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Abstract: Radial basis function (RBF) has been extensively applied for surface
reconstruction from scattered 3D point data due to its strong ability of approx-
imation. However, additional information, such as off-surface points, are usually
required to be appended into constraints for determining the parameters, which
apparently increases the computation cost and data unreliability. To avoid adding
additional off surface point constraints, a novel surface reconstruction approach
based on local coordinate system transform and partition of unity is proposed in
this paper. Firstly, the explicit RBF functions are constructed to approximate the
local surface patches, and then it is transformed into an equivalent implicit surface
reconstruction form by local system coordinate transformation. Compared with the
local implicit surface approximation, the proposed local explicit surface approxima-
tion method is capable of avoiding trivial solution occurred in RBF approximating,
and does not increase the scale of data solution. A number of comparison exper-
iments of the proposed method with the traditional RBF-based method and the
multi-level partition of unity (MPU) method are carried out on some kinds of large
dataset, non-uniformity dataset, noisy dataset. The experimental results illustrate
that the proposed method is robust and effective in dealing with large-scale point
clouds surface reconstruction.
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1. Introduction

Along with the quick development of 3D scan technology, millions of contour points
on the surface of object can be obtained. These points are often used to reconstruct
the watertight surface in the areas of geometry processing, scientific visualization,
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and their applications [6,9,14,17,23]. In the last two decades, surface reconstruction
has become one of the most significant topics in computer graphics, and substantial
numbers of techniques have been developed. But it is still a challenging task for
the people to build a desired surface. The main reason is that the obtained data
are usually huge, non-uniform, full of noises, and even with some holes due to the
inaccessibility of scan. Generally, a desirable method for surface reconstruction
should include a good reconstruction accuracy, a fast reconstruction speed, a low
memory cost, and a good faith to some points with the low quality as mentioned
above.

According to the representation of the reconstructed surface, the existing meth-
ods for surface reconstruction are mainly classified into two categories: explicit
method and implicit method. The explicit method aims to find an explicit contin-
uous function to interpolate or approximate those scanned points [8,25], while the
implicit method seeks to build an implicit continuous function whose zero-set is the
reconstructed surface to interpolate or approximate those points [5]. Specifically,
let P = {pi}Ni=1 ⊆ R3 be the set of scanned points associated with their correspond-
ing unit normal vectors N = {ni}Ni=1 ⊆ R3, where N forecasts the orientation of
the target surface S and it can be directly obtained by some scanner device or
estimated with principle component analysis (PCA) or the local least-square fit-
ting. Then the traditional explicit methods interpolate or approximate the target
surface S by means of a continuous bivariate function or a series of simple paramet-
ric surfaces, while the implicit methods aim at constructing a continuous function
f : R3 → R such that its zero-set {p ∈ R3 : f(p) = 0} can approximate the target
surface S.

Due to the complexity and closure of the surface used for representing ob-
ject, the implicit method can obviously construct a closer surface than the explicit
method does. However, the existing implicit methods usually need to be appended
with some additional constrains such as adding off-surface points to help deter-
mine the parameters, which increases the memory cost, computational complexity
and data noises dramatically. Hermite implicit method replaces the off-surface
points with the normal vectors’ approximators in the additional constraint equa-
tions [16, 22], so its computational complexity sometimes is still unacceptable for
the large dataset. Therefore, a natural question is: Is there any implicit method
that does not need off-surface points and has a satisfied computational complexity?
This paper gives an affirmative answer for this question.

In this paper, we will propose a novel implicit method for the 3D surface recon-
struction without adding other additional constrains by using the local coordinate
system transform. First, similar to the traditional local RBF-based method, we
partition the large data domain into some small subdomains. It is noted that
we need ensure that each local surface sheet has an explicit expression in some
new coordinate system. Then in order to avoid adding additional constraints and
determine the parameters in the traditional local RBF-based method, we get a
non-homogeneous linear system with a transformation between the original scan-
ning coordinate system and the new coordinate system. Finally, the global func-
tion is obtained by blending each local approximation with some local weighed
functions [19]. Therefore, our proposed method is a mixture of RBF-based and
multi-level partition of unity (MPU) based method. On one hand, our proposed

162



Zhou Z., Fu Y., Zhao J.: An efficient method for surface reconstruction based on. . .

method can be considered as an improved RBF-based method, but it can do more
than the traditional RBF-based method does. The classical implicit RBF-based
method needs to add some off-surface data, while our method avoids this process by
transforming the homogeneous linear system into a non-homogeneous case with a
transformation of the coordinate system. On the other hand, our proposed method
can be regarded as the RBF-based MPU method. It firstly divides the dataset into
a series of cells with a fixed size, then in each local coordinate system, local sur-
face represented as an explicit a bivariate function is reconstructed. The bivariate
function is taken to be the RBF.

The main contribution of the paper can be summarized as follows:

• The local coordinate system transform and partition of unity are combined
to perform surface reconstruction, which does not need extra off-set points.

• The proposed approach can quickly and accurately reconstruct complex topo-
logical models.

• The bivariate function in the form of radial basis function used for approxi-
mating the local surface patches is robust to noisy data and non-uniformity
datasets.

The rest of the paper is organized as follows. We first review the previous
work of the surface reconstruction in Section 2. Then, we give a specific processes
of our proposed method for the surface reconstruction in Section 3. In Section
4, experimental results on different shape datasets with comparison to existing
methods are given. Finally, we conclude the paper in Section 5.

2. Related work

Up to now, a lot of approaches for surface reconstruction have been proposed.
According to the processing techniques, these approaches are roughly classified
into three groups: Delaunay triangulation (or Voronoi diagram)-based methods,
parametric methods, and implicit methods.

Delaunay triangulation-based methods. Delaunay triangulation based
methods generally construct the surface by exploiting the structures, such as De-
launay tetrahedral and Voronoi diagrams. That is, they usually interpolate all
or most of the points by means of creating a triangle mesh. Some representative
methods of this group are α-shapes [8], crust and power crust algorithms [2], tight
cocone [6], and so on. The main shortcoming of these methods is that they are
usually sensitive to the noise.

Parametric methods. Parametric methods aim to build the reasonable
correspondence between the pairs of locations on the boundaries of the two shapes.
The popular representative methods are B-spline method [10] and non-uniform
rational B-spline (NURBS) surface [21]. These methods are typically faster and
require less memory than Delaunay triangulation-based methods because they op-
erate on a lower dimensional representation of an object. However, their expression
ability is limited by the parametric functions.

Implicit methods. Different from the above two methods, the goal of implicit
methods is to find a continuous function and uses its zero isosurface to fit those
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discrete points. Most existing implicit methods for constructing the continuous
function are virtually determined by the linear combination of the basis functions
such as signed distance function [11,25], RBF [5,16,20], local implicit functions [19],
moving least square approximation [1], indicator functions [12], and so on. Among
these methods, the local RBF-based method [24] and MPU method [19] present a
good performances in dealing with the large dataset. But they also have deficiency.
For example, RBF-based method is powerful for the complex topology model and
robust to the noises, but it requires some additional information, such as off-surface
points, to determine the functions, which is apparently not reliable for the cases
with noises or some closed sheets. While for the MPU method, although it can
reconstruct the sharp feature for the non-uniformity or large datasets efficiently
with the local quadric polynomial and the partition of unity, it is very sensitive to
the noise because of the rigidity of the quadric polynomial.

3. The proposed surface reconstruction method

In this section, we will propose a new implicit surface reconstruction method based
on the partition of unity (PU) and RBF for the glocal surface reconstruction. The
proposed method is composed of three stages as follows: Firstly, for the given scan
data, we divide the global domain into several local sub-domains based on the
adaptive Octree-based subdivision method. Then we reconstruct the local surface
with the proposed implicit method. Finally, the global surface is obtained by the
PU method. A block schematic diagram of the proposed method is shown in Fig. 1.

 

Scaned 

data 

Perform Local surface 
reconstruction with 
the proposed implicit 
method

Obtain global surface 
reconstruction with 
PU method 

Division of 

the dataset 

Fig. 1 Diagram of the proposed method for surface reconstruction.

3.1 Division of the dataset

Due to the complexity of the surface and the huge volume of the scanned data, we
intend to reconstruct the global surface by means of reconstructing each simple local
surface. Therefore, the first work is to divide the global domain into several local
domains. Here, our proposed adaptive Octree-based subdivision method in [26],
which is developed based on [19], is employed to achieve the data division task.

Let S0 be the minimum bounding box which can contain the scanned dataset
{(pi, ni)}Ni=1, where pi ∈ R3 is the scanned position point and ni is its corresponding
unit normal vector. It is assumed that Nmin and Nmax are the minimum and
maximum number of the points ensuring that each sub-domain allows to contain,
respectively. If the number of points in the domain S0 is larger than Nmax, then
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divide S0 into eight overlapping sub-domains. For these eight sub-domains, if their
numbers of points are larger than Nmax, then we continue to divide these obtained
sub-domains. The whole subdivision algorithm for the scanned dataset is detailed
as follows:

Algorithm 1 Division of dataset.

each sub-domain Si in the i-th layer, calculate the number n of points in the Si,

if n > Nmax, then
divide Si into eight sub-domains with the Octree method,

else if Nmin ≤ n ≤ Nmax, then
return and input Si into the tree;

else if 0 < n < Nmin, then
enlarge Si;

else if n = 0, then
discard Si.

end if

In the next step of our proposed method, we assume that each local surface to
be reconstructed has an explicit expression. Therefore, we use Nmin and Nmax to
adjust the structure of each local surface.

3.2 The proposed method for the local surface
reconstruction

For each divided sub-domain Sj that contains point set {(pi, ni)}
Nj

i=1 with the divi-
sion algorithm, the traditional implicit method aims to seek a smooth function fj :
R3 → R from some smooth function space H satisfying fj(pi) = 0, i = 1, 2, . . . , Nj .
According to the approximation theory, those smooth functions in H are usually
taken as the form of RBF as follows:

fj(p) =

Nj∑
i=1

αjiφ(p, pi) +Qj(p), (1)

where each αji ∈ R, φ : R3 × R3 → R is the radial basis function, and Qj is the
usual polynomial with one order, i.e.

Qj(p) = cj0 + cj1x+ cj2y + cj3z, p = (x, y, z)>. (2)

Therefore, we need to determine those parameters for obtaining the reconstructed
surface. Usually, those parameters are determined by solving the following homo-
geneous linear system [5]: (

Φ P>j
Pj 0

)(
αj
cj

)
= 0, (3)

where Φ = [φhk]Nj×Nj with each φhk = φ(ph, pk), Pj ∈ R4×Nj with the i-th column
vector being (1, xi, yi, zi)

>, αj = (αj1, αj2, . . . , αjNj )>, cj = (cj0, cj1, cj2, cj3)>.
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To avoid the trivial solution of (3), many traditional methods usually introduce
a number of off-surface points for increasing some constrain equations in (3). But
such process of adding the off-surface points inevitably increase the scale of solving
equation and the instability of system. In order to avoid adding other constraint
equations, we seek to change the implicit approximation surface function into ex-
plicit bivariate surface function via transforming the homogeneous linear system
into a non-homogeneous linear system. For each local surface patch, suppose that
the local surface patch has the explicit expression in this coordinate plane, a local
coordinate plane is established, and the projection value of the patch to the plane is
taken as its local function value. Then the relation between two coordinate systems
is employed to yield a nonzero vector on the right side of system (3), which needs
not to add other constraint equations. In the following section, we will describe
local surface reconstruction process in detail.

Suppose that the geodetic coordinate system for scanning is denoted by O−xyz,
and the local coordinate system is represented by Pj − nj ljmj .

According to the theory of spatial analytic geometry, there exists a unique
transfer matrix Aj ∈ R3×3 such that

(lj , nj ,mj)
> = Aj(x, y, z)

>. (4)

Namely, 
lj = a

(j)
11 x+ a

(j)
12 y + a

(j)
13 z,

nj = a
(j)
21 x+ a

(j)
22 y + a

(j)
23 z,

mj = a
(j)
31 x+ a

(j)
32 y + a

(j)
33 z.

(5)

Here the matrix Aj can be determined when the local coordinate system is cho-
sen.Therefore, if the explicit expression for the local surface in the local coordinate
system Pj − nj ljmj is

mj = hj(lj , nj), (6)

then its implicit expression in the global geodetic coordinate system O − xyz is

a
(j)
31 x+ a

(j)
32 y + a

(j)
33 z

= hj(a
(j)
11 x+ a

(j)
12 y + a

(j)
13 z, a

(j)
21 x+ a

(j)
22 y + a

(j)
23 z).

(7)

Let

gj(x, y, z) := hj(a
(j)
11 x+ a

(j)
12 y + a

(j)
13 z, a

(j)
21 x+ a

(j)
22 y + a

(j)
23 z) (8)

and

Πj(x, y, z) := a
(j)
31 x+ a

(j)
32 y + a

(j)
33 z, (9)

then the implicit expression for the local surface in the coordinate system O− xyz
is

gj(x, y, z)−Πj(x, y, z) = 0. (10)

Let

fj(x, y, z) := gj(x, y, z)−Πj(x, y, z) (11)
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we use the RBF network
Nj∑
i=1

αjiφ(p, pi) +Qj(p) (12)

in (1) to approximate the function gj , then the implicit expression becomes to be

fj(x, y, z) =

Nj∑
i=1

αjiφ(p, pi)

+Qj(p)−Πj(x, y, z) = 0.

(13)

Now our task is to approximately determine those parameters in (13) with the
scanned data. Here we obtain those parameters by solving the following non-
homogeneous linear system:(

Φ P>j
Pj 0

)(
αj
cj

)
=

(
dj
0

)
, (14)

where dj = [Πj(p1),Πj(p2), . . . ,Πj(pNj )]>.

It is noted that the left side of the equation (14) is same as (3), but the right side
is a nonzero vector. Obviously, we no longer add other off-set points. Furthermore,
the expression of fj in (13) is still a form of RBF, which means that the function
still have a pretty performance for a complex surface.

For the above non-homogeneous linear system (14), we add the `2-regularization
term to the optimization object function to obtain a stable solution. Therefore,
parameters in (13) are finally determined by solving the following optimization
problem:

min
β

Nj∑
i=1

‖fj(pi)‖22 + λ‖β‖22, (15)

where β is the vector composed of all the parameters in the non-homogeneous
linear system (14). Here we will use lower upper (LU) factorization to solve the
optimization problem (15).

After explaining the idea of our proposed local surface reconstruction, we give

the concrete process of determining the coefficients a
(j)
3i (j = 1, 2, 3) of the function

Πj . As we know, when mj = 0, the coefficients a
(j)
3i (j = 1, 2, 3) are the coefficients

of a plane Πj = 0 in the original global coordinate system Oxyz. As we have divided
the global domain into some sub-domains with simple structure, each local surface
has a rough orientation. The orientation can be defined by those unit normal
vectors of the points in each cell, so we take the following vector ξj

ξj =
nh + nk

2
(16)

as the normal vector of the local plane, nh and nk are the normal vectors of the
two points with the largest angle between the normal vectors in the current surface
patch.
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In order to determine the local plane Πj and avoid the intersection of plane and
local surface slice as much as possible, we still need another vector ηj defined by

ηj = cj − rjξj , (17)

where cj is the center vector of the cell, and rj is the radial of the bounding sphere.
For the local reconstruction cell Sj with Nj points, the implicit function expression
in (13) becomes to be

fj(x, y, z) =

Nj∑
i=1

αjiφ(p, pi)

+Qj(p)− 〈ξj , p− ηj〉 = 0.

(18)

3.3 Global reconstruction surface with PU method

In this section, we use PU method to decompose the global problem into several
smaller local problems, and blend the local surfaces into a global surface with the
corresponding weighted functions. For each subdomain Sj , we have obtained a
local implicit function fj with our proposed local surface reconstruction method,

j = 1, 2, . . . ,M. Let wi be the corresponding weighted function with
∑M
i=1 wi ≡ 1

on the whole domain S. Then we can obtain the global reconstructed function f
as follows:

f(p) =

M∑
j=1

wj(p)fj(p) = 0. (19)

In general, the weighted functions {wj}Mj=1 can be obtained by normalizing a

set of positive functions {Wj}Mj=1 as follows:

wj(p) =
Wj(p)∑M
i=1Wi(p)

. (20)

For the implicit surface reconstruction, the global approximation function should be
continuous, so every Wi has to be continuous on the boundary of the sub-domains
Si, i = 1, 2, . . . ,M . According to above analysis, we summary our algorithm for
surface reconstruction as follows.

4. Experiments

In order to evaluate the performance of our proposed method, a series of exper-
iments are designed to show the generalization ability, effectiveness and stability
of the proposed surface reconstruction model. In this part, the generalization and
the stability of our proposed method is verified with various models containing
different features and noises. All the experiments are implemented by Microsoft
Visual Studio 2010 and all results presented in this section are run on an Intel(R)
2.40GHz and Xeon (R) 2.39 GHz with 8GB RAM. The scanned database are cho-
sen from AIM@SHAPE repository. For the visualization of the implicit surface, we
adopt Bloomenthal’s polygonizer method [3] to generate a polygonal mesh. The
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Algorithm 2 The whole process of our proposed method for surface reconstruction.

Start: Input the data set {(pi, ni)}Ni=1;
Step 1: Compute the width parameter for each point;
Step 2: Partition the domain based on the
distribution of the data;
Step 3: For each sub-domain, compute the local
coordinate plane;
Step 4: Solve the optimization problem (14) with
LU factorization to get the parameter vector β;
Step 5: Blending the local function into the global
function;
Step 6: Extracting the isosurface to visualize the
model.
End

parameters in the experiments are set as follows: Nmin = 15,Nmax = 30. The
radial basis function φ(p, pi) is taken as φ(p, pi) = (1− ‖p− pi‖)4(4‖p− pi‖+ 1).

4.1 Generalization of our proposed method

Figs. 2–5 illustrate the performance of our proposed method for different types
of objects. Fig. 2 shows the reconstruction surfaces of a blade which has some
planes. It is seen from Fig. 2 that our proposed method can handle the object
with the non-absolute sharp edges such like the planes. On the contrary, if the
scanned object has a complex local structures, such as the absolute sharp edges,
our method can still achieve good performance due to polishing effect of radial
basis function. Fig. 3 shows the perfect reconstruction surfaces of some complex
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(a) Original surface of blade.
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(b) Reconstructed front
of blade.

     

 

 

                 

 

 

(c) Reconstructed back
of blade.

Fig. 2 Reconstruction results of blade with our proposed method with 18395 points.
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(a) Reconstructed vase-
lion with 200000 points.

 

 

 

 

 

(b) Reconstructed buddha with 250000 points.

 

 (c) Reconstructed octopus with 16944 points.

Fig. 3 Reconstruction results of some complex models with our proposed method.

170



Zhou Z., Fu Y., Zhao J.: An efficient method for surface reconstruction based on. . .

objects with some tinny local features. Even the shallow ridges on the back of
Buddha and the antennaes of octopus can be vividly described. To validate the
ability of disposing large and complex point set surface, we use the raptor model
with 1 million sampled points to perform the reconstruction of raptor with our
proposed method as seen in Fig. 4. It is observed from Fig. 4 that the fine stripes
and teeth of the raptor’s head are accurately reconstructed by means of the similar
size of each sub-domain. In Fig. 5, the points density on the right side of Venus
is lower than that of left side as shown in Fig. 5(a). It is observed from Fig. 5(b)
and Fig. 5(c) that our proposed method can accurately capture the intrinsic shape
feature from these non-uniformity distribution data points.

 

 

 

 

 

 

(a) Reconstructed raptor with 1000000 points

 

 

 

 

 

 

(b) Reconstructed head details of raptor

 

 

 

 

 

 

 

 

 

 

 

  

(c) Reconstructed neck ridge of raptor

Fig. 4 Reconstruction results of some complex models with our proposed method.

4.2 Efficiency of our proposed method compared
with the traditional RBF method

To further validate the efficiency in handing large scale points surface reconstruc-
tion. Compared with the traditional RBF method for surface reconstruction, our
proposed method does not need to append a large number of of off-surface points,
thus reducing the computational complexity. Fig. 6 shows the comparison result of
Armadillo reconstruction between our proposed method and the traditional RBF
method. As shown in Fig. 6, there is no obvious visual difference between the two
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(a) Point representation of
Venus.

 

 

 

 

 
(b) Reconstructed Venus
with our proposed method.

 

(c) Reconstruction result of Venus’s
side with low density points.

Fig. 5 Reconstruction result of Venus with our proposed method for non-uniformity
dataset.
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图 5.8 172974个点的 Armadillo模型曲面重建效果对比图

5.5 本章总结

这一章中，我们提出了一个新的隐式曲面重建方法。这个方法与现有隐式曲
面方法最大不同是将假设局部曲面片可以显示函数表示，通过逼近其局部显示表
达式来对局部曲面进行重建。这个方法不需要添加额外的离面点，减小了重建规
模，加快了曲面重建速度。实验结果表明，新方法能有效的处理大规模的、拓扑
结构复杂的数据模型。另外，我们提出的方法对于噪声数据、密度不均匀的数据
点集、有尖锐局部特征的模型都是稳健的，均能得到较好的重建结果。新方法的
主要优点总结如下：

• 不需要增加额外的离面点，很大程度上提高了重建效率.

• 能快速准确的重建出有复杂拓扑结构的模型.

• 能有效处理噪声数据和密度不一致数据集.
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(c) Reconstructed Armadillo
with traditional RBF method.

Fig. 6 Reconstructed Armadillo with our proposed method and the traditional RBF
method.

methods, which indicates that our proposed method completely achieve the same
reconstruction effect as the traditional RBF methods. Tab. I showns the compari-
son results of our proposed method with the traditional RBF method that requires
off-surface points to prevent the occurrence of trivial solution.

In this comparison experiment, the number of partition cells and radial ba-
sis functions are same. In Tab. I, N and M are the numbers of data and the
sub-domains, respectively, Tour and TRBF denote the computational time for the
coefficients of our proposed method and the RBF method, respectively. The RMS
error of our proposed method and the RBF method are denoted by Eour and ERBF,
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respectively. It is Observed from Tab. I that the computational time of the tradi-
tional RBF method is about twice that of our proposed method. In the meanwhile,
the error of our proposed method is much less than that of the traditional RBF
method.

Models N M Tour(s) TRBF(s) Eour ERBF

9679 3609 1 5 6.5× 10−5 4.6× 10−2

Armadillo 36145 13173 6 19 4.3× 10−5 2.3× 10−2

172974 57310 32 115 1.5× 10−5 7.2× 10−3

12005 5084 2 5 6.8× 10−5 3.4× 10−2

Bunny 42399 20255 7 21 5.3× 10−5 3.4× 10−2

139990 79430 30 68 2.6× 10−5 1.5× 10−2

109668 62444 22 50 3.2× 10−5 3.2× 10−2

Raptor 413189 251412 94 217 1.2× 10−5 8.8× 10−3

1000080 439985 252 707 9× 10−6 9.5× 10−3

7745 4074 1 4 2× 10−6 4.5× 10−2

Blade 18395 8670 3 10 2× 10−6 4.2× 10−2

29275 16798 7 18 1× 10−6 2.3× 10−2

Tab. I Time (seconds) and error comparison of our proposed method with the
traditional RBF method for different models.

4.3 Stability of our proposed method compared
with the MPU method

In order to show the stability of proposed method in the case of noise disturbance,
we add different levels noise to the given data sampled from Stanford Bunny as
shown in Fig. 7. Fig. 8 is the reconstructed Bunny from data points with different
levels of noise by our proposed method. Fig. 9 exhibits the reconstructed Bunny
with MPU method under various levels noise. It is seen that our proposed method
is more robust to the noise than MPU method due to the strong stability of the
radial basis functions. It can be seen from Fig. 9 that MPU mehod is completely

硕士学位论文

图 5.9 新方法和MPU方法对于有噪声的斯坦福兔子模型的曲面重建效果对比图

36

Fig. 7 Bunny data points with different levels of noise.
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图 5.9 新方法和MPU方法对于有噪声的斯坦福兔子模型的曲面重建效果对比图

36

Fig. 8 Reconstructed Bunny with our proposed method from data points with dif-
ferent levels of noise.

硕士学位论文

图 5.9 新方法和MPU方法对于有噪声的斯坦福兔子模型的曲面重建效果对比图

36

Fig. 9 Reconstructed Bunny with MPU method from data points with different
levels of noise.

failed even if data is contaminated by low level of noise. Therefore, the proposed
method can effectively resist noise disturbance and capture the shape of object.

5. Conclusion

This paper has presented a novel implicit surface reconstruction method based on
partition of unity and local surface sheet approximation. Different to other surface
reconstruction based on RBF, our proposed method does not need to add off-
surface points, reducing computational complexity. Furthermore, even in the case
of noisy data, non-uniform data sampling, and objects with complex topological
structure, Our method is capable of achieving satisfactory reconstruction results.
So our method is quite effective and efficient in reconstructing a complex surface
according to the given large datasets.
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