THE ECG SIGNAL CLASSIFICATION BASED
ON ENSEMBLE LEARNING OF PSO-ELM
ALGORITHM

W. Li* B. Li*l H.L. Guo* Y.X. Fang* F.J. Qiao® S.W. Zhou'

Abstract: ECG anomaly detection plays an important role in clinical medicine.
So far, a number of ECG recognition technologies have emerged in this field, but
most often suffer from slow training and instability. Considering that the Extreme
Learning Machine (ELM) and Particle Swarm Optimization (PSO) algorithm have
the advantages of fast learning speed and strong generalization ability, this paper
integrates multiple independent PSO-ELM model and proposes a novel ensemble
learning framework termed as E-PSO-ELM to realize ECG signals recognition.
More specifically, the individual PSO-ELM adopts the input weight and hidden
layer deviation of ELM as the particles in the PSO algorithm, and takes the root
mean square error of ELM training sample as the adaptive value of the particles, so
as to enhance the stability of the network and realize high ECG recognition rate.
The simulation results on MIT-BIH Arrhythmia Database show that E-PSO-ELM
has a high classification accuracy rate of 98.23 %. In addition, compared with other
algorithms, the stability of E-PSO-ELM is more prominent, which can reduce the
probability of operating errors. Therefore, E-PSO-ELM has a high practical value.
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1. Introduction

According to incomplete statistics from the National Cardiovascular Center, about
290 million people suffer from cardiovascular diseases, with a mortality rate as high
as 40 percent. To make matters worse, the prevalence of cardiovascular diseases is
still on the rise.

Electrocardiogram plays an important role in clinical detection of cardiovascular
diseases. The classification of ECG signals has become a hot topic in modern
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research. This article applies integration ideas to traditional machine learning
algorithms to build a new type of integration model which is used for ECG signal
classification.

In most ECG signal classification methods, the QRS wave detection is the basis
for analyzing the electrocardiogram. Robust QRS complex detection can locate the
R peak and other peaks more accurately, thereby extracting more comprehensive
feature information and improving the classification accuracy of the model. Fig. 1
shows the normal ECG signals and temporal characteristics, where the QRS wave
contains a large amount of cardiac status information [1]. For this reason, over the
past decades, researchers have proposed various improved QRS detection methods,
which shows a tendency of cross merging based on traditional techniques. For exam-
ple, the Pan-Tompkins algorithm [2] is a classic QRS wave detection algorithm with
a recognition rate of 99.3 %. Marchon et al. improved the Pan-Tompkins algorithm
by using two-stage elliptical IIR bandpass filters and achieved 0.012 % and 0.044 %
errors on database adfecgdb and PhyC 2013, respectively [3]. Yazdani [4] com-
bined mathematical morphology and adaptive structure to detect QRS waves. [5]
and [6], based on the wavelet transform, respectively applied synchronous com-
pression wavelet and inverse biorthogonal wavelet decomposition combined with
nonlinear filtering to detect R waves.

The learning process of ECG signals includes two aspects: feature extraction
and classification. In terms of feature extraction, threshold-based methods [7],
digital filter-based methods [8, 9], Hermite functions [10], Hermite polynomials,
frequency-based features [11], ECG morphology [12], higher order cumulant fea-
tures [13] and statistical features [14, 15] and so on, have been widely used, re-
spectively. Among these methods mentioned above, wavelet transform is a local
transform of space (time) and frequency, which can effectively extract information
from signals. In this paper, wavelet transform is also used to extract QRS features
as input of classifiers.
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Fig. 1 A normal ECG signal and its temporal features of one period.
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Meanwhile, a stable and accurate recognition model is needed for the classi-
fication of ECG signals. As an efficient machine learning algorithm, ELM has
been widely used in identifying classification problems. ELM, a single hidden layer
feedforward neural network proposed by Huang et al. [16], which can randomly gen-
erate input weights and hidden layer deviations, and calculate the output weights
by generalized inverses of hidden neurons. Therefore, ELM shows the advantages
of simple network structure, fast running speed, strong generalization performance
and so on, making up for the shortcomings of the traditional feedforward neural
networks.

In view of the instability of ELM, in recent years, researchers proposed a number
of improvement methods to optimize parameters and improve the overall perfor-
mance of the networks. The reference [17-19] constructed the entire network in the
form of incremental nodes, which could effectively reduce errors. In [20], Xu et al.
proposed the PSO-ELM algorithm to solve some prediction problems. In [21], Han
et al. optimized the parameters using an improved PSO-ELM(IPSO-ELM) with
inertia weight adaptive adjustment. In [22], Zhu et al. introduced a differential
evolution algorithm to adjust the parameters and improve the performance of the
ELM algorithm.

In addition, the ensemble learning can further improve the generalization per-
formance of the neural networks. For example, reference [23] proposed a simple
integration model (GE-ELM), which used genetic algorithm to generate the initial
network, and then integrated the new network structure with special sorting strat-
egy. Reference [24] proposed voting-ELM algorithm to solve EXtensible Markup
Language (XML) document classification. Lan et al. effectively increased the
stability of a single ELM by integrating the output averaging of multiple Online
Sequential Extreme Learning Machines (OS-ELM) [25]. Reference [26] proposed a
selective evolution learning algorithm based on differential evolution (DESE-ELM)
to solve the classification problem.

In order to overcome the shortcomings of ELM, combine PSO optimization
algorithm and integration idea, this paper proposes an integration strategy based
on PSO-ELM for the classification of ECG signals. According to the size of adaptive
value of PSO, we use ordinal to optimize the individual, select M optimal individual
by sorting, generate M independent neural network structures, and obtain the
optimal input weight and hidden layer deviation of the group M ELMs. Finally, by
comparing the actual output with the expected output, the classification accuracy
of different ELMs is calculated with the maximum voting principle. In order to
improve the robustness of the network and reduce the classification error rate, the
proposed approach integrates multiple classifiers, which effectively improves the
classification accuracy of the whole neural network is better than the DESE-ELM
algorithm in stability. In summary, the main advantages of E-PSO-ELM are as
follows:

1) E-PSO-ELM adopts PSO to optimize the randomly generated parameters of
input weights and hidden biases in ELM, which improves the generalization
performance of the network. Moreover, it selects the best ELM for integra-
tion, which further improves the network generalization ability and enhances
the classification accuracy of the model.
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2) Using PSO to optimize ELM parameters, the proposed model is more sta-
ble. In addition, several weak classifiers are integrated into a strong classifier,
which further improves the stability of the model. The comparison experi-
ment with several common algorithms also verifies the above conclusion.

The frame diagram of the proposed method termed as E-PSO-ELM is shown
in Fig. 2.

This paper is organized as follows. In Section 2, ELM and PSO are briefly
introduced. The detailed description of E-PSO-ELM is given in Section 3. Exper-
imental results and analysis are reported in Section 4. A conclusion is drawn in
Section 5.
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Fig. 2 The framework of E-PSO-ELM learning algorithm

2. Related work

In this section, we briefly introduce ELM and PSO algorithms to provide the nec-
essary background knowledge for the E-PSO-ELM in Section 3.

2.1 Extreme Learning Machine

Extreme Learning Machine (ELM) [16] is a single hidden layer feedforward neural
network (SLFN) whose structure is shown in Fig. 3. ELM does not need to update
iteration, but directly generates input weight and hidden layer deviation randomly,
so it has a faster learning speed.

Given N input samples {(z4,%;)};_1, N hidden layer neurons, the ELM learning
algorithm can approximate these N samples with zero error, then, the ELM model
can be formulated as
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where G(-) is the corresponding activation function, w; is the weight vector con-
necting the jth hidden neuron and the input neurons, b; is bias (or impact factor)
of the jth the hidden neuron. The Eq. (1) can also be simplified as

HB=T. (2)
H, 5 and T are respectively
H= : - : .
G(w1'$N+b1) P G('LUN'$N+bN) NxN
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where H is the output matrix of the hidden layer. 3 is the matrix of the output
weights and T is the target matrix of ELM.

By randomly setting the parameters of the hidden layer node, the output matrix
H [27] can uniquely be determined, and the output weight 8 can be obtained by

Eq. (3).
6 = H+T7 (3)

where HT denotes the Moore-Penrose inverse of matrix H.

2.2 Particle swarm optimization

Particle Swarm Optimization (PSO) [28] is a population and heuristic optimiza-
tion algorithm that has been widely used in scientific research and engineering
applications. Next, we briefly introduce the basic flow of PSO.

In an N-dimensional search space, (1) initialize a population of m individ-

uals P = (z1,22,...,%;,... ,a:m)T, where the position and velocity information
of particle 7 in the population are expressed as z; = (71, %i2,...,2in)7, v; =
(Vi1,Vi2, ..., vin) T, i = 1,2,...,m, respectively; (2) then calculate the fitness val-

ues of all particles, find the optimal solution, and update the position information
and velocity information of the current particle according to Eq. (4) and Eq. (5).

269



Neural Network World 4/2020, 265—279
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Fig. 3 The network structure of Extreme Learning Machine.

ottt = wol 4+ e xrand() x (P} — f) +
+co xrand() x g (Pqt — xf]) , (4)
mf“ =zl + vf“, (5)

where rand() is a random number in the interval 0 and 1. w denotes the inertia
weight. ¢ and co are the acceleration constants, which are used to adjust individual
extremum P; and global optimal solution P,. In this paper, the time-varying
acceleration coefficients ¢; and cs are represented the same as the references [29-31],
and their dynamic adjustment formulas are as follows:

(=2) x (Iteration)®
(Max_iteration)® + 2’

C1 —

(6)

2 x (Iteration)®
Co = i N 3 (7)
(Max_iteration)

where Iteration denotes the number of current iterations. Max_iteration stands
for the maximum iteration number of the algorithm.

In order to ensure that the algorithm has higher exploration ability in the initial
stage of iteration, the convergence speed of the algorithm is accelerated in the later
stage of the iteration, and the dynamic inertia weight w is defined as follows:

w(t) = Wmax — lteration X [(Wmax — Wmin) / (max —Iteration)], (8)
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where wpax and wpin are the initial and terminal values of inertia weight in the
iteration process, respectively.

3. Ensemble learning based on ELM and PSO
algorithms

In this part, we propose an ensemble learning strategy based on ELM and PSO
algorithms (PSO-ELM), which is called E-PSO-ELM learning algorithm. Specifi-
cally, we add a selection strategy on the basis of the PSO-ELM algorithm, generate
candidate neural network set, and integrate the target neural network into the can-
didate set.

More specifically, in the PSO-ELM learning algorithm, the input weight and
hidden layer deviation of ELM are taken as the particles in the particle swarm op-
timization algorithm, and the root mean square error (RMSE) of the ELM training
sample shown as Eq. (9) is taken as the adaptive value of the particle. According
to the adaptive value of each particle, the position and velocity of the particles are
updated according to Eq. (4) and Eq. (5). The maximum number of iterations is
selected as the termination condition of the iteration.

I 2
B;G (wi - T+ bl) - tj
1

< 2, ©)

The number of initialization samples is N, the number of hidden layer neurons
is N , and the number of candidate networks is M. The individuals in the last iter-
ation are regarded as potential candidate neural networks, the fitness values of all
individuals are sorted, and the first M individuals are selected as candidate neural
network sets. After the candidate set is substituted into the network for learning,
the classification results of M groups can be obtained through the calculation of M
independent networks. The actual output is compared with the expected output,
the correct result of classification is 1, and the wrong result of classification is 0.
Then the maximum voting principle is adopted to obtain the final classification
result.

According to the statistical analysis, the formula for calculating the accuracy
rate is as follows:

N
2.
j=1

i=

fitness = RMSE =

N
Zi:l nli(max(zyzl noy,.,zyzl nlr))
N 9
where N: the total number of samples; M: the number of integrated neural net-
works. Zi\il no, and Zi\il n1, are the number of wrong classification and correct
classification of the same sample among the M integrated neural networks, re-
spectively. Function max(): if nyil nor > Zivil nyr, returns a value of 0; if

accuracyrate = (10)

M nor < M 0y, returns a value of 1. M ny; is the number of correctly
classified samples.

In order to describe the E-PSO-ELM algorithm more intuitively, the basic pro-
cess is summarized in Algorithm 1.
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Algorithm 1 E-PSO-ELM algorithm.
Randomly initialize the population. Initialize the random velocity and position
of the particle.
Training phase
repeat
The fitness of each particle is calculated according to the fitness function. Then
update the velocity and position of the particle.
until Output the fitness values of all particles for all last iterations.
Ensemble phase
repeat
Sort all fitness values. Select particles for integration.
Build a weak classifier.
{The parameters of the selected particles are substituted into the PSO-ELM network for
training, and several weak classifiers are constructed.}
Calculate actual output.

{Calculate the actual output of the weak classiﬁer.}
Build a strong classifier.
{The output of the weak classifier is voted, and the one with more votes is the final actual
output.}
until Output the actual output.
Calculate the classification accuracy rate.

4. Experiment

4.1 Pre-processing

To test the effectiveness of the proposed algorithm, we perform validation on
MIT-BIH Arrhythmia Database which is the most commonly used and authori-
tative database in the ECG field. The MIT-BIH database consists of 48 dual-lead
ECG records, each containing a large amount of data [32]. Fig. 4 shows an ECG
signal diagram of number 100. It can be seen from Fig. 4 that the MIT database
is dual-lead. The number 1 in the figure represents the normal heart beat, and the
number 28 represents the rhythm change.

Compared with other waveforms, QRS is the largest, most obvious and easiest
to detect. Aiming at the singularity of QRS, the feature extraction is carried out
by integrating wavelet transforms and wavelet coefficients are used as features. The
wavelet coeflicients fully reflect the time-frequency domain changes of the signal.

In order to better extract the QRS features, the original ECG signals are pre-
processed to make it a signal composed of a single wave peak in a single mode.
Secondly, to better detect the QRS position and prevent the missing and wrong
detection of QRS, the adaptive threshold method is adopted. Finally, target car-
diac beats are intercepted to generate the collection of target types of cardiac beats
needed, respectively “normal (N)”, “left bundle branch block (LBBB)”, “right bun-
dle branch block (RBBB)” and “ventricular premature beat (VPB)”. For the fair-
ness of the data, this paper selects 5000 samples from each type of heartbeat as
the model input, as shown in Tab. I.
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Fig. 4 The ECG signal diagram of number 100
Heart beat type Sample number x Characteristic number
Normal(N) 5000 x 250
Left Bundle Branch Block(LBBB) 5000 x 250
Right Bundle Branch Block(RBBB) 5000 x 250
Ventricular Premature beat(VPB) 5000 x 250

Tab. I Sample data of the target cardiac beat.

4.2 Experimental analysis

This paper compares the classification accuracy of ECG signal classification in
terms of ELM, DE-ELM, PSO-ELM, DESE-ELM, E-PSO-ELM, SVM, CNN-ELM
[33], CNN [34], E-SVM [35], respectively. Initial parameters of the PSO-ELM and
the E-PSO-ELM are shown in Tab. II, and initial parameters of the DE-ELM and
the DESE-ELM are shown in Tab. III. In this paper, the parameters of the SVM
learning algorithm for the ECG signal classification are shown in Tab. IV.

The parameter descriptions in Tab. II and Tab. III are as follows, N P: number
of population; iteration: number of iterations; ¢; and cgp: acceleration constants;
w: dynamic inertia weight; wmax: initial value of inertia weight; wmi,: terminal
value of inertia weight; C'R: crossover probability; refresh: mutation strategy;
strategy: crossover strategy; F': scaling factor; T": tolerance.

NP iteration ¢; ¢33 W Wmax Wmin

500 100 2 2 2 0.9 0.5

Tab. IT PSO algorithm parameters for the ECG signal classification.

Fig. 5 shows the variation of the testing classification accuracy of the classifica-
tion problem on MIT-BIH data set with the number of hidden layer neurons. As
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NP iteration CR refresh strategy F T
500 100 0.8 1 3 1 0.02

Tab. III DE algorithm parameters for the ECG signal classification.

Penalty coefficient Gamma

2 1

Tab. IV The SVM parameters for the ECG signal classification.

can be seen, the complexity of the neural networks has a great influence on the
classification accuracy. Therefore, when dealing with different classification prob-
lems, in addition to adjusting the parameters of the classifier for different data sets,
the complexity of the neural networks and the number of hidden neurons should
appropriately be adjusted to improve the generalization performance of the neural
networks model.
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Fig. 5 The relationship between classification accuracy and the number of hidden
layer neurons.

In this experiment, we set the number of hidden layer neurons in the model as
800, the activation function as sigmoid function, the number of iterations as 100
and the number of neural network integration M as 10. When the number of hidden
neurons in the network increased to 900 and 1000, the generalization ability of the
network did not improve, while the training time increased significantly. Therefore,

274



Li W., et al.: The ECG signal classification based on ensemble learning. ..

the number of hidden neurons selected in this paper is 800. Fig. 6 shows the curve of
the number of hidden neurons versus the training time. From Fig. 6, it can be seen
that when the number of hidden neurons is 800, the training time of E-PSO-ELM
is less than that of DESE-ELM.
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Fig. 6 The relationship between time and the number of hidden layer neurons.

In order to eliminate the influence of random initialization, we take the aver-
age of 10 experimental results as the final experimental results, and calculate the
standard deviation as the stability analysis of the model. The experimental results
are shown in Tab. V.

It can be seen from Tab. V that the improved PSO-ELM has improved classifica-
tion accuracy compared with the original PSO-ELM, but the stability of PSO-ELM
is relatively higher. PSO-ELM is the optimal particle adopted as the final input of
the network, while E-PSO-ELM selects 10 individuals which can generate better 10
independent network structures according to the adaptive value of particles. Not
all of these neural network structures are applicable to the classification problem, so
the stability of the final ensemble neural network is relatively poor. For the classifi-
cation of ECG signals, the classification accuracy rate of the E-PSO-ELM algorithm
reaches 0.9823 %, which has good generalization performance. Although the classi-
fication accuracy of the E-PSO-ELM algorithm is lower than that of DESE-ELM,
it can be seen from the comparison of STD in the Tab. V that PSO is better than
DE, and the stability of E-PSO-ELM is better than DESE-ELM. The stability of
the model is high, and the probability of error is small when dealing with actual
problems. In the running time of the algorithms, the E-PSO-ELM algorithm takes
less time than the DESE-ELM algorithm in Fig. 6. Compared with SVM, CNN,
E-SVM and CNN-ELM algorithm, E-PSO-ELM has higher classification accuracy
and better network generalization performance.
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MIT-BIH
Algorithms — .
CPU time(S) TraIHSl’IIl‘%—_)GI“I‘OI‘ TeStISI'l]‘:‘gDerror
ELM 3.3750 0.9901 0.9731
8.1165e-04 0.0025
DE-ELM 1.7686¢-+05 0.9868 0.9761
0.0025 0.0022
PSO-ELM  1.7623¢-+05 0.9909 0.9814
8.24890-04 0.0011
E-PSO-ELM  1.89709¢+05 0.9910 0.9823
7.51960-04  4.8408¢-04
DESE-ELM  1.9849¢-+05 0.9901 0.9889
8.1165¢-04  5.25460-04
SVM 2.077476 - 0.9688
- 0.0021
CNN-ELM - - 0.8833
CNN [34] - - 0.9770
E-SVM [35] - - 0.9440

Tab. V Classification accuracy of different algorithms under MIT-BIH data set.

In a word, the performance comparison shows that E-PSO-ELM can not only
achieve a relatively high classification accuracy rate, but also maintain a strong
stability. Therefore, when dealing with practical problems, E-PSO-ELM has high
practical value.

5. Conclusions

Based on ensemble learning and PSO-ELM learning algorithm, this paper proposes
a new classification recognition algorithm named E-PSO-ELM which has good gen-
eralization ability. The network architecture combines the advantages of PSO-ELM
algorithm and ensemble learning. The neural network structure of the PSO-ELM
is relatively more stable, and the ensemble idea can further improve the generaliza-
tion performance of the network. The simulation results of the proposed algorithm
on the MIT-BIH database are as high as 98.23 %, making it a powerful tool for
ECG signal recognition.
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