left: Model A for the functional brain network of the participant No. 32, 800
iterations, parameters a = 0.0209, a1 = 4.8459, b = 19.2407, b1 = 456.7224,
MSE = 0.4554. Right: Model B fit for the functional brain network of the same
participant, 400 iterations, parameters a = 0.0025, a1 = 3.1801, b = 4.7920, b1 =
472.8554, MSE = 0.4464.
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Fig. 13 HY, the best match for the threshold θ1. Left: Model A fit for the functional
brain network of the young healthy participant No. 29, ‘+’ – data, ‘x’ – simulation.
800 iterations, parameters a = 0.0359, a1 = 0.9656, b = 23.2207, b1 = 517.2278,
MSE = 0.6814. Right: Model B fit for the functional brain network of the same
participant, ‘x’ – data, ‘+’ – simulation. 400 iterations, parameters a = 10.7086,
a1 = 1.1310, b = 18.5728, b1 = 511.0376, MSE = 0.5028.

Fig. 14 HY, the match for the threshold θ1, participant 32. Left: Model A fit for
the functional brain network of the young healthy participant No. 32, ‘+’ – data,
‘x’ – simulation. 800 iterations, parameters a = 0.7070, a1 = 0.2957, b = 24.7739,
b1 = 868.3084, MSE = 0.9455. Right: Model B fit for the functional brain network
of the same participant, ‘x’ – data, ‘+’ – simulation. 400 iterations, parameters
a = 6.1255, a1 = 0.1614, b = 22.6218, b1 = 865.1763, MSE = 0.76154.
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Fig. 15 HY, the worst match for the threshold θ1. Left: Model A fit for the
functional brain network of the young healthy participant No. 41, ‘+’ – data, ‘x’
– simulation. 800 iterations, parameters a = 0.0652, a1 = 0.9377, b = 10.4910,
b1 = 825.8862, MSE = 1.1847. Right: Model B fit for the functional brain network
of the same participant, ‘x’ – data, ‘+’ – simulation. 400 iterations, parameters
a = 0.0169, a1 = 0.0078, b = 10.5942, b1 = 826.761, MSE = 1.0848.

References

[1] ACHARD S., SALVADOR R., WHITCHER B., SUCKLING J., BULLMORE E. A resilient,
low-frequency, small-world human brain functional network with highly connected associa-
tion cortical hubs. The Journal of Neuroscience, 2006, 26(1), pp. 63-–72, doi: 10.1523/

JNEUROSCI.3874-05.2006.

[2] ANDERSSON J.L., JENKINSON M., SMITH S. Non-linear regis-
tration, aka Spatial normalisation. FMRIB Centre, Oxford Univer-
sity, U.K., 2007. FMRIB Technical Report TR07JA2. Available from:
https://www.fmrib.ox.ac.uk/datasets/techrep/tr07ja2/tr07ja2.pdf

[3] I BARABÁSI A.-L., ALBERT R. Emergence of scaling in random networks. Science, 1999,
286(5439), pp. 509–512, doi: 10.1126/science.286.5439.509.

[4] BASSETT D.S., BULLMORE E. Small-world brain networks. Neuroscientist, 2006, 12(6),
pp. 512–523, doi: 10.1177/1073858406293182.

[5] BUCKNER R.L., SNYDER A. Z., SANDERS A.L., RAICHLE M.E., MORRIS J.C. Func-
tional brain imaging of young, nondemented, and demented older adults. Journal of Cognitive
Neuroscience 2000, 12 (Supplement 2), pp. 24–34, doi: 10.1162/089892900564046.

[6] BUCKNER R. L. Three principles for cognitive aging research. In: R. CABEZA, L. NY-
BERG, D. PARK, eds. Cognitive Neuroscience of Aging. Oxford University Press, 2005, pp.
267–285, doi: 10.1093/acprof:oso/9780195156744.003.0011.

[7] BUXTON R.B. Introduction to Functional Magnetic Resonance Imaging: Principles and
Techniques (2nd edition), Cambridge U.K.: Cambridge Univ. Press, 2009.
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