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Abstract: Modern neural network architectures are powerful models. They have
been proven efficient in many fields, such as imaging and acoustic. However, these
neural networks involve a long-running and time-consuming process. To accelerate
the training process, we propose a two-stage approach based on data analysis and
focus on the gravity center concept. The neural network is first trained on reduced
data represented by a set of centroids of the original data points, and then the
learned weights are used to initialize a second training phase of the neural network
over the full-blown data. The design of deep neural networks is extremely difficult,
and the primary objective is to achieve high performance. In this study, we apply
the Taguchi method to select good values for the factors required to build the
proposed architecture.
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1. Introduction

At present, deep neural networks (DNNs) are considered the best method for learn-
ing data with considerable accuracy. DNNs are widely used in many artificial in-
telligence applications, including machine translation, robotics and autonomous
cars and drones. In fields such as pattern recognition, convolution neural networks
are becoming increasingly accurate in identifying objects. Recurrent neural net-
works (RNNs) have been successfully used in many natural language processing
applications, particularly in language models, and recently, in machine translation.

Training this type of neural networks can be regarded as an optimization prob-
lem. It involves searching for the local minimum that is close to the global mini-
mum. When the local minimum is close to the global minimum, the performance
is acceptable and the training process is successful. DNN performance depends
on two concepts: convergence speed and generalization capability. Convergence
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speed refers to the number of iterations required to reach a predefined value for
errors to stop the training process. The two major factors that can influence the
performance of DNNs are weight initialization value and learning rate. The weight
initialization value is critical for convergence speed because different numbers of
iterations will be required to converge for the same local minimum depending on
the weight initialization value. Generalization capability is the ability to handle
unseen data. Many successful convergences with different local minima can be
found. Here, the generalization will be different as we follow the local minimum.
Therefore, performance will also be different.

In this study, we present an original approach based on data analysis [2, 17]
to find the best weights for starting the training of large corpora. This approach
consists of dividing the training corpus into small subsets and then finding the
center of gravity [15], which is actually a synthetic value, for each subset. All
the centroids are collected, and a small training set is established. The learned
optimal weights will be used to train the full-blown data. The training process
converges rapidly because the sum of the distances between the centroids and the
other elements is optimal.

Building or designing DNN architecture is the same as designing an engineered
system. Perfection is achieved when all the inputs are transformed accurately to
create the right results. We used the Taguchi method, which is a structured ap-
proach for determining the best combination of factors to produce a product or
service, as the parameter optimization method. The Taguchi method can consid-
erably reduce the cost of time in a simulation process. It is based on a design of
experiments (DOE) methodology for determining parameter levels. DOE or ro-
bust design is an experimental method for achieving process quality by integrating
insensitivity to noise using statistical approaches.

The scope of our architecture covers the Arabic part-of-speech (POS) tagging.
POS tagging is the process by which a specific tag is assigned to each word in
a sentence to indicate the function of that word in its specific context. Part-of-
speech tagging demonstrates the syntactic category of words such as noun, verb,
pronoun, adverb, adjective, or other tags, to resolve lexical ambiguity [5]. The
process of POS tagging is a critical task in text parsing. It is considered one of the
fundamental tools in natural language processing and is frequently part of a higher-
level application, such as machine translation, speech recognition, and information
retrieval. Our work is divided into two parts. The first part involves Arabic POS
tagging and the neural network architecture. The second part involves describing
our approach to find the best initial weights for our proposed architecture.

Natural language processing involves analyzing huge volumes of data. There-
fore, parallel computing, such as multithreading and the use of the processing ca-
pacity of graphics cards, can help achieve the aforementioned requirements. In our
architecture, we have implemented multithreading on a multicore multithreaded
CPU and multithreading using the capacity of a GPU via Nvidia CUDA technol-
ogy.
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2. Related works

The weight initialization problem and its proposed solutions have existed for as
long as neural networks have. To design a neural network, we must first answer
several questions. For example, how many hidden layers do we need to solve our
problem? How many hidden neurons are found in each hidden layer? What are
the best values for the learning rate and momentum? What is the best value for
weight initialization? To date, machine learning experts have been using randomly
initialized weights as the starting point of the training process. They were not
aware that the initial values of these weights are critical for finding the global
minimum [10] of a deep neural network cost function.

2.1 Zero initialization

The simplest method for weight initialization is zero initialization. This method
does not perform symmetry breaking. Initializing weights by zeros makes the
complexity of the deep neural network similar to that of a simple neuron because
all the outputs of all the layers perform the same calculation.

2.2 Random initialization

To date, the only means to initialize weights for deep neural networks is through
random initialization. When random values are used instead of zeros, symmetry
breaking is performed. Performance varies in this case because neurons in different
layers conduct various computations. Random initialization has been used for a
long time. In [23], a method based on the minimum bound of weight initialization
was proposed. In this method, every weight should be lower than the square root
of the learning rate divided by the number of neurons in the previous layer. In
[8], another method for weight initialization based on the threshold of a unit was
presented. In this method, the threshold highly depends on the activation func-
tion, and the random values selected in this case should all be positive and higher
than the threshold. In [13], another weight initialization method based on the im-
portance of every input was developed. An input with high importance should be
initialized with a large weight. This method requires statistical techniques to select
inputs with high and low importance to assign weights according to their impor-
tance. Considering the characteristics of the information transformation system of
a unit, Shimodaira [9] proposed an approach based on equations and certain pa-
rameters. Shimodaira used the sigmoid function, while we used the tanh function.
Therefore, we modified the first parameter according to the activation function
that we used in our architecture. In [16], a weight initialization method called sta-
tistically controlled activation weight initialization (SCAWI) was developed. The
authors presented two equations for calculating the initial weights for the input and
hidden layers. In SCAWI, the authors adopted the concept of paralyzed neuron
percentage, which is defined by the number of times that a neuron is saturated and
the magnitude of neurons (a least one) in the output layer.

In recent years, several methods have been presented, and the best known
appeared in [22]. In this work, Glorot proposed a formula for estimating standard
deviation based on the number of input and output channels of the layers under
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the assumption that no nonlinearity occurs between layers. The initial values of
the weights for a hidden layer i should be uniformly sampled from a symmetric
interval that depends on an activation function. In [3], an initialization approach
based on Gaussian noise with a mean equal to zero and a standard deviation set
to 0.01 was developed. A bias equal to one was added to some layers. In [8], a new
method for weight initialization was proposed in 2015 by He et al. This method
is similar to Glorot initialization, with a factor multiplied by two. This method is
highly efficient for rapidly attaining a global minimum of the cost function.

3. Architecture of the POS tagging neural
network

Neural networks have many possible architectures, including multilayer perceptron,
convolutional neural networks [19], restricted Boltzmann machine [1], and RNNs
[4]. Our architecture is described in Fig. 1. It is inspired by the work of [18]. In
this section, we discuss the different architecture layers: input, hidden, and output
layers. In our work, we used the word2vec, which is a neural-based model and
application introduced by [21] to represent words into real-valued vectors.

The input layer represents a window of words, which denotes the word on which
training is performed surrounded by a number of words. Each word is represented
by the continuous bag of words (CBOW) model concatenated by word features.
For the surrounding words, we add the probability of being included into each
grammatical class. Subsequently, we discuss the mechanisms of propagation and
backpropagation.

Fig. 1 Neural network architecture.
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3.1 Preprocessing of datasets

The preprocessing of datasets is the first step in preparing words to obtain a man-
ageable representation that we can use in our neural network. This step is divided
into three parts: the extraction of word features, the calculation of probabilities,
and the CBOW representation for each word. The Morphological Analysis and
Disambiguation for Arabic (MADA)1 is the main toolkit used for data preprocess-
ing. We used MADA to extract all the information and analysis about a word,
including stem, POS, gender, number, affixes, and gloss. The features of MADA
are Aspect, Case, Gender, Mood, Number, Person, State, Voice, Stem, POS, and
affixes. The word structure in MADA follows this pattern:

[ PRC3 [ PRC2 [ PRC1 [ PRC0 – BASEWORD – ENC0 ] ] ] ].

PRC3 is a question proclitic or QUES, PRC2 is a conjunction proclitic or CONJ,
PRC1 is a preposition proclitic or PREP, PRC0 is an article proclitic or ART, an
ENC0 are pronominals enclitics or PRON. We create the first look-up table LW1
by extracting the aforementioned features. Then, we use word2vec to obtain word
representation in vector space, which is the second look-up table LW2. The final
step in preparing data to feed the neural network is computing probabilities. To
find these probabilities, we train a simple feedforward neural network. The input
layer is for word representation, whereas the output layer is for the probability that
a word will belong to each grammatical class.

The probabilities are listed in LW3, which is the third look-up table. The vector
input of the word w is the concatenation of all the values extracted from the three
look-up tables.

3.2 Propagation

To learn the network, we use the backpropagation method with the stochastic
gradient descent algorithm. Accordingly, the first step is the propagation and
calculation of the error. Then backpropagation is performed to update weights
and minimize the error E.

For each hidden layer, we apply a nonlinear function, namely, the tanh function,
to the result. We use the following classic formula described in [12] to limit the
saturation phenomenon:

y = 1, 716× tanh

(
2

3
x

)
, (1)

because the tanh function tends rapidly toward 1 or −1, and its derivative is close
to 0. Therefore, the backpropagation of the error is stopped. This phenomenon is
known as saturation.

In the output layer, we apply the softmax function, which is a log-linear classi-
fication model, to obtain the probabilities in the output.

yk = p(T |WC) =
exp(a

(4)
k )∑n2

j=1 exp(a
(4)
j )

, (2)

1MADA+TOKAN version 3.2 using Aramorph version 1.2.1
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where T is the set of tags, WC is the input words, and a
(4)
j is the output value in

position j in the output layer.

3.3 Backpropagation

The objective of training is to maximize p(T | WC), the conditional probability of
observing the actual output, the set of tags for the word wI (denote its index in the
output layer as y∗k), surrounded by the words of the context (all the explanation
based on Fig. 1). To maximize p(T |WC) we use the following equation:

max(p(T |WC)) = max(y∗k) = max log y∗k. (3)

We define our loss function E as

E = − log p(T |WC). (4)

Our objective is to minimize E. Notably, this loss function can be considered a
special case of cross-entropy measurement between two probabilistic distributions.

The input vector of the word in the context is x = [x1, x2, . . . xn0
]. We have C

input vectors, where C is the number of words in the context. We have the output
vector of the desired output, i.e., ydes =

[
ydes1 , ydes2 , . . . , ydesn2

]
. The error is given by

the following equation:

ek = ydesk − yk. (5)

The loss function E for an example is:

Eexample =
1

2

n2∑
k=1

e2k. (6)

For all examples, we have:

E =

N∑
l=1

El, (7)

where N is the number of all examples.

4. Centroids for fighting dimensionality

Motivated by the fact that a deep neural network process can simultaneously run
several logistic regressions, we use regression techniques to select the best initial
weights to train our neural network for the global training set. The concept here
is to divide the training set into subsets E = {E1, E2 . . . Em}. The subsets may
have different sizes. Every subset Ei can be represented by a cloud of n points
{(xi, yi) , i = 1, 2 . . . n}. For each subset found, we identify its gravity center, which
is the mean of {xi}, and the mean of {yi}, as follows:

(µ(x), µ(y)) =

(
1

n

n∑
i=1

xi,
1

n

n∑
i=1

yi

)
. (8)
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Minimizing the overall error is the result of minimizing the error of all the subsets:

E =

m∑
i=1

ei. (9)

Our idea consists of finding the best starting point for minimizing the local error
for each subset, and then finding a model to join these points to reduce the global
error of the training set. At the level of each subset, we define the total dispersion
(TD) as the sum of the dispersion due to the regression (RD) and the dispersion
around the regression line or residual dispersion (AD) as shown in Fig. 2.

y^

y

{e

Residues

TD RD AD

Fig. 2 Total dispersion, dispersion due to the regression, and residual dispersion.

Fig. 2 illustrates the formula TD = AD + RD. The horizontal line passes
through the gravity center of the cloud of points. The first figure represents the
TD, the second shows RD (null if the line slope of the least-squares is null and
important if this slope is strong), and the third presents AD.

We have
TD = AD +RD. (10)

Therefore, we can write

n∑
i=1

(
ydesi − µ(y)

)2
=

n∑
i=1

(
ydesi − yi

)2
+

n∑
i=1

(yi − µ(y))
2
. (11)

From Eq. 11, we can derive

n∑
i=1

ei =

n∑
i=1

(
ydesi − yi

)2
=

n∑
i=1

(
ydesi − µ(y)

)2 − n∑
i=1

(yi − µ(y))
2
. (12)

From Eq. 12, we have
∑n

i=1

(
ydesi − µ(y)

)2
, which represents the sum of dis-

tances between the gravity center and the other points. This distance is optimal
and is the smallest because µ(y) is the gravity center of these points, in fact it is
the barycenter because all the words have the same importance. If we take three
points A, B, C in the Euclidean plane (O,~i,~j), we can say that the point G is the
barycenter of the points A, B and C if we find a, b, c ∈ R and a + b + c 6= 0. We
have:
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a ~OA+ b ~OB + c ~OC = (a+ b+ c) ~OG. (13)

Therefore,

xG =
axA + bxB + cxC

a+ b+ c
, (14)

yG =
ayA + byB + cyC

a+ b+ c
. (15)

If we take a = b = c = 1 because all the words have the same importance, we
can find xG = µ(xi) and yG = µ(yi), which is in fact the gravity center.

We also have
∑n

i=1 (yi − µ(y))
2
, which is always a positive number. Therefore,

the sum of errors is also optimal (Eq. 12).

This idea helps us start training from the center of gravity of each subset.
Subsequently, we need to connect all these centroids by using a model. To achieve
this, we create a training set. Fig. 3 illustrates how the model passes through
the centroids. The size of this set is the number of subsets because we find the
gravity center (µ(x), µ(y)) for each subset. The training space here is defined as
{(µ(Xi), µ(Yi) , i = 1 . . .m}.

Fig. 3 Training the neural network with the set of centroids.

Training the neural network with the set of centroids is too fast because the
size of the set is too small, depending on the size of the subsets.

After training the neural network with the set of gravity centers, the optimal
weights found will be used as an initial set of weights to train the global training set.
This process guarantees two situations. First, the error in each center of gravity
is ' 0 because we train the neural network with the set of centroids. Second, start-
ing the training from the gravity center of each subset ensures that the minimum
error for that subset is obtained.
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4.1 Size of subsets

The objective of the centroid approach is optimizing the convergence of the training
process. A suitable choice for the size of the subsets is critical. If we regard the
size of the training set as N and the size of the subsets as M , then we will have
the following equation in case all the subsets have the same size:

| Centroids |=
[
N

M

]
. (16)

From Eq. 12, we derive

n∑
i=1

ei =

n∑
i=1

(
ydesi − µ(y)

)2 − n∑
i=1

(yi − µ(y))
2
. (17)

As shown in Eqs. 16 and 17, a small value for M decreases the error for every
subset. Therefore, the sum of errors also decreases, but the size of the centroid set
will be increased and the time for training the centroid set will be significant. In
such case, we exert considerable effort on the centroid set and less effort on the full-
blown data. By contrast, a large value for M increases the error for every subset
because it becomes larger, and thus, the error also increases, and the centroid set
will be small. In such case, we exert considerable effort on full-blown data and less
effort on the centroid set. Therefore, the suitable subset size is small, because we
prefer exerting less effort on full-blown data due to their large size. However, this
value should not be too small to prevent the size of the centroid set from being too
important.

In our experiments, we set the size of the subsets to be 5 % the size of full-blown
data. Fig. 4 illustrates the convergence speed using three sizes of subsets. As shown
in the figure, good results are obtained for very small subsets (2.5 % of the size of
the training corpus). However, if we consider the time allotted to train the centroid
set, then the appropriate subset size will be 5 % the size of the training corpus.

100 150 200 250 300
epoch

0

5

10

15

20

25

lo
ss

5% from the full-blown data
2.5% from the full-blown data 
10% from the full-blown data

Fig. 4 Impact of the size of subsets on
convergence speed.

100 150 200 250
epoch

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

Equal size
Random size

Fig. 5 Equal vs different sizes of sub-
sets.

In the first case, we assume that all the subsets have the same size. In another
case, we compare the results obtained using equal and different sizes with the same
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number of subsets, which denotes the same size as the centroid set. Fig. 5 illustrates
the advantage of using equal-sized subsets, given that subsets may range from large
to extremely small. In case of large subsets, the error will also be large, whereas
small subsets exert no influence on reducing loss in the training corpus.

Algorithm 1 Centroid algorithm.

Require: - A set of examples {
(
xi, y

des
i

)
, i = 1, 2 . . . N}

- Neural network: a feedforward neural network(our architecture)
- M : size of subsets (in case they are all equal)

Ensure: The model with the best initial weights: λ
Following our architecture, the model here is
λ = {MWh11,MWh12,MWh13,MWh21,MWh22,MWh23,MWO}, where MWi

is the matrix of weights of the hidden layer i.
for each subsetj ∈

[
1,
[
N
M

]]
do

Centroidj ← (µ(xk), µ(yk)), k = 1, 2 . . .M
end for
Collect all Centroidj in the same set.
Initialize all the weights of the architecture by zero to avoid using random meth-
ods .
Train the architecture with the set of centroids.
Save the best weights found in the model λoptimal.
Load the global training set.
Load the optimal model λoptimal.
Train(network).

5. Theory and methodology

To verify the effectiveness of our method, we compared it with best-known methods
in the field of weight initialization of deep neural networks. First, we present the
mathematical background of these methods. Then, we provide a comparison among
all the methods.

5.1 Glorot initialization

In this method, the initial values of the weights of the hidden layer i should be uni-
formly sampled from a symmetric interval that depends on an activation function.
For the tanh function, the results obtained in [22] shows that the interval should
be

wij ∈ Uniform

[
−

√
6

fanin
+ fanout

,

√
6

fanin
+ fanout

]
, (18)

where fanin
is the number of units in the previous layer, and fanout

is the number
of units in the next layer.
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5.2 He initialization

This method is similar to Glorot initialization with the factor multiplied by two
[8]. In this method, the weights are initialized by the size of the previous layer

wij ∈ Random

[
2×

√
6

fanin
+ fanin

]
. (19)

5.3 Krizhevsky initialization

In this method, the weights are initialized with random Gaussian values with stan-
dard deviation δ = 0.01 for all layers [3].

wij ∈ δ × Random(fanin
, fanout

) + µ, (20)

where µ is the mean of the weights.

5.4 Shimodaira initialization

In our study, we tested all the random methods cited in the related works section.
From the previous methods we found that the Shimodaira initialization [9] achieved
good results. This method, which is based on equations, represents the character-
istics of the information transformation mechanism of a neuron. This method can
be summarized through the following steps.

1. Calculate b using the formula b = |f−1(−1 + ε)− f−1(1− ε)|, where f is the
tanh function. We modified the original formula for calculating b because
Shimodaira used the sigmoid function in his works. ε has an extremely small
value. We used ε = 0.1 in our experiments.

2. Calculate w′ = b√
2×k×n , where k = 8 and n is the number of units in the

lower layer.

3. Calculate w = w′ ×
√
ai + 1, where ai is a random value between −0.6 and

0.6.

6. Experimental results

6.1 Experiments by using the holdout method for the
validation

The objective of this research is to apply a new initialization method and to deter-
mine its usefulness. We applied our approach to five categories: culture, economy,
localnews, international news, and sports for 100 000 examples taken from the
KALIMAT corpus [7]. We compared our results with the best-known methods in
this field. All the methods described in the theory and methodology section are
random. That is, performance will generally vary in different trials. Therefore,
we performed eight trials for every initialization method in our experiments, and
the mean was regarded as the performance value. Our experiments were based
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on the root mean square error (RMSE), and we set the learning rate at 0.01 and
the momentum at 0.5. We evaluated two effects: convergence speed and accuracy.
Convergence speed is measured using the number of epochs required to reach a
threshold of error to stop the training. In our case, the threshold is 0.05. The
accuracy is based on the generalization performance, and it is calculated using the
test set, we used the holdout method because we have made our experiments on
large datasets, thus the computational time will be very large (many experiments).
In [20] a comparative study has been made between k-Fold cross-validation over
hold-out validation on colossal datasets for quality classification. The results found
show that for large datasets both methods give very close results. For instance,
if we take 10 folds in the cross-validation method, it is like to take 90 % from the
size of the dataset as the training set and 10 % for the testing set in the holdout
method.

Fig. 6 presents the results obtained in the context of three words. In this case,
the neural network did not converge in all the methods. In terms of convergence
speed, centroid and Glorot methods are the best. Fig. 7 shows the results in the
context of five words. In this case, all the methods converged. However, the cen-
troid method is considerably better than the other methods in terms of convergence
speed. In the context of seven and nine words, the centroid method still achieved
the best performance, followed by the Glorot and He methods. Fig. 10 illustrates
the convergence speed of the five methods in the context of 11 words. In this
case, the neural network did not converge in all the methods. For the convergence
speed, the centroid method is considerably better than the other methods. The Shi-
modaira and Krizhevsky methods exhibited considerably worse performance than
the centroid, He, and Glorot initializations. Particularly Krizhevsky initialization,
we even added biases to the hidden layers and set extremely small values for µ.
Nevertheless, we always obtain the same results.

The second factor for performance measurement is generalization. In Tab. I,
the columns present three headers in every context: “Acc%” for the mean value
of the accuracy measurement, “Epo” is the mean value of the convergence speed
or the number of epochs required to reach the threshold error, and “Cv” denotes
if the neural networks have converged. The centroid method is the best in one
category, whereas He initialization is the best in one case and Glorot is the best in
one. In addition, in the cases where the centroid method is not the best, it obtains
an accuracy that is extremely close to those of He and Glorot’s initializations.

If we simultaneously consider convergence speed and accuracy for performance
measurement, then centroid initialization is clearly the best because even in the
cases where He and Glorot initializations achieve the best accuracy, the accuracy
of centroid initialization is extremely close to theirs. Moreover, the convergence
speed of the centroid initialization is considerably better.

To make a fair comparison of the convergence speed between the approaches, to
the time of the training of the centroid approach we added the time of the training
of the centroids set in each context. In Tab. II, we find the time of the training
of the centroids set, and in Tab. III, we find the time of training of the different
approaches. From Tab. III, we can see that the time of training of the centroids
set has no effect and can be neglected.
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Fig. 6 Training loss in the context of
three words.
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Fig. 7 Training loss in the context of
five words.
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Fig. 8 Training loss in the context of
seven words.
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Fig. 9 Training loss in the context of
nine words.
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Fig. 10 Training loss in the context of 11 words.
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Context 3 5 7
Performance Acc% Epo Cv Acc% Epo Cv Acc% Epo Cv

Centroid – – No 90.10 950 Yes 91.14 825 Yes
Glorot – – No 90.21 1147 Yes 93.78 1012 Yes
He – – No 91.66 1088 Yes 91.03 1051 Yes
Shimodaira – – No 85.28 1389 Yes 86.94 1140 Yes
Krizhevsky – – No 80.37 1412 Yes 82.79 1381 Yes

Context 9 11
Performance Acc% Epo Cv Acc% Epo Cv

Centroid 94.92 742 Yes – – No
Glorot 92.08 935 Yes – – No
He 93.89 905 Yes – – No
Shimodaira 88.13 1096 Yes – – No
Krizhevsky 84.01 1238 Yes – – No

Tab. I Performance of the centroid method against the other methods.

Centroid set 5% from
the Full-blown data

Full-blown data
100 000 examples

Context 1 Epoch / [s] Epochs CV 1 Epoch / [s]

3 2.2173 – No 711.31
5 4.7721 750 Yes 1176.23
7 8.3911 537 Yes 1590.1
9 11.8415 440 Yes 1825.24
11 18.7352 – No 2508.74

Tab. II Duration and number of epochs for training the centroids set.

Context 3 5 7
Performance T. Training Cv T. Training Cv T. Training Cv

Centroid – No 13 days 00h 49m Yes 15 days 07h 18m Yes
Glorot – No 15 days 16h 25m Yes 18 days 16h 59m Yes
He – No 14 days 21h 02m Yes 19 days 10h 19m Yes
Shimodaira – No 18 days 23h 49m Yes 21 days 01h 51m Yes
Krizhevsky – No 19 days 07h 27m Yes 25 days 06h 34m Yes

Context 9 11
Performance T. Training Cv T. Training Cv

Centroid 15 days 19h 18m Yes – No
Glorot 19 days 20h 09m Yes – No
He 19 days 04h 57m Yes – No
Shimodaira 23 days 06h 14m Yes – No
Krizhevsky 26 days 06h 34m Yes – No

Tab. III The training time of the different approaches against the centroid initial-
ization method including the training time of the centroids set.
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6.2 Experiments by using the cross-validation method

In this kind of validation, we create a K-fold partition of the dataset. For each of
the K experiments, we use K−1 folds for training and a different fold for testing.
The advantage of K-Fold cross-validation is that all the examples in the dataset
are eventually used for both training and testing. The true error is estimated as
the average error test examples as follows:

E =
1

k

k∑
i=1

Ei (21)

We applied our approach to 10 000 examples taken from [6] using 4-fold in each
experiment.

Through the results obtained in Tabs. IV, V and VI, we can observe that as
in the experiments on big data the model does not converge in the case of three
and 11 words. In terms of converge speed the centroid method still the best, and
it has the best accuracy in the context of seven and nine words. We also can see
that the Glorot method yields very close results to the centroid method, it has the
best accuracy in the context of five words and the second-best convergence speed,
we can see that in Fig. 11 and 12. The He method comes as the third-best method
we can see that in Fig. 13 and Tab. VI.

Centroid Shimodaira HE Krizhevsky Glorot
Acc% Epo Acc% Epo Acc% Epo Acc% Epo Acc% Epo

Fold A 90.01 541 88.14 588 92.07 592 86.01 599 92.15 567
Fold B 89.74 539 90.13 584 92.11 598 84.23 599 92.20 583
Fold C 91.51 537 90.01 582 91.44 542 90.12 554 91.88 553
Fold D 90.35 556 87.13 567 92.13 543 84.17 588 91.96 546
Average 90.40 543 88.85 580 91.94 568 86.13 585 92.05 562

Tab. IV Performance of the centroid method against the other methods in context
of five words.

Centroid Shimodaira HE Krizhevsky Glorot
Acc% Epo Acc% Epo Acc% Epo Acc% Epo Acc% Epo

Fold A 92.87 496 90.62 510 92.94 500 90.03 512 92.88 507
Fold B 93.20 485 90.84 506 91.13 489 89.29 510 92.93 490
Fold C 92.91 513 90.01 492 91.83 505 87.10 499 92.84 494
Fold D 92.96 486 92.65 494 91.87 505 90.78 518 92.73 493
Average 92.92 495 91.03 500 91.94 500 89.30 510 92.85 496

Tab. V Performance of the centroid method against the other methods in context
of seven words.
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Centroid Shimodaira HE Krizhevsky Glorot
Acc% Epo Acc% Epo Acc% Epo Acc% Epo Acc% Epo

Fold A 93.97 305 93.38 328 93.78 336 93.82 350 92.66 567
Fold B 93.85 308 93.88 338 93.84 341 93.93 361 93.98 583
Fold C 93.77 301 93.49 347 93.47 338 93.60 344 92.47 553
Fold D 93.50 307 93.67 341 93.50 341 93.31 350 93.39 546
Average 93.77 305 93.61 339 93.65 339 93.67 351 93.13 343

Tab. VI Performance of the centroid method against the other methods in context
of nine words.
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Fig. 11 Training loss in the context of
five words.
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Fig. 12 Training loss in the context of
seven words.
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Fig. 13 Training loss in the context of nine words.
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7. Taguchi method

The Taguchi method is a structured approach for determining the best combi-
nation of inputs to produce a product or service. It was proposed in the 1950s
by Dr. Genichi Taguchi in Japan [14] based on DOE methodology for determin-
ing parameter levels. The objective of this method is to use a few experimental
data for systematic analysis. Instead of using full factorial experiments, which are
time-consuming, the Taguchi method uses an orthogonal array. In such case, each
experiment should no longer be implemented and accuracy can be reached within
a short period. In our study, we selected four factors: the context, which is the
number of words in the input layer; learning rate; weight initialization method; and
momentum. We selected four levels without considering the interaction among the
factors when choosing the four-level standard. In our study, we selected L16(44).
Our experiment is based on RMSE. Therefore, signal-to-noise smaller is better were
chosen. The objective is to obtain a smaller error and higher accuracy.

7.1 Levels of factor design

We selected the following four factors as the primary configurations of our neural
network

1. Context : We selected four values: 5, 7, 9, and 11. We used a context with
three words, but the model did not converge.

2. Weight initialization: Four methods were selected: centroid, He, Glorot, and
Shimodaira.

3. Momentum: We used four values: 0.25, 0.50, 0.75, and 1.00.

4. Learning rate: One of the most important hyperparameters for tuning neural
networks is the learning rate. A good learning rate can transform a model that
does not learn anything into a model that provides state-of-the-art results.
First, we need to determine the effect of the learning rate on optimization
in deep learning. If the learning rate is too high, then the parameters will
go back and forth between points, thereby easily overshooting the minima
and resulting in a large loss. If the learning rate is too low, then the training
process will be extremely slow. Low learning rates not only make the training
process long, but they can also even degrade the performance of the model.
Current conventional knowledge indicates that high learning rates increase
generalization ability. High learning rates are typically good at finding general
areas with good solutions. However, low learning rates are better at finding
the best solution in that area.

We used two fixed values, namely, 0.01 and 0.001, and two adaptive learning
rate methods. The first method is based on an exponential decay (MED),
whereas the second method is based on a linear decay (MLD). Motivated by
a concept from [11], we modified the method by adding a decay for maxLr
and minLr after each cycle.
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• MED: In this method, we fixed ranges for the maximum minimum learn-
ing rates using the following formula to find the learning rate in every
epoch:
initmaxLr = (0.1); initminLr = (0.06); endmaxLr = (0.01);
endminLr = (0.001);
Ti = 1000 defines the number of epochs in a cycle
T current = modulo(i, T i) represents the number of epochs since the last
restart.
l = i/(epochs); i is the i-th epoch, epochs denotes the maximum number
of iterations.
maxLr = endmaxLr + (initmaxLr− endmaxLr)× exp−7×l

minLr = endminLr + (initminLr− endminLr)× exp−7×l

learningRate = minLr + 1/double(2)× (maxLr−minLr)× (1− cos((1−
2× T current/(Ti))× π))

• MLD: In this method, we changed the formula for calculating maxLr
and minLr as follows:
tgalpha = (initmaxLr− endmaxLr)/epochs
tgbeta = (initminLr− endminLr)/epochs
maxLr = tgalpha× (epoch− i) + endmaxLr
minLr = tgbeta× (epoch− i) + endminLr
learningRate = minLr+1/double(2)×(maxLr−minLr)×(1+cos(T current
/double(Ti)× π))
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Fig. 14 Learning rate with linear de-
cay.
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Fig. 15 Learning rate with exponen-
tial decay.

Tab. VIII illustrates the SNRs among factors using the (smaller is better method).
We calculated SNR for each factor in each level using Minitab software2. We can
also see the delta value, which is the difference between the highest and lowest
ratios for the same factor. For all the factors, we ranked the delta value from the
highest to the lowest. In our case, the context factor is ranked as 1 and momentum

2Minitab 18: Statistical Software Free Trial.
http://www.minitab.com
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Level/Factor Context Weight Initialization Learning Rate Momentum

1 5 Centroid MED 0.25
2 7 Glorot MLD 0.50
3 9 He 0.01 0.75
4 11 Shimodaira 0.001 1.00

Tab. VII Factors and levels for a Taguchi plan.

is ranked as 4. The factor ranked as one exerts the most considerable effect on
building neural networks.

Level Context Weight Initialization Learning Rate Momentum

1 13.199 9.069 9.213 12.782
2 9.166 11.182 15.942 12.691
3 6.113 12.560 13.570 14.052
4 20.641 16.308 10.393 9.594

Delta 14.529 7.239 6.729 4.458
Rank 1 2 3 4

Tab. VIII Response table for signal to noise ratios, smaller is better.

Fig. 16 illustrates the optimized configuration for a neural network. Our model
will assume the following values for the factors: context (nine words), learning rate
(MED adaptive LR with exponential decay), weight initialization (centroid), and
momentum (1.00).

Fig. 16 Optimal parameters for the factors.
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7.2 Optimal configuration choice

The optimal configuration for our model is context (nine words), Learning rate
(MED adaptive LR with exponential decay), weight initialization (centroid), mo-
mentum (1.00). To predict the correspondent theoretical rate of defect T (Theo),
we simply have to add to the average defect rate (11.35). The different effects as
follows:
Effect(Context = 9 words) = 6.113− 11.35 = −5.24
Effect(LR = MED) = 9.069− 11.35 = −2.28
Effect(weight initialization = centroid) = 9.213− 11.35 = −2.14
Effect(Momentum = 1.00) = 9.594− 11.35 = −1.76
Ttheo = 11.35− 5.24− 2.28− 2.14− 1.76 = −0.07
This negative result may be unexpected, but it is a theoretical calculation and a 0
rate will be highly acceptable.

To validate our model, we performed eight trials using the optimal configu-
ration. The results confirm the theoretical outcome, thereby indicating that the
experimental design is successful.

8. Parallel computing

8.1 Parallel computing using CPU

This section has no relation to our work presented in sections 4, 5 and 6, we have
added this section to show that our architecture supports parallel programming,
hence the improvement in computational time. Deep neural networks involve many
learning layers arranged as a network and working together to create one large
model. This model typically has many layers of learning, and each layer learns
new patterns from the data from the previous layer. Deep neural networks involve
a long-running and time-consuming process. To accelerate the process, we split it
over multiple threads on multi-core processors. Thus, our neural network archi-
tecture supports the parallel aggregation pattern and the following conditions are
satisfied.

1. We can split the architecture into multiple independent parts. For each hid-
den layer, we can compute hl independently. The first hidden layer behaves
similar to filters in convolution neural networks. Each component will pro-
duce a partial result that will be used in the second hidden layer.

2. In our architecture, the result of each part is a vector hl that is not related
to the results of the other parts.

3. The partial results from each worker thread will be aggregated when all the
threads are finished.

We conducted our experiments on an Intel Core i7-2670QM CPU 2.20 GHz ×
8 with 8 GB RAM and GeForce GT 525M/PCIe/SSE2 Nvidia graphic card. The
number of logical cores in the machine is eight-core processors between physical
and hyper-threading enabled. In general, the operating system performs a 1-to-1
mapping of the application threads to the cores. Therefore, we can simultaneously
calculate the hidden layers, which accelerates the process.
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8.2 Parallel computing using GPU

In neural networks, most calculations are multiplication operations between ma-
trices. To use CUDA, we created a kernel that calculates the multiplication of a
matrix by a vector. We first define the number of blocks required to perform a
multiplication operation. In general, each block contains 512 threads. The number
of threads is typically equal to the number of elements in a multiplication result.
When a kernel is called, all the threads will be launched simultaneously, and the
result will be obtained immediately.

After finding the best configuration using the Taguchi method. We determined
that the best context is nine words. On the basis of our architecture, our model
will have the following weights:

• 9× 80× 100 = 72, 000, where 80 is the size of a word vector, and 100 is the
size of each unit in the first hidden layer.

• 10 × 100 × 100 = 100, 000, from the first hidden layer to the second hidden
layer.

• 34× 100 = 3, 400, from the third hidden layer and the output layer.

We have a model with 175,400 weights that should be adjusted during the
training process. We compared between CPU and GPU and we applied the two
methods on 100,000 examples (900 000 words) from [7].

We found that the average time for an epoch using CPU is 1873.78 s, and the
total number of epochs required to reach convergence is 742. In summary, training
takes approximately 16 days 2 hours 12 minutes using CPU. The average time for
an epoch using GPU is 1825.24 s. The training process in this case will take 15
days 16 h and 12 min.

In conclusion, a hardware accelerator, such as GPU, is important in deep neural
networks models. In deep learning projects, using GPUs is highly required partic-
ularly when the size of the tensors is important. Consequently, we find that most
deep learning frameworks, such as: Tensorflow, PyTorch, Keras, and Caffe, use
GPUs in deep learning applications.

9. Conclusion

In this study, we proposed an original weight initialization approach for a deep neu-
ral network architecture. This architecture was based on the automatic extraction
of the vector representations of words and deep learning theories. The architecture
contains five layers: the input layer, three hidden layers, and the output layer. This
architecture is extensible to increase the size of the input layer, thereby enabling
it to work with a large window of words. The output layer is also extensible and
can be used in other natural language processing tasks, such as, language models.

Weight initialization and learning rate are the most important hyperparameters
for tuning neural networks. A good initialization weight can be the reason for
obtaining state-of-the-art results. A poor choice can be the reason why a model
fails to learn anything.
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Unlike other methods, which focus on the architecture for weight initialization,
our approach focus on data. It consists of dividing the training corpus into small
subsets, finding the centroids of these subsets, and training the neural network with
this centroid set. The learned weights will be the initial weights for the full-blown
data. We compared our approach with recent methods in this field and found that
it was considerably better.

Our architecture comprises a set of factors with different levels. Selecting the
best configuration among these factors is highly difficult and costly in time. If we
select 4 factors with 4 levels, then we need 256 experiments. Every experiment
requires many trials, and each trial can take hours (or even days in some cases);
thus, the time cost will be considerable. To address this problem, we used the
Taguchi method, which is based on DOE. We can reduce the number of experiments
by using an orthogonal array with only 16 experiments L16(44).

Training this type of architecture is a time-consuming process. To address this
challenge, we used parallel computing to reduce training time. In our project,
we compared between multithreading CPU and GPU. We determined that GPU
hardware accelerators are highly required in deep learning applications.
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