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Abstract: Earthquake prediction is an extraordinarily stochastic process. De-
termining the occurrence time, location of epicenter and magnitude of a coming
earthquake in the following month is an extremely difficult task. Nowadays, some
geophysical, statistical and machine learning methods are adopted to predict earth-
quakes, however, for the insufficient medium-large seismic data, their results are
not satisfactory. Due to there is no obvious empirical relationship between seismic-
ity features, magnitude and location of a coming earthquake in a particular time
window, an earthquake prediction approach based on danger theory is proposed in
this paper. It extracts eight indicators calculated from earthquake data for recent
years in Sichuan and surroundings by Gutenberg-Richter(GR) inverse power-law,
and predicts quakes with magnitude lager than 4.5 during the following month by
numerical differential based Dendritic Cell Algorithm (ndDCA). We compare this
approach with six state-of-art earthquake prediction algorithms. Overall our algo-
rithm yields the encouraging results in all the qualified parameters assessed, and it
provides technical support for the application of earthquake prediction.

Key words: danger theory, earthquake prediction, Gutenberg-Richter inverse
power-law, ndDCA

Received: July 4, 2019 DOI: 10.14311/NNW.2020.30.016
Revised and accepted: August 30, 2020

1. Introduction

Earthquake prediction is designed to detect anomalous changes in earthquake in-
dicators and find the relationship between seismic indicators and occurrence of
earthquakes, meanwhile predict the magnitude, location of epicenter, and occur-
rence time of future earthquakes [1]. For impermeability, the rarity of earthquakes
and the complexity of physical processes, earthquake magnitude is difficult to pre-
dict, and then resulting in vast loss of life and property. Many scholars of geology,
mathematics and computer have proposed various methods for earthquake predic-
tion. However, due to the differences of region, earthquake frequency and quantity,

∗Wen Zhou; Yiwen Liang – Corresponding author; Zhe Ming; School of Computer Science of
Wuhan University, Bayi road 299, Wuchang district, Wuhan city, Hubei province, China, E-mail:
zw_mmwh@163.com, ywliang@whu.edu.cn, mzh116@126.com

†Hongbin Dong; School of Cyber Science and Engineering of Wuhan University, Bayi road 299,
Wuchang district, Wuhan city, Hubei province, China, E-mail: hbdong@whu.edu.cn

©CTU FTS 2020 231

mailto:zw_mmwh@163.com
mailto:ywliang@whu.edu.cn
mailto:mzh116@126.com
mailto:hbdong@whu.edu.cn


Neural Network World 4/2020, 231–247

the specificity of prediction methods and insufficient medium-large seismic data,
these methods have poor performance.

The Sichuan province of China is one of the most seismically active cities,
with more than 200 earthquakes with magnitude greater than 3 occurring per
year. The most recent major earthquakes include the 2008 Wenchuan earthquake,
2013 Ya’an earthquake and 2017 Jiuzhaigou earthquake [2]. The plate movement
results in seismic activity of Sichuan, and it locates at Longmenshan fault zone
which is formed by the active motion of India plate to Eurasian plate. Since the
Sichuan province’s special geological structure, earthquake prediction of Sichuan
and surroundings may be a problem worth studying.

With the development of intelligent technology, seismologists begin to intro-
duce intelligent methods to build earthquake prediction models, Shi and Liu [3]
were pioneers in introducing neural network into earthquake prediction, and the
relationship between magnitude and epicentral intensity of an earthquake is es-
tablished in the paper, nevertheless, the method has poor performance. In 2015,
Asencio-Cortés et al. [4] adopted the Principal Component Analysis (PCA) for
data dimensionality reduction and new datasets generated, so as to generalize the
exist prediction model, however, the difference in geological structure hinders its
universality. In [5], an expert system was proposed for earthquake prediction based
on historical seismic events. Panakkat and Adeli [6] conducted a large number of
reviews in earthquake prediction in the past 15 years, and divided the existing
methods into two categories: (1) researches on the seismic precursors analysis; (2)
researches based on analyzing historical seismic data. In 2018, DeVries et al. [7]
introduced a deep learning scheme to discern criteria for predicting the location of
aftershocks based on static stress. Jia et al. [8] adopted Information Entropy Prin-
ciple (IEP) to predict mine earthquake. However, due to the insufficient medium-
large seismic data, these methods have poor performance, for example, the neural
network and deep learning approaches require more training sets, otherwise, the
prediction results will be unsatisfactory.

In an earthquake prediction system, various anomalies will appear at different
levels when the system enters an anomalous status, and this process is similar
to human immune system. The danger theory is a method that distinguishes
danger from non-danger, it does not require training process, and is skilled in
finding anomalies through indicator changes. Hence, it can be used to predict
earthquake which is a task that lacking large and medium earthquake data [9]. In
[10] and [11], Dendritic Cell Algorithm (DCA) inspired approaches were introduced
to predict earthquakes. However, the signals extraction process in these methods
depended on artificial experiments, which influences the performance of DCA in
earthquake prediction. In [12], the concept of numerical differentiation based DCA
was proposed and implemented to four UCI datasets. However, since the first-order
numerical differentiation is used to directly calculate changes, the normal changes
will also be extracted as danger signal in [12], which may affect the performance
of DCA. Therefore, we present a second-order numerical differentiation approach
to extract signals of DCA, and then, the new version of ndDCA is adopted to do
earthquake prediction in Sichuan and surroundings in our research. In the first
place, the earthquake indicator system is collected from different level of features
in seismic silence and activity period. Moreover, the earthquake indicators are
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converted into the input signals in ndDCA through numerical differentiation. In
the end, we predict whether there will be an earthquake with a magnitude higher
than 4.5 in Sichuan and surroundings during the following month.

The experiment in the paper is consistent with the earthquake prediction con-
ditions proposed by Allen [13]: (1) a definite location (Sichuan and surroundings),
(2) a definite time span (the flowing month), (3) a definite range of magnitude
(M ≥ 4.5). The problems are modeled using seven different algorithms: nd-
DCA, DCA [10], k-Nearest Neighbor (KNN), Haskell based deterministic DCA
(hDCA) [11], Negative Selection Algorithm (NSA) [14], Back Propagation Neural
Network (BPNN) [15] and Support Vector Machine (SVM). The performance of
these algorithms are evaluated by various machine learning and earthquake pre-
diction evaluation indicators [16], and the results depict that our approach yields
better prediction accuracies.

The main contributions of our study are described as below:

• We present an architecture that combines a numerical differentiation for sig-
nal extraction with DCA that performs anomaly detection, then, it is imple-
mented to earthquake prediction.

• When the first-order numerical differentiation is adopted to directly calculate
changes, the normal changes will also be extracted as danger signal in [12],
which may affect the performance of DCA. Therefore, we present a second-
order numerical differentiation to extract signals of DCA.

• The seismic data for recent years in Sichuan and surroundings are chosen to
extract eight indicators by Gutenberg-Ritcher inverse power-law and seismic
magnitude distribution for earthquake prediction.

• We apply ndDCA to earthquake prediction, as far as the author knows, it has
not been implemented to do earthquake magnitudes prediction. Overall our
algorithm yields the encouraging results in all qualified parameters assessed,
and it provides technical support for the application of earthquake prediction.

The remainder of the paper is arranged as follows. The latest and most related
work of earthquake magnitude prediction and DCA are summarized in Section 2.
Section 3 outlines the proposed approach to implement earthquake magnitude pre-
diction. The data preprocess and prediction verification methods are demonstrated
in Section 4. Section 5 addresses the experimental results and analysis. Section 6
describes the conclusions and future work.

2. Related work

The artificial intelligence inspired earthquake prediction methods mainly depend
on historical seismic catalog or time series earthquake indicators, so as to estab-
lish learning model to predict a future earthquake. In 2007, the artificial neural
network was used to predict earthquakes in southern California [17]. In 2007, a
multilayer perceptron neural network was introduced to predict earthquakes based
on the total electron content time series, and it can detect changes in ionospheric
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variables that are considered as earthquake precursors [18]. The earthquake mag-
nitude was predicted by adaptive neuro-fuzzy model using fuzzy subtractive clus-
tering [19]. An adaptive neuro-fuzzy inference system was proposed for earthquake
magnitude prediction in Iran [20]. The regression algorithm and cloud-based big
data infrastructure were used for earthquake prediction in California within the
next 7 days [21]. In 2017, the imbalanced classifiers and ensemble learning were
used to do large earthquake magnitude prediction in Chile [22]. In 2015, for the
expert system can provide the characteristics of flexible and effective solutions to
different problems, the association rules were used for historical seismic data pro-
cessing, and the expert systems based on association rules were applied to forecast
the earthquake probability over the next 12 hours [5]. Huang et al. [23] proposed
a deep learning approach to predict continuous earthquake. For current neural
networks are prone to local minimum problems during the training phase, some
scholars use optimization algorithms such as genetic algorithms to optimize neural
networks [6, 21,22].

Since Sichuan is an earthquake-prone area, scholars have also been involved in
the study of Sichuan earthquake. A ground temperature sensor that implemented
in the detection of earthquake precursors was designed by Wang et al. [24]. The
Kohonen neural network was adopted to do distribution of aftershock prediction,
and implemented to 2008 Sichuan earthquake [25]. In [14], a negative selection
algorithm was proposed for earthquake prediction to reduce the impact of lacking
large earthquake data on the training performance.

When danger theory is applied to the field of data mining, the study of danger
and non-danger discrimination is closely bound up with concentration of indica-
tors. In most data mining systems, it is important to define and measure the
correspondence between indicators and danger theory signals. According to status
transition process of dendritic cells in dangerous patterns, Greensmith [26] pro-
posed DCA and implemented it to anomaly detection, SYN scanning, intrusion
detection and internet of things security. DCA belongs to the category of innate
immune algorithm, without the need of pattern matching and dynamic learning,
the current researches focus on the optimization of DCA signal acquisition process
and its application. Chelly and Elouedi [27] have summarized that the DCA data
preprocessing methods including advantages and disadvantages of different versions
of DCA and their application areas. This research team uses rough set theory as
a data preprocess method of DCA and applies it to solve the problem of binary
classification. The DCA is used to do spam detection in [28], and it is also applied
to load balancing in cloud computing in [29]. Since DCA does not require a train-
ing process when performing anomaly detection, it can solve the problem that the
artificial neural network requires a large number of training sets. Therefore, Gan
et al. [10] introduced the DCA to predict an earthquake of magnitude greater than
4.5 in Sichuan next month. In [11], a Haskell based deterministic DCA is proposed
to do earthquake prediction of Sichuan and surroundings with magnitude greater
than 4.5 in the next month. In [12], since the changes described by numerical
differential can better reflect the signal generation process in danger theory, it is
recommended to do signal mapping for DCA, and then the proposed ndDCA was
implemented to classify standard UCI Wisconsin breast cancer dataset.
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Generally speaking, an earthquake prediction method includes three steps: ac-
quisition of seismic activity indicators, establishment of prediction models, and
evaluation of prediction results. Nevertheless, since the medium and large earth-
quake data is insufficient, the prediction accuracies are not ideal. Danger theory
is an adaptive dynamic intelligent approach to do anomaly detection without was
implemented data. According to a large number of research activities in the last
decade, as far as the authors know, the ndDCA has not been used to predict earth-
quakes. Hence, this paper uses ndDCA to predict earthquakes in Sichuan and
surroundings.

3. Methodology

An earthquake prediction model based on ndDCA (EQP-ndDCA) is outlined in
this section, which transforms earthquake prediction into a binary classification
problem based on machine learning approaches.

3.1 Seismic indicators

The proposed earthquake prediction method is according to GR law and earth-
quake magnitude distribution [30]. This paper uses eight earthquake indicators to
predict earthquake, the indicator matrix F is depicted as Eq. (1), and the Tab. I
shows the indicators computed from catalogs for earthquake prediction, where Ms

is earthquake magnitude threshold, in this paper, it is set to 4.5.

F = {b, η,4M,T, µ, c,dE1/2,Mmean}. (1)

Feature Description

b The b value in GR law
η Sum of mean value of regression curve according to GR law
∆M Difference between the largest observed value and the largest ex-

pected value according to the GR law
T Elapsed time of the most recent N events with magnitude ≥ Ms

µ Average time among the characteristic events
c Variation coefficient in mean time between characteristic events

(µ)
dE1/2 Square root rate of the released seismic energy
Mmean Mean Richter magnitude of the most recent N events

Tab. I The indicators computed from catalogs for earthquake prediction.

The calculation methods of the eight indicators are shown in Tab. II [15, 31],
where a refers to the cumulative frequency of earthquakes above zero, N is the
number of seismic event, tn denotes the occurrence time of the nth seismic event
(t1 shows the occurrence time of the first seismic event), M denotes Richter magni-
tude, n is the total number of earthquake events, ticharacteristic denotes the observed
elapsed time between characteristic events (Mi), and ncharacteristic is the total num-
ber of characteristic events.
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Attribute Calculation

b (nΣ(Mi logNi)− ΣMi(ΣlogNi))/((ΣMi)
2 − nΣMi

2)

η (Σ(log10Ni − (a− bMi)
2
))/(n− 1)

a = Σ(log10Ni + bMi)/n
∆M Mmax,observed −Mmax,expected

T tn − t1
µ Σ(ticharacteristic)/ncharacteristic
c standard deviation of the observed times /u

dE1/2 E = 1011.8+1.5Mergs
dE1/2 = ΣE1/2/T

Mmean ΣMi/n

Tab. II Calculation method of the earthquake indicators.

3.2 Overall prediction procedure

Fig. 1 shows the process diagram of EQP-ndDCA. Firstly, Sichuan (China) and
surroundings are chosen as experimental data (red circle), which is acquired from
the earthquake catalog of China Earthquake Network Center (CENC), and it pro-
vides historical seismic data for the proposed EQP-ndDCA. As can be seen from
Fig. 1, the historical seismic data includes five features: event, data time, latitude,
longitude and magnitude, and each data is denoted as E = {e1, . . . , ei, . . . , em}.
Then, the GR law is adopted to calculate seismic indicator matrix F , which is de-
scribed in Section 3.1, four indicators are according to GR law (blue rectangle), and
others are not related to the assumed temporal distribution of earthquake magni-
tude (pink rectangle). The class C for each event is denoted as C = {0, 1}, and it is
defined as Eq. (2) according to [31], where C is equal to 1 if the largest magnitude
of an event occurring within the prediction range is greater than or equal to Ms,
otherwise C = 0. Ω is the event number that occurred in the catalog within the
prediction range. According to [15], since the prediction horizon is related to the
calculation of seismicity indicators, the prediction horizon is set as one month. To
evaluate the seismic indicators for a specific event ei, the previous N events are cal-
culated, and the N is set to 100 [15]. In this paper, the proposed EQP-ndDCA has
been compared to six state-of-art approaches: DCA, hDCA, NSA, SVM, KNN and
BPNN, and some statistical indicators are introduced to evaluate the performance
of these algorithms.

Ci =

{
1 if max{Mj : i < j < i+ Ω} ≥Ms,
0 otherwise.

(2)

3.3 Danger theory based earthquake prediction model

The DCA is a danger theory inspired algorithm. Immature DC is to deal with the
collection of antigens in tissue, pathogen associated molecular pattern (PAMP),
safe signal (SS), danger signal (DS) and inflammatory cytokines (IC), and then
the concentrations of costimulatory molecules (CSM), semi-mature dendritic cy-
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Fig. 1 The program diagram of the proposed earthquake prediction approach.

tokines (semi), and mature dendritic cytokines (mature) are exported after antigen
presentation (signal fusion) [26]. The status transformation of DC is according
to CSM value and migration condition. The DC will migrate when CSM concen-
tration satisfies the migration condition, and the DC context is estimated. The
antigen is labeled as ‘mature’ when mature cytokines concentration is higher than
semi-mature cytokines concentration. The mature context indicates ‘danger’, and
semi-mature context indicates ‘safe’. DC context determines safe or danger sta-
tus of all antigens which are presented by the DC. For each antigen, the times it
has presented in ‘mature’ or ‘semi-mature’ context can be used to decide whether
the antigen is normal or anomalous, and this value is defined as mature context
antigen value (MCAV). A higher MCAV represents that the antigen is anomalous,
whereas the antigen is safe, and the anomalous threshold is usually determined by
the application environment. For the signal acquisition of the original DCA does
not realize the dynamics of DC, the ndDCA is proposed to realize the purpose
of signals acquisition dynamically [12]. Fig. 2 describes the architecture of the

Fig. 2 The proposed EQP-ndDCA architecture for earthquake magnitude predic-
tion.
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ndDCA model, which is used to predict earthquakes of magnitude greater than
or equal to Ms that will occur in the next month. The proposed model involves
four phases, signal collection, DC status detection, antigen context evaluation and
classification.

(1) Signal collection The core of DCA application is signals collection, and it is
various for different application environment. In 2010, packet loss rate, TCP reset
packet per second and other four characteristics are selected as indicators [32]. The
number of packets per second and packet conversion rate per second are used as
DCA signals [33]. In this paper, the indicators described in Tab. I are selected
as signal source of ndDCA, and these indicators will be mapped to PAMP, DS,
SS and IC signals by the second-order numerical differentiation on the basis of
the method ndDCA. DS denotes high possibility of earthquake occurring. PAMP
indicates that there are abnormal indicators and earthquake activity is strong. SS
indicates that the probability of normal is relatively high, namely earthquake activ-
ity is weak. IC is to amplify other signals. The first-order numerical differentiation
represents the change between discrete data [12], and the second-order numeri-
cal differentiation introduced in this paper is based on the first-order numerical
differentiation. If only the first-order numerical differentiation is used to directly
calculate the change, the normal change will also be extracted as a danger signal.
Therefore, it is necessary to introduce the second-order numerical differentiation
to distinguish whether the change represented by the first-order numerical differ-
entiation is anomalous, as the basis for signal extraction. Suppose the indicator set
is defined as I = {x1, . . . , xi, . . . , xn}, the first-order and second-order numerical
differentiation are described as Eq. (3) and (4), respectively, where t is the unit of
equidistance between discrete data points, that is, t = xi+1−xi, which is expressed
as a time unit in this paper.

f ′(xi) ≈
f(xi+1)− f(xi−1)

2t
, (3)

f ′′(xi) ≈
f(xi+1)− 2f(xi) + f(xi−1)

t2
. (4)

The variation coefficient of first-order and second-order numerical differentiation
of indicators are expressed as Eq. (5) and (6), respectively, where m is the number
of data instance, and it normalizes each dimension to compare the dispersion degree
of each indicator. In this paper, it serves as an indicator for judging whether the
change is anomalous.

fondi =
1
m

∑m
j=1(f ′j(xi)− 1

m

∑m
j=1 f

′
j(xi))

2

1
m

∑m
j=1 f

′
j(xi)

, (5)

sondi =
1
m

∑m
j=1(f ′′j (xi)− 1

m

∑m
j=1 f

′′
j (xi))

2

1
m

∑m
j=1 f

′′
j (xi)

. (6)

When the variation coefficient of the second-order numerical differential is
greater than a danger threshold α, it indicates that the first-order numerical differ-
ential is an anomalous change and may be dangerous. Then, the indicator with the
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largest variation coefficient of the first-order numerical differential is extracted as
a danger signal, the safe signal is 0, the PAMP is the variation coefficient of other
indicators, IC is the sum of the variation coefficient of all indicator values; on the
contrary, the first-order numerical differentiation is a normal change, and the indi-
cator with the largest variation coefficient of the first-order numerical differential
is extracted as a safe signal, the danger signal is 0, the PAMP is the variation coef-
ficient of other indicators, IC is the sum of the variation coefficient of all indicator
values. The extraction method of each signal of a single data instance is shown in
Eq. (7).

dsi = max(fondi), ssi = 0, pampi =
∑n

i=1 fondi −max(fondi),
ici =

∑n
i=1 fondi, if sondi > α,

dsi = 0, ssi = max(fondi), pampi =
∑n

i=1 fondi −max(fondi),
ici =

∑n
i=1 fondi, otherwise.

(7)

(2) DC status detection DC is used to collect antigens in tissue, and the output
CSM, SEMI and MAT signals are calculated using a weighted average formula as
Eq. (8). The WP , WS , WD denote weight values of input signals, respectively. The
CP , CS , CD and IC are input PAMP, SS, DS and IC, and the signal weight values
are shown as Tab. III [26].

C[CSM, SEMI, MAT] = ((WP ∗ CP ) + (WS ∗ CS) +WD ∗ CD)/

(|WP |+ |WS |+ |WD|) ∗ ((1 + IC)/2). (8)

PAMP DS SS

CSM 2 1 2
SEMI 0 0 -3
MAT 2 1 -2

Tab. III Signal weight values.

The concentrations of CSM, SEMI, MAT are calculated by antigens and signals
in the antigen poll which are sampled by DC randomly. If CSM concentration is
larger than the predefined migration threshold, the DC begins to migrate.

(3) Antigen context assessment For a DC, while its accumulated semi value
is higher than accumulated mature value, it is in a semi-mature context and vice
versa. Then, for each antigen, the times it has presented by a ‘mature’ or ‘semi-
mature’ DC can be used to decide whether the antigen is normal or anomalous.

(4) Classification The antigens presented by a semi-mature DC are labeled as
normal, otherwise they are anomalous. Then, we calculate the normal number
and anomalous number of each antigen, and assess the abnormality of the antigen
through MCAV.
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MCAV is used to assess antigen environment, as shown in Eq. (9), where Am is
the number of mature antigen, and As is immature antigen number. The antigen
is anomalous when the MCAV is larger than the anomalous threshold, and vice
versa. The closer the MCAV value is to 1, the higher antigenic abnormality and
the threshold is determined by experimental data.

MCAV = Am/(Am +As). (9)

The earthquake prediction model by ndDCA is described as Algorithm 1.

Algorithm 1 ndDCA.

Input: antigens and signals.
Initialize: DC poll = 100, Antigen poll = 10.
Output: antigen context vectors.
for each antigen poll do

ICs, PAMPs, SSs, DSs calculation by Eq. (7);
end for
for each DC do

antigen acquisition;
concentration calculation by Eq. (8) and Tab. III;
if CCSM > migration threshold then

antigen acquisition;
end if
for the DC do

if SEMI > MAT then
DCContext = SEMI;

else
DCContext = MAT;

end if
end for

end for
for each antigen do

if MCAV > anomaly threshold then
antigen = anomalous;

else
antigen = normal;

end if
end for

Danger theory is an adaptive and dynamic intelligent approach to do anomaly
detection. The earthquake prediction system and the human immune system are
similar in complexity, so this paper uses the danger theory to construct a bionic
system for earthquake prediction. We uses the ndDCA which is inspired from dan-
ger theory to predict whether an earthquake equal to or greater than 4.5 magnitude
will occur in Sichuan and surroundings during the next month. By collecting his-
torical earthquake data in Sichuan and surroundings, the decisive characteristics of
earthquakes are collected as an indicator system. Then, the mapping of character-
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istic vector PAMP, SS, DS and IC signals are established, and the weight matrix
of ndDCA is defined, finally, we use ndDCA to do earthquake prediction.

3.4 Model parameters

The EQP-ndDCA has been compared to three artificial immune algorithms: DCA,
hDCA, NSA, and three state-of-art machine learning methods: BPNN, SVM and
KNN. The proposed approach, DCA and hDCA use PCA as the signal extraction
method. In DCA inspired algorithms, DC poll number is 100, and the anomalous
threshold is set as a random number between 0 and 1. The danger threshold α in
our EQP-ndDCA is set to 0.5. In NSA, the detector radius is set to 0.2. In KNN, k
is 1, the Euclidean distance and linear search of neighbors are adopted. The SVM
employs a sequential minimal optimization method. The complexity parameter is
1 and it uses a polynomial kernel of exponent 1. The BPNN includes three layers,
therein, the learning rate is set to 0.0003, the number of training epochs is 100,
and the standard gradient descent is used as weight learning method.

4. Example applications

4.1 Data preprocess

The seismic information of Sichuan and surroundings is intercepted from January
1, 1990 to February 28, 2020. In our research, we select 12,306 samples with
the magnitude higher than 3.0 for experiments. Each data instance contains a
list of records: time of earthquake, epicentral location, depth and Richter scale.
The purpose of data preprocessing is to map these data to earthquake indicators
according to GR law, earthquake magnitude distribution and the recent related
researches.

In this paper, Yunnan, Gansu, Sichuan, Qinghai are denoted by DS1, DS2, DS3
and DS4, respectively. The first column of Tab. IV describes the symbol of each
earthquake zone. The second to third columns show the date of experiment data.
The column Total numbers indicates the events number of experiment instance.
The column Number +/− shows the number of positive and negative events in ex-
periment dataset. The positive and negative criteria is defined in Eq. (2) with Ms

= 4.5. Finally, column Mean depicts the average magnitude of each dataset, mean-
while, column SD describes the standard deviation of magnitudes of all datasets.

DS Date begin Date end Total numbers Number+/− Mean SD

DS1 19900116 20200228 3439 176/3263 3.47 0.49
DS2 19900214 20191231 1170 68/1102 3.51 0.50
DS3 19900109 20200225 5573 292/5281 3.52 0.49
DS4 19900114 20191231 2124 221/1903 3.67 0.61

Tab. IV Analysis of the four datasets.
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According to the calculation process of earthquake indicators in Tab. II, the
eight seismicity indicators are calculated, and the N is set to 100, the initially
magnitude threshold is set to 3.0 [31]. The eight indicators and the labels (Ms =
4.5) of Sichuan province are presented in Tab. V.

Date b η ∆M T µ c dE1/2(×1010ergs) Mmean C

201710 0.80 0.002 −0.31 271 21 1.38 0.019 3.47 0
201505 0.87 0.006 0.62 175 18 0.73 0.033 3.401 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201009 1.05 0.005 −0.24 99 11 0.67 0.036 3.39 1
200805 0.80 0.004 −0.02 3 0 0 3.955 3.907 0

.

Tab. V Partial earthquake data of Sichuan province after preprocess.

For the corresponding relationship between seismic indicators and PAMP, DS,
SS and IC signal, the signal vectors {PAMP, DS, SS, IC} of DS1, DS2, DS3 and
DS4 are calculated by the first-order numerical differential and the second-order
numerical differential. The partial signals of Sichuan province (DS3) are shown in
Tab. IV.

ID DS PAMP SS IC

3 0.0087 0.2933 0 1
4 0.0045 0.1145 0 0.90

. . . . . . . . . . . . . . .
45 0 0.0121 0.0042 1
46 0 0.0378 0.0012 0.83

Tab. VI Partial signals of Sichuan province (DS3).

4.2 Prediction verification

The performance of the seven earthquake magnitude prediction models are com-
pared by various statistical indicators: R score (R), negative prediction value
(NPV), recall (Rn), specificity (S), predictive positive value (PPV), false accep-
tance rate (FAR), Matthews Correlation Coefficient (MCC), Area Under Curve
(AUC). In addition, the average of PPV, NPV, recall and S, named Avg is calcu-
lated to provide overall quality measures. Including, the meaning and calculation
methods of each seismic evaluation indicators refer to the literature [15].

5. Experimental results and analysis

This section demonstrates the results of four earthquake regions based on the eval-
uation indicators of each earthquake prediction experiment. The experimental

242



Wen Zhou, et al.: Earthquake prediction model based on danger theory in. . .

results of each area will be analyzed separately. Tab. VII, VIII, IX and X respec-
tively refer to the statistical analysis of experiment in the four areas, and Fig. 3 is
a comprehensive analysis of the experimental results.

EQP -ndDCA DCA hDCA NSA SVM KNN BPNN

PPV 0.73 0.49 0.32 0.23 0.11 0.11 0.54
NPV 0.88 0.78 0.74 0.62 0.64 0.64 0.69
Rn 0.90 0.76 0.70 0.59 0.10 0.10 0.35
S 0.70 0.53 0.37 0.32 0.10 0.10 0.15

FAR 0.22 0.25 0.26 0.38 0.46 0.46 0.37
MCC 0.31 0.18 0.06 0.12 0.10 0.10 0.23
AUC 0.73 0.60 0.53 0.41 0.56 0.56 0.61
Avg 0.80 0.64 0.53 0.44 0.24 0.24 0.43
R 0.78 0.57 0.44 0.33 0.36 0.36 0.02

Tab. VII Comparison of experimental results in DS1.

EQP -ndDCA DCA hDCA NSA SVM KNN BPNN

PPV 0.79 0.47 0.61 0.57 0.27 0.00 0.67
NPV 0.92 0.82 0.78 0.53 0.73 0.83 0.96
Rn 0.92 0.50 0.71 0.61 0.81 0.00 0.67
S 0.81 0.52 0.65 0.49 0.76 0.00 0.04

FAR 0.02 0.18 0.10 0.31 0.27 0.17 0.04
MCC 0.01 −0.01 0.66 0.43 0.21 0.00 0.63
AUC 0.90 0.46 0.79 0.47 0.45 0.46 0.82
Avg 0.86 0.58 0.69 0.55 0.64 0.20 0.59
R 0.93 0.32 0.87 0.53 0.67 −0.17 0.63

Tab. VIII Comparison of experimental results in DS2.

Referring to DS1 (see Tab. VII), we can find that for the R score, the EQP-
ndDCA is the highest among the seven classifiers, followed by DCA. The highest
AUC of EQP-ndDCA indicates that it is the best classification algorithm for DS1.
Meanwhile, the MCC has obvious advantages compared with NSA, hDCA, SVM,
KNN and BPNN, which also shows that the compared methods are not suitable
for this dataset.

The experimental results in Tab. VIII show that the proposed approach has
the highest R score, and it is a very satisfactory evaluation indicator in a seismic
prediction system. Meanwhile, the evaluation indicators of hDCA are also not bad.
However, the R score of KNN is −0.17, which depicts that it is not suitable for the
dataset.

Tab. IX demonstrates the experimental results of DS3, from which it can be
seen that the R score and Avg of the proposed algorithm provide better results.
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EQP -ndDCA DCA hDCA NSA SVM KNN BPNN

PPV 0.73 0.33 0.46 0.31 0.00 0.00 0.56
NPV 0.87 0.78 0.83 0.43 0.76 0.24 0.90
Rn 0.75 0.24 0.86 0.47 0.00 0.00 0.50
S 0.69 0.15 0.63 0.51 0.00 0.00 0.08

FAR 0.16 0.22 0.12 0.33 0.24 1.00 0.10
MCC 0.59 0.10 0.46 0.56 0.00 0.00 0.44
AUC 0.69 0.62 0.71 0.53 0.59 0.59 0.71
Avg 0.76 0.38 0.70 0.43 0.19 0.56 0.51
R 0.85 0.01 0.73 0.43 −0.24 −1.00 0.40

Tab. IX Comparison of experimental results in DS3.

For SVM and KNN, neither of them passed any true positive, but also do not find
any false positive, namely, all the data are labeled as positive, therefore, the result
cannot be considered.

The experimental results in Tab. X depicts that the MCC difference between
EQP-ndDCA and the compared approaches is obvious, producing a difference
greater than 0.13 units with the sub-optimal classifier (hDCA). However, the R
scores of EQP-ndDCA and BPNN are the same, which indicates that BPNN is
also suitable for predicting earthquakes in DS4.

EQP -ndDCA DCA hDCA NSA SVM KNN BPNN

PPV 0.91 0.43 0.83 0.53 0.34 0.00 0.78
NPV 0.89 0.52 0.78 0.61 0.53 0.63 0.79
Rn 0.88 0.48 0.81 0.49 0.69 0.00 0.95
S 0.75 0.59 0.75 0.57 0.80 0.00 0.89

FAR 0.01 0.31 0.10 0.33 0.47 0.37 0.90
MCC 0.76 0.09 0.63 0.41 −0.12 0.00 0.62
AUC 0.87 0.56 0.83 0.43 0.42 0.48 0.59
Avg 0.86 0.51 0.79 0.55 0.59 0.16 0.85
R 0.92 0.48 0.83 0.33 0.22 −0.37 0.92

Tab. X Comparison of experimental results in DS4.

Through the combination analysis of Tab. VII–X, we can find that for most
datasets, EQP-ndDCA has the highest R score and Avg value, therefore, we can
conclude that EQP-ndDCA is the most suitable classifier for these datasets. Nev-
ertheless, since almost all forecasts have too much true positive, we still have a
lot of work to be improved. Since Avg is a comprehensive manifestation of PPV,
NPV, Rn and S, our paper concludes by observing the Avg of datasets DS1-DS4
in Fig. 3, and it shows that the Avg of EQP-ndDCA are better. The second best
algorithm is hDCA, but the result has high variability, making this algorithm an
unstable method, and may not be an estimated method for future work. In the
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Fig. 3 The Avg between EQP-ndDCA and other algorithms.

end, the methods with worst results are SVM and KNN, which have an average
accuracy less than 50 %.

From Tab. VII–X and Fig. 3, we can find that the performance of EQP-ndDCA
in dataset DS2 and DS4 are better than DS1 and DS3, the reason is that the
standard deviation of magnitudes of DS2 and DS4 are higher than that of DS1 and
DS3, which can be easily find in Tab. IV, and it makes numerical differentiation
has better results in signal extraction, so as to improve the prediction accuracies
of EQP-ndDCA.

6. Conclusion and future work

Since the influence of many variables in earthquake magnitude prediction has not
been fully understood, it is also a very complicated problem. To the best of au-
thor’s knowledge, the danger theory inspired ndDCA has not been introduced to
do earthquake prediction although it is an efficacious classification method in com-
puter safety, image recognition, and etc.

In our study, the ndDCA in the danger theory is firstly adopted to do earthquake
prediction, and the earthquake indicators are acquired by GR law and earthquake
magnitude distribution. For danger theory has characteristics of dynamic, and
requires no training samples, which guarantee the optimization of the danger theory
model and make it suitable to predict earthquakes.

The 12306 samples with a magnitude greater than 3.0 in Sichuan and sur-
roundings are selected as experimental dataset, according to the experiments in
DS1, DS2, DS3 and DS4, since the most R score and Avg values for EQP-ndDCA
are better than that for other compared algorithms, we conclude that the proposed
approach has the best prediction accuracy compared to the other six machine
learning algorithms: DCA, hDCA, NSA, BPNN, KNN and SVM. Nevertheless,
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the proposed EQP-ndDCA has a lack of self-adaptive characteristics. Regarding
the impact of seismic indicators on the EQP-ndDCA, the future work is to start
from this point.
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