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Abstract: In order to improve the accuracy of convolutional neural networks
(CNN) in imbalanced dataset classification, a novel hierarchical CNN-LSVM is
proposed. Considering the imbalance in the number and spatial distribution of
wheat leaf disease images, the improved local support vector machine (LSVM) re-
places Softmax as the classifier of the model, and meanwhile a cost sensitive matrix
is designed to assign the value for penalty factors in the optimized objective func-
tion of LSVM. It effectively improves the sensitivity of misclassification caused by
imbalanced data. To verify the validity and practicability of CNN-LSVM, 6028
wheat leaf disease images containing 8 species are collected from planting bases in
Shandong Agricultural University. Then the imbalanced and balanced standard
image sets are generated by data augmentation and Borderline-Synthetic Minority
Oversampling (Borderline-SMOTE). They have 36168 and 46176 images, respec-
tively. The experimental results show that the average identification accuracies
of the CNN-LSVM obtained on imbalanced and balanced standard datasets are
90.32 % and 93.68 %, respectively. And it starts to converge when the iteration
times are close to 13000. CNN-LSVM has higher classification accuracy and lower
iteration times, compared with CNN-Softmax, CNN-SVM, LSVM and support
vector machine (SVM).
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1. Introduction

In recent years, CNN has made great breakthrough in face recognition, gait track-
ing and other fields [1]. Its application field is expanding constantly, and it has
preliminary application in crop diseases and insect pests identification. Seyed et
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al. [2] combined the features of 5 kinds of wheat leaf disease images by utilizing
Gabor filter and visual features, and then classified them by using a neural net-
work system; Srdjan et al. [3] designed a plant disease recognition system based on
CNN, which can distinguish 13 kinds of various normal and diseased leaves in the
presence of complex background; Mads et al. [4] took 10413 weed images contain-
ing 22 different species as experimental samples and adopted CNN to identify the
category of each sample under different dynamic conditions

Although the above CNN-based crop disease identification has achieved good
results, CNN is unable to deal with imbalanced datasets better [5, 6]. The distri-
butions of imbalanced datasets are generally seen as long-tailed i.e., most of the
samples are densely distributed in a few categories while others only have a limited
samples [7, 8]. Class imbalance is usually encountered in crop disease image data,
mainly for the following 2 reasons: Firstly, because of the different incidence of
different diseases, the number of images of each disease varies greatly. Secondly,
because of the different extent and symptoms of the same disease and the impact
of lighting, irregular appearance, water mist, acquisition device jitter, the density
for the feature vector varies greatly in the spatial distribution.

In view of the above problems, a CNN-LSVM is proposed for the imbalanced
images identification of wheat leaf disease in this paper. It effectively solves the
problem of sample misidentification caused by class imbalanced, and improves the
identification accuracy. The remainder of this paper is organized as follows. In
Section 2, the imbalance of wheat leaf disease images and the architecture and
improvement of CNN-LSVM are illustrated. Then the construction of the imbal-
anced and balanced standard image databases of wheat leaf diseases are presented.
Section 3 presents the experimental results and discussion. Finally, conclusions are
drawn in Section 4.

2. Materials and methodology

2.1 The imbalance of wheat leaf diseases images

The imbalance of wheat leaf disease image dataset attributes to the subjective
factors such as temperature, humidity as well as regional distribution and objective
factors.It is not advisable to collect specific categories in practice.And the imbalance
of wheat leaf disease images is reflected in 2 aspects: the number of samples and
the spatial distribution of feature vectors.

(1) Due to the variety of wheat and the randomness of growth environment in
planting bases of Shandong Province, the images of wheat leaf diseases show
obvious difference in quantity.

(2) The complexity of the feature vector distribution is another factor that leads
to the deterioration of classifier performance. Because of the differences
of many pathogenic mechanisms and the influence of uneven illumination,
shadow occlusion and equipment shake during the image acquisition, the
pixel distribution and signal intensity of the wheat image vary greatly. The
complexity of the spatial distribution is generalized. It concretely includes
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overlap, lack of representative samples, and small degree of separation be-
tween classes. The above situations are shown in Fig. 1(a) The imparity of
quantity and (b) disequilibrium of quantity and spatial distribution.
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(a) The imparity of quantity.
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(b) Disequilibrium of quantity and spatial
distribution.

Fig. 1 Imbalance of wheat leaf disease images. In (a) the red circles represent
the minority class, the blue ones represent the majority class, and the yellow ones
represent the noise; besides, in (b) the purple circles represent the overlapping
sample of majority class, while the green ones represent the separate sample of
Majority class.

The red and blue circles respectively represent the minority and the majority
samples in Fig. 1(a) and 1(b), and both are imbalanced. There is only quantitative
imbalance in Fig. 1(a). It is obvious that the number of blue samples is significantly
higher than that of the red ones. The samples in Fig. 1(b) are not only imbalanced
in quantity, but also in spatial distribution: there exist overlapping samples and
separated items (sub clustering). Lacking of representative samples makes it diffi-
cult for them to be concerned and studied by CNN, which leads to the misleading
of model growth.

2.2 The structure of CNN-LSVM

For the identification of imbalanced wheat leaf disease images, the CNN-LSVM
is designed. Aiming at the imbalanced data problem, the optimization objective
function of LSVM is improved, and the cost sensitive matrix is designed to define
the values of the penalty factor in LSVM. The overall framework of CNN-LSVM
is illustrated. It can be divided into 2 major phases: Feature Extraction and
Classification in Fig. 2.

2.2.1 Feature extraction

The size of input images is (256×256) pixels. The batch size is 100 images. Feature
Extraction are performed simultaneously on GPU1 and GPU2. The main body of
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Fig. 2 The structure of CNN-LSVM.

Feature Extraction is CNN, which is responsible for feature extraction of wheat
leaf disease images. It can be divided into 11 main hidden layers: 5 convolutional
layers (C1, C2, C3, C4, C5), 3 subsampling layers (S1, S2, S5) and 3 fully connected
layers (F6, F7, F8). In order to mimic the link sparsity of the biological nervous
system and avoid the vanishing gradient as well as overfitting, ELU, normalized
layer and Dropout are inserted among the main hidden layer as the function layers.

(1) Convolutional layer The convolutional layer simulates the feature extrac-
tion process of primary cells with local receptive fields and weight sharing. It is
not desirable that the convolutional network is either too deep or too shallow, and
five convolution layers is adopted experientially. The convolutional layer structure
is shown in Tab. I.

As can be seen from Tab. I, with the deeper of the convolutional layers, the
kernel size becomes smaller while the kernel sum gradually increases from 100 to
1024. It aims at better extracting the fine-grained features in the deep level of
the images. Stride is the moving step of the filter in horizontal and vertical direc-
tions. Padding is the number of 0 supplemented at the edge of the filter in the
horizontal and vertical directions. It is designed to ensure that the width of the
image is divisible by the size of the filter. Lr weight and Lr bias represent learning
rates of weights and offsets, respectively, and they affect the rate of parameter op-
timization in the optimization process. Decay weight and Decay bias respectively
represent the attenuation rates of weights and offsets, which can reduce overfitting.
Momentum coefficient is equivalent to the damping term, it reduces the sensitivity
of the network to the local details of the error surface, and effectively suppresses
the local optimum, so as to reduce the learning oscillation trend and improve the
convergence process of the model.
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Name C1 C2 C3 C4 C5

Kernal Size 7× 7 5× 5 3× 3 3× 3 3× 3
Kernal Sum 100 256 512 768 1024
Stride Col 2 2 1 1 1
Stride Row 2 2 1 1 1
Padding Col 0 1 1 1 0
Padding Row 0 1 1 1 0
Lr weight 0 1 1 1 1
Lr bias 0 2 2 2 2
Decay weight 0.005 1.000 1.000 1.000 1.000
Decay bias 0.005 0.005 0.005 0.005 0.005
Momentum coefficient 0.9 0.9 0.9 0.9 0.9
Output Sum 100 256 512 768 1024

Tab. I Architecture of convolutional layer.

(2) Subsampling layer In order to avoid the loss of critical information and
suppress overfitting during the progress of dimensionality reduction of inputted
feature maps, the max pooling and mean pooling are applied to extract abundan
features. The subsampling layer structure is shown in Tab. II. The filter sizes of

Name S1 S2 S5

Type Mean pooling Max pooling Mean pooling
Kernal Size 3× 3 3× 3 3× 3
Kernal Sum 2048 2048 4096
Stride Col 1 1 1
Stride Row 1 1 1
Padding Col 0 0 0
Padding Row 0 0 0
Lr weight 1 5 5
Lr bias 2 10 10
Momentum coefficient 0.9 0.9 0.9
Output Sum 2048 2048 4096

Tab. II Architecture of Subsampling layer.

max pooling and mean pooling are equal to their step size. The input feature maps
are firstly partitioned into non-overlapping matrices. Each matrix then outputs
the maximum and average signal value, thus selecting representative features in
the local receptive field, reducing the dimension of the intermediate expression
layer and getting the feature after dimensionality reduction better transformation
invariance.

(3) Fully connected layer The fully connected layer is used to reassemble
the local features extracted by convolution layers and subsampling layers into a
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complete graph by weight matrix, which realizes the rasterization of 2 dimensional
feature maps. Due to the size 256× 256 of input image is larger, 3 fully connected
layers are constructed and the convolution kernels in per fully connected layer are
increased for nonlinear mapping ability of the network. The fully connected layer
structure is shown in Tab. III. In particular, LSVM is used as classifier to output
identification results and other information at the back of F8.

Name F6 F7 F8

Type Inner-product Inner-product Inner-product
Kernal Size 1× 1 1× 1 1× 1
Stride Col 3 3 1
Stride Row 3 3 1
Padding Col 0 0 0
Padding Row 0 0 0
Momentum coefficient 0.9 0.9 0.9
Output Sum 100 256 1024

Tab. III Architecture of fully connected layer.

(4) Exponential linear unit nonlinearity Due to the interference of sunlight,
fog, dust and other factors, the intensity range of pixel signal is very large. When
the signal value is too large or too small, the gradient of the Sigmoid and the
Tanh in the traditional CNN changes slowly and becomes closer to zero in the
soft saturated region. It is easy to cause vanishing gradient. Recently, ReLU has
attracted much attention for alleviating the above vanishing gradient. But with
the increase of network depth, training samples and iteration, some samples will
sink into hard saturation region, and “neuron death” will occur, which seriously
affects the model convergence.

In order to solve the above problems, accelerate the training speed of the net-
work, ensure the sparsity of neurons link and avoid overfitting, exponential linear
unit (ELU) is used as the nonlinear activation function in this paper, and the initial
value of α is set at 0.25 and then adjusted by self-learning. Compared with Sig-
moid, Tanh and ReLU, its convergence speed is faster and identification accuracy
is higher.

(5) Normalized layers As noted above, owing to the influence of sunlight, water
mist, dust and other factors, the range of the signal intensity in gathered images
is extremely wide. For example, an image with both reflections and shadows has
a larger range of pixels. If this kind of images are used as input directly, it will
deteriorate model growth. The role of signals with large value range in the model
learning will be too large, and the role of signals with small value range will be too
small. Moreover, the range of the function domain is limited, and the input data
need to be mapped into this domain.

To solve the above problems, the local response normalization is used in the 2
Normalized layers Normalization1 and Normalization2. LRN generates horizontal
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local inhibition. It enhances the generalization of CNN by creating the competition
among neurons in a local region [9]. As a branch of LRN, the channel internal
normalization is utilized and its scope is extended in the independent channel.
The received signal is normalized as Eq. (1).

y(i)p,q = x(i)p,q/(k + (α/n)

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(x(j)p,q)
2
)β , (1)

where x
(i)
p,q presents the output of the signal corresponding to the p, q position; and

α,β respectively denote the scaling factor and exponential term; and n represents
the local size of the normalized range. The variables α,β and n are initialized to
0.0001, 0.75 and 5 respectively, following [1].

2.2.2 Classification

LSVM can make full advantage of the local information of the samples and utilize
the adjacent samples to participate in the classification, which effectively reduce
the complexity of the model. Hence LSVM can make full use of local information to
complete classification task. Therefore, LSVM is the main body in classification,
its task is to identify wheat leaf disease images according to the image features
extracted by CNN. σ(x̄, x) is introduced to measure the similarity between test
samples and training samples, and the optimized objective function of LSVM is
seen in Eq. (2).

minw,b,ξ
1

2
wTw + C

n∑
{i=1|yi=+1}

σ(x̄, x)ξi

s.t.yi((w · φ(xi) + b) ≥ 1− ξi (2)

ξi ≥ 0, i = 1, 2, . . . , n

ξ ∈ [0, 1],

where w is the normal vector of optimal classification hyperplane, C is a penalty
parameter used to measure penalties for misclassification of samples. ξi is a slack
variable that indicates the non conformity extent of the constraint yi((w·φ(xi)+b) ≥
1− ξi. ξi is the vector of xi in feature space.

In order to improve identification accuracy of LSVM on imbalanced datasets, in
this paper, multiple penalty factors

∑8
m=1

∑8
n=1 C(m,n) are introduced in the cost

function to improve the sensitivity of LSVM to the misclassification of imbalanced
datasets Eq. (3).

minw,b,ξ
1

2
wTw + C

n∑
i=1

σ(x̄, x)ξi +

8∑
m=1

8∑
n=1

C(m,n)ξi

s.t.yi((w · φ(xi) + b) ≥ 1− ξi, ξi ≥ 0,m 6= n (3)

m = 1, 2, . . . , n

n = 1, 2, . . . , n.
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To solve the above 2 programming problems, Lagrange multipliers αi and βi are
introduced to construct Lagrange functions shown in Eq. (4).

L(w, b, α, β) = min
w,b,ξ

1

2
wTw + C

n∑
i=1

σ(x̄, x)ξi +

8∑
m=1

8∑
n=1

C(m,n)ξi (4)

−
y∑
i=1

αi(yi((w · φ(xi) + b)− 1 + ξi))−
N∑
i=1

βiξi.

The dual problem, equivalent to the Eq. (3), can be obtained by using formula
Eq. (4), that is, the following 2 convex programming problems Eq. (5).

min
1

2

8∑
m=1

8∑
n=1

αmαnymyn −
N∑
n=1

αi

s.t.yiαi = 0

0 ≤ αi ≤ C(m,n),m 6= n (5)

m = 1, 2, . . . , 8

n = 1, 2, . . . , 8.

The optimal solution vector α∗ = (α∗1, α
∗
2, . . . , α

∗
i ) of the above optimization prob-

lem can be found, αi and βi then the decision function f(x) of LSVM can be
expressed as Eq. (6).

f(x) = sgn

(
l∑
i=1

α∗iK ∗ (x̄, x) + b

)
. (6)

The penalty factors can be defined through the cost sensitive matrix of Tab. IV. In
Tab. IV, the horizontal items represent the correct identification and the vertical
items represent the actual identification. C(m,n) represents a penalty factor when

T
P

1 2 3 4 5 6 7 8

1 0 C(1, 2) C(1, 3) C(1, 4) C(1, 5) C(1, 6) C(1, 7) C(1, 8)
2 C(2, 1) 0 C(2, 3) C(2, 4) C(2, 5) C(2, 6) C(2, 7) C(2, 8)
3 C(3, 1) C(3, 2) 0 C(3, 4) C(3, 5) C(3, 6) C(3, 7) C(3, 8)
4 C(4, 1) C(4, 2) C(4, 3) 0 C(4, 5) C(4, 6) C(4, 7) C(4, 8)
5 C(5, 1) C(5, 2) C(5, 3) C(5, 4) 0 C(5, 6) C(5, 7) C(5, 8)
6 C(6, 1) C(6, 2) C(6, 3) C(6, 4) C(6, 5) 0 C(6, 7) C(6, 8)
7 C(7, 1) C(7, 2) C(7, 3) C(7, 4) C(7, 5) C(7, 6) 0 C(7, 8)
8 C(8, 1) C(8, 2) C(8, 3) C(8, 4) C(8, 5) C(8, 6) C(8, 7) 0

Tab. IV Cost sensitive matrix. T stands True, and P stands Predict. Note: 1 –
Normal leaf; 2 – Mechanical damage leaf; 3 – Powdery mildew; 4 – Bacterial leaf
streak; 5 – Cochliobolusheterostrophus; 6 – Stripe rust; 7 – Leaf rust; 8 – Bacterial
leaf blight.
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a sample of real class j is wrongly divided into i class. Akbani et al. [10] proposed a
method that uses the numbers of two sets of samples to set penalty factor for each
other. That is: C+ = Maj num, C− = Min num. Maj num and Min num represent
the number of minority class samples and majority class samples, respectively.
However, the way to define the penalty parameters only by the number of samples
has some limitations. It is due to that the imbalance of data is reflected not only
in the difference of the samples number, but also in the complexity of the samples
distribution in feature space. The above assignment method takes into account the
previous condition only, without regard to the latter. Therefore, a new penalty
factor assignment method is proposed in this paper, which takes into account both
the imbalance of the number and the spatial distribution of wheat leaf disease
images.

Fig. 3 shows the concepts of the hyper sphere, the sample center and the mean
distance between centers of the two classes of samples in Algorithm 1.

Algorithm 1 Framework of the penalty factor assignment.

Require:
Minority sample {Mini|1 ≤ i ≤ Min num};
Majority sample {Maji|1 ≤ i ≤ Maj num}

1: The minority samples Mini and the majority samples Maji are clustered re-
spectively to find the central points x̄Min and x̄Maj

x̄Min =

∑Min num
i=1 Mini
Min num

,

x̄Maj =

∑Maj num
i=1 Maji
Maj num

,

where Min numandMaj num are the samples number of the two kinds of sam-
ples respectively.

2: The sums of Euclidean distances sumMin num
i=1 ‖ xMin−x̄Min ‖2 and sumMin num

i=1 ‖
xMin − x̄Min ‖2 between the samples and the sample centers of two categories
are obtained, Min numandMaj num by dividing the number of samples per
class, and the mean distances Min AvgandMaj Avg of two classes of samples
are obtained.

Maj avg =

∑Maj num
i=1 ‖ xMaj − x̄Maj ‖2

Maj num
,

Min avg =

∑Min num
i=1 ‖ xMin − x̄Min ‖2

Min num
,

The mean distances approximate the radius of a hypersphere in a high-dimensional
space containing two classes of samples;

3: Finally, the ratio of the samples number to the mean of the center distance is
used to assign values to penalty factors:

C+ =
Min num

Min avg
,
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C+ =
Maj num

Maj avg
.

Hyper-Sphere 
of Majority

Hyper-Sphere 
of Minority 

Maj_avg

Min_avg

Minx

Majx

Fig. 3 The hyper spheres, sample centers and mean distance between centers of two
types of samples. Blue circle – Hyper-Sphere of Majority; red circle – Hyper-Sphere
of Minority.

2.3 Data description

As there are no public large-scale image sets of wheat leaf disease, therefore, high-
fidelity images are collected from wheat planting bases in our experiments. Then
the original images are processed by data augmentation and Borderline-SMOTE
to respectively construct the imbalanced and balanced standard image sets, which
improves the size and hierarchy of samples.

2.3.1 Image acquisition

From the wheat planting bases of Shandong Province, 6028 images containing 6
common wheat leaf diseases, normal leaves and mechanical damage leaves were
collected, taken with a Canon EOS700D 18-135. The image format is JPEG with
a resolution of 6088× 3166, and each image is a 24-bit color bitmap. The samples,
numbers and proportions of each disease are shown in Fig. 4 and Tab. V.

Normal Mechanical Powdery Bacterial Cochliobolus Stripe Leaf Bacterial
Name leaf damage mildew leaf hetero- rust rust leaf

leaf streak strophus blight

Number 1161 1037 482 362 1146 331 1061 493
Prop. [%] 18.5 17.2 8.0 6.0 19.0 5.5 17.6 8.2

Tab. V Number and proportion of each wheat disease image in original image set.
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(a) Normal leaf (a) (b) Mechanical
damage leaf (a)

(c) Powdery
mildew (a)

(d) Bacterial leaf
streak (a)

(e) Normal leaf (b) (f) Mechanical
damage leaf (b)

(g) Powdery
mildew (b)

(h) Bacterial leaf
streak (b)

(i) Cochliobo-
lusheterostrophus

(a)

(j) Stripe rust (a) (k) Leaf rust (a) (l) Bacterial leaf
blight (a)

(m) Cochliobo-
lusheterostrophus

(b)

(n) Stripe rust (b) (o) Leaf rust (b) (p) Bacterial leaf
blight (b)

Fig. 4 Samples of wheat disease images.

2.3.2 Data augmentation and oversampling

CNN self-learning relies on iterative training on a large-scale image set. However, if
the amount of data is too small, it is prone to overfitting, which makes the training
error very small and while that of testing very large [11]. In order to increase the
size and diversity of wheat leaf disease image set, 5 ways in Tab. VIII are adopted
to implement image set augmentation.

On the one hand, the achievements of the model can be further improved by
data enhancement. The generalization ability of the model can be improved by
increasing the number of images via rotation and translation and so on, while the
robustness of the model can be further improved by images added noise [12,13]. On
the other hand, it expands the range of data sets, which makes the features mined
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by the network own more invariance to operations such as rotation and scaling. In
addition, it enlarges the gap between the majority class and the minority class in
quantity, making the image imbalance more obvious and thus better test the actual
performance of CNN-LSVM in dealing with imbalanced image set.

Image augmentation enabled every wheat leaf disease images to produce six
corresponding enhanced images respectively, and finally the imbalanced standard
image set (ISIS) containing 36168 images is obtained. The number and proportion
of each kind of images in ISIS are shown in Tab. VI. Later, CNN-LSVM and other
algorithms are used to classify the imbalanced and balanced wheat leaf disease im-
age sets to test its actual performance in different environments. In this paper, the
above ISIS are oversampled by Borderline-SMOTE to generate balanced standard
image set BSIS. The balanced standard image set BSIS contains 46176 images.

Fig. 5 Images processed by data augmentation. (a) – Original image; (b) – Ran-
dom crop; (c) – Noise addition; (d) – Color Jittering; (e) – PCA Jittering; (f) –
Rotation blur; (g) – Scaling blur.

Normal Mechanical Powdery Bacterial Cochliobolus Stripe Leaf Bacterial
Name leaf damage mildew leaf hetero- rust rust leaf

leaf streak strophus blight

Number 6696 6222 2892 2172 6876 1986 6366 2958
Prop. [%] 18.5 17.2 8.0 6.0 19.0 5.5 17.6 8.2

Tab. VI Number and proportion of each kind of images in ISIS.

Normal Mechanical Powdery Bacterial Cochliobolus Stripe Leaf Bacterial
Name leaf damage mildew leaf hetero- rust rust leaf

leaf streak strophus blight

Number 6696 6222 5784 4344 6876 3972 6366 5916
Prop. [%] 14.5 13.5 12.5 9.4 14.9 8.6 13.8 12.8

Tab. VII Number and proportion of each kind of images in BSIS.
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Name Detail operations

Random crop Randomly select Crop Center on the original image of the (256×
256) size. Then use the (224 × 224) size window to capture it.
Finally extend the screenshot to (256 × 256) so as to unify the
image input size.

Noise addition A 30 % Gauss noise is added to the original image, with an offset
of 0.2 and a standard deviation of 0.3.

Color jittering The original image hue, saturation and brightness are increased by
20 %, the contrast is increased by 30 %, the sharpness is decreased
by 10 %.

PCA jittering Firstly, the mean and standard deviations of 3 color channels of
R, G and B are calculated, and the input data of the network
is normalized. Then, the dimension is reduced through PCA in
the RGB color space of the training set pixel, and the 3 principal
direction vectors p1, p2, p3 and 3 features λ1, λ2, λ3 of the RGB
space are obtained. Then add [p1, p2, p3][α1λ1, α2λ2, α3λ3]T to
each pixel Ixy = [IRxy, IGxy, IBxy]T of the image. α1 is a random
variable satisfying the mean of 0 and the difference of 0.1.

Radial blur The original image is radially blurred by rotation blur and scaling
blur respectively. The rotating fuzzy unit is 10, and the scaling
fuzzy unit is 30. They are used to simulate the effects of quickly
rotating or moving cameras to achieve radiation likefunctions.

Tab. VIII Data augmentation.

3. Results and discussion

3.1 Experimental environment

Training a deep CNN on the large scale images through a large number of iterations
requires the use of high performance GPUs. The model of the GPUs used in our
experiment is NVIDIA GeForce GTX 1080.

Besides, the computer model is Lenovo Idea Centre Y900, the processor is Intel
Core i7 6700K 4.0GHz/L38M , and the memory size is 16GB. Furthermore, the
operating system is Ubuntu 14.04.4 64 bits, and the Caffe, an open source convo-
lutional architecture for fast feature embedding exploited by the Berkeley Vision
and Learning Center BV LC, is applied to implement the model. The Python is
utilized as the programming language to adapt to the core of Caffe.

3.2 Experimental results and analysis

3.2.1 Experiment A: CNN-LSVM, CNN-Softmax and CNN-SVM

In order to validate the performance of CNN-LSVM, it is compared with CNN-
Softmax and CNN-SVM. The 3 algorithms perform 180000 iterative training on
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ISIS and BSIS respectively. Then the training models are used to identify the
test sets. Additionally the feature visualization of some filters in CNN-LSVM are
shown in Fig. 6. And there latively obvious dynamic change process of identification
accuracies are shown in Fig. 7 and 8.

Fig. 6 The filters of some main layers in CNN-LSVM visualized as small images
patches.

Fig. 7 Test accuracy of CNN-LSVM, CNN-Softmax and CNN-SVM in ISIS.

Fig. 7 indicates that when dealing with imbalanced datasets, the average iden-
tification accuracy of the common CNN-Softmax and CNN-SVM models is around
74.87 %, which is significantly lower than the average identification accuracy of
CNN-LSVM 90.32 %. In addition, the CNN-LSVM began to converge when the it-
erations reached about 13000 times. But CNN-Softmax and CNN-SVM needs more
than 15000 iterations to achieve stable identification accuracy. The experimental
results and process show that CNN-LSVM has higher identification accuracy and
learning rate for imbalanced image set.
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Fig. 8 Test accuracy of CNN-LSVM, CNN-Softmax and CNN-SVM in BSIS.

Fig. 8 indicates that the identification accuracy of CNN-LSVM is higher than
that of CNN-Softmax and CNN-SVM when dealing with a balanced image set, but
the gap is not obvious. In terms of converge rate, CNN-LSVM still owns a faster
learning rate than CNN-Softmax and CNN-SVM.

3.2.2 Experiment B: CNN-LSVM, LSVM and SVM

In order to validate the advantages of CNN in automatic extraction of image fea-
tures and the effect of LSVM to alleviate the imbalanced data problem, CNN-LSVM
is compared with LSVM and SVM. To get the training model, the 3 algorithms
perform 100000 iterative training on ISIS and BSIS respectively. The processing
objects of KNN and SVM are the 49-dimensional feature vectors extracted from the
wheat leaf disease images. In addition, the radial basis function RBF is adopted as
the kernel function in SVM. The penalty parameter C, gamma, and slack variable
are initialized to 10, 0.02 and 0.001, respectively. The concrete feature extraction
information and identification accuracies of each compared algorithm on ISIS and
BSIS are respectively shown in Tab. IX and X.

CNN-LSVM [%] LSVM [%] SVM [%]

ISIS 90.32 71.25 54.37
BSIS 93.68 78.25 73.75

Tab. IX Identification results of CNN-LSVMHL, LSVM and SVM on ISIS and
BSIS.

As can be seen from Tab. IX, the identification accuracy of CNN-LSVM is sig-
nificantly higher than those of LSVM and SVM in the identification experiments
of ISIS and BSIS. This is because CNN can automatically extract and combine the
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Feature
Parameter

Dimension Dimension
Category Number Total

Feature
H, S and V of the first moment in HSV color space. 3 6

Category
H’, S’ and V’ of the second moment in HSV color
space.

3

Energy (E), entropy (H), inertia moment (I) and
Relevance (C) of Gray Level Co-occurrence Ma-
trix on the 0 degree in RGB and HSV color space.

8 32

Texture

Energy (E), entropy (H), inertiamoment (I) and
Relevance (C) of Gray Level Co-occurrence Ma-
trix on the 45 degreein RGB and HSV color space.

8

features Energy (E), entropy (H), inertia moment(I) and
Relevance (C) of Gray Level Co-occurrence Ma-
trix on the 90degree in RGB and HSV color space.

8

Energy (E), entropy (H), inertia moment (I) and
Relevance (C) of GrayLevel Co-occurrence Matrix
on the 135 degree in RGB and HSVcolor space.

8

Hu invariant moments:
m(1),m(2),m(3),m(4),m(5),m(6),m(7).

7 11

Texture Measure of disease spot. (S) 1
features Perimeter of disease spot. (L) 1

Roundness of disease spot. (C) 1

Tab. X Feature extraction of wheat leaf disease images.

abstract features in the deep level of images. They are not only abundant in num-
ber, but also better reveal the true distribution of pixels. The number of artificially
extracted features is limited and they are usually located in the shallow level of the
image and thus the representation ability is not strong, which leads to the lower
identification accuracy. The identification accuracy of LSVM in identification of
ISIS is also obviously higher than that of SVM, which is due to that the penalty
factor and the assignment mechanism are added to LSVM, the algorithm becomes
more sensitive to the number, proportion and spatial distribution of imbalanced
samples. The penalty factors can correct the trend of the model in time when
there is an error caused by the imbalance phenomenon. Although the accuracy of
LSVM in identification of BSIS is higher than that of SVM, the superiority is not
significant. This is because BSIS does not have the imbalance problem and the 2
algorithms are equal in this respect, but LSVM can make better use of the local
information of samples to obtain higher identification accuracy.

4. Conclusions

In order to improve the low identification accuracy of imbalanced wheat leaf dis-
eases images by CNN, LSVM is introduced as classifier to generate CNN-LSVM
in this paper. By adding the penalty factors in the optimization objective func-
tion corresponding to the imbalance of the data set, the model is more sensitive
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to the misidentification caused by imbalance. Penalty factors are assigned by cost
sensitive matrix. The cost sensitive matrix comprehensively takes into account
the imbalance between the number and spatial distribution of wheat leaf disease
images.

The experimental results show that CNN-LSVM has higher classification accu-
racy and faster model convergence rate when identifying imbalanced and balanced
wheat leaf disease images. Especially in the classification experiments of imbal-
anced datasets, the improvement of accuracy is more obvious.
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