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Abstract: WSN: Wireless Sensor Networks play a significant part in its modern
era but its limited power supply acts as a blocking stone in it growth. In order
to save energy in WSN the concept of aggregator node is introduced, where the
aggregator node would act as a mid-point between the source and destination node
during the data transmission. The data aggregation process creates major problems
like excess energy expenditure, and delay. In the process of eliminating or reducing
the delay and energy expenditure, the researchers have been handled in different
ways. Applications like environment monitoring, target tracking, military surveil-
lance and health care require reliable and accurate information. Many researchers
have proposed data aggregation techniques to enhance the latency, average en-
ergy consumption and average network lifetime. However, these techniques are not
sufficient to address situations like node failure and loss recovery. This paper pro-
poses to build a solid wireless sensor system which concentrate on efficient optimal
data aggregation along with additional QoS metrics such as failure detection and
loss recovery. The first contribution of this paper is to propose an Improved Wolf
Optimization (IWO) algorithm for clustering. The clustering process includes an
efficient cluster formation like, Cluster Head (CH), and Sub Head (SH) selection.
The second contribution of this paper is inclusion of failure detection and loss
recovery. The former is developed based on Multi-criteria Moths-Flame Decision-
making (MMFD) model and the latter is achieved through SH. SH node will act
as the backup node for cluster head when failure instances are detection. CH re-
covers the lost data through SH, which minimize the additional delay of backup
node selection process and save much more energy. The results are simulated using
network simulator 2 tool and it is compared with existing techniques. The Network
Simulator – 2 results disclose that the findings are better than the available existing
methodologies.
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1. Introduction

In any sensor network deployments the number of sensing nodes and that varies
in number from few hundred and goes up to many hundreds in order to perform
a specific operation. Those nodes are in-expensive and very small in size. Those
sensor nodes are built with very limited inbuilt memory and a transceiver antenna
for communication purpose along with a processing unit which is capable to do
limited intelligent tasks. The possible ways to guarantee the successful data re-
ception in the event of, the sensor nodes are failed during the operation is the
bottle neck of WSN [1]. In the common fabrication methods, the sensing nodes
are built with an integrated processor. However, the real time complication like,
overall cost, scalability in any extend, tolerances level during node failures and so
on, are in need to be addressed in justifiable level. These are important factors in
realization of wireless sensor network [2]. The sensors networks are prone to fre-
quent failure, because of many applications. There is a need to deploy the sensors
in harsh and contaminated environments such as battlefield, tough weather condi-
tions etc., and deployed sensor might suffer from many faults due to environmental
impacts such as lightning, dust and moisture. These things will reduce the quality
of wireless communications and possibly divert the sensor nodes from its desirable
operations [3]. These failures might be the cause for data failure and functional
failures in WSN and also, the defect arises out of hardware components of sen-
sors networks due toits low cost components as well as nano scale components,
which also negatively impacts the desirable network operations [4, 5]. In addition
to these complications, the software “bug” also significantly impacts the network
operations [6–8]. Data failures would lead to incorrect response from the network
manager, and the faulty nodes are responsible for inaccurate routing which leads
to heavy energy loss into the system,and also data’s through intermediate faulty
nodes leads to unpredictable losses in the wireless sensor network.

Many faultfinding methods have been established to identify the failures in the
wireless sensor network. A distributed solution for a canonical task [9] is used
to detect environmental events failure in WSN. A fault-tolerant based clustering
technique which is based on clock synchronization scheme, in this method, the
clustering is done at each and every rounds of the clock synchronization [10]. The
mechanism based on probabilistic Bayesian decoding technique [11] is effectively
employed in detection and resolving the faulty sensor readings from the WSN
deployment by examining the values of spatial correlation, which understands the
impressions of the nearby sensors and this, is the base for the technique. And
this is the first protocol developed for fault tolerance in a single-hop network, and
it brought improvements in energy efficiency and also provided the solution for
fault tolerant and problems in permutation routing [12]. The first paper which
classified the fault [13] issued the fault-tolerant fusion rule to make the decision
about the failures from the local sensors, in this methodology, the decision fusion
is combined with an integrating channel decoding for fault-tolerant classification.

302



Raja Basha A., Yaashuwanth C.: An optimal data aggregation scheme for wireless. . .

The combined technique has brought a new rule of fusion, where the local decision
rule integrates with soft decision decoding with introduction of no redundancy [14].

To identify the faults in the wireless sensor network a fault management sys-
tem is placed which will identify the faults either online and offline and classify the
same [15]. An anomaly detection approach [16] has a passion of fusion which will
fuse the gathered data from the different sensing nodes with the utilization of princi-
pal component analysis. To detect the dissimilarities in WSN CESVM and QSSVM
are used which are pronounced as cantered hyper ellipsoidal support vector ma-
chine and quarter-sphere support vector machines. These two techniques are very
effective in identifying the dissimilarities from wireless sensor networks [17]. The
approach which addresses the very limited diverse level of fault tolerance without
using the extensive number of relay node is demonstrated as one of the impact-
ing methods [18]. A data aggregation method with fault tolerant capability has
achieved the aggregation tree repair activity without any initiated operation only
with the help of local information and also automatically reschedules the nodes to
achieve interference free data aggregation [19]. A recursive subspace tracking tech-
nique is used to detect the fault in online itself, and this detection approach would
also track the fault with the utilization of OPASTA: orthonormal projection approx-
imation subspace tracking algorithm to minimize the arithmetic complexity [20].
This OPASTA is efficiently used to calculate the Eigen-vector and Eigen-values
at the places where the fault occurred. This paper proposes a Quality of Service
contributed Optimal Data Aggregation (Q-ODA) technique with efficient failure
detection and loss recovery. The modified moth flame decision-making algorithm
(MMFDM) is used to achieve the failure detection and an improved wolf optimiza-
tion (IWO) algorithm is used for clustering with selected backup node (SH) is used
to achieve the loss recovery.

The proposed Q-ODA technique consists of two fold. First, the efficient clus-
tering is performed by Improved Pair Detection (IPD) algorithm using the position
and velocity of sensor nodes. Those QoS metrics from each and every cluster mem-
ber are collected for the purpose of computation of the Rank of the sensor nodes.
The node which has the highest rank in the cluster is selected as Cluster Head
(CH), the node which has the second highest rank in the cluster is selected as Sub
Head (SH). The QoS parameters are time varying functions and hence the ranks are
flexible with parameter which make CH and SH are time varying and depend on the
Rank. The failure detection is performed by the multi-criteria moth-flame based
decision-making (MMFD) model with the prior knowledge of statistical distribu-
tions of sensing data i.e. delivery rate, loss rate, delivery time, overhead of received
data at receiver end. With the analysis based on this result, we may classify the
received aggregated data as normal and fault. On this fault detection process,
when the detected fault is caused by the cluster member (SH) then, the proposed
technique finds the nearby best Rank node for further process. When the detected
fault is caused by the H node means, the proposed technique automatically choose
SH as H node.

The below phrases will elaborate the contributions done on this paper:

1. The clustering is done using Improved Pair Detection method where the fun-
damental pair detection algorithm is modified with two scenarios to provide
better pair selection and this process is based on the Rank system which is
energy efficient and less selection process
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2. Q-ODA the proposed technique shall utilize the simple decision-making model
rather than the Support Vector Machine which is used for the failure detection
in SFDLA [31]

3. Does not require any additional algorithm for backup node selection process
since the Q-ODA chooses SH from available H node without requiring any
new algorithm. SH acts as H in the event of header node failure

4. The proposed Q-ODA is computed using network simulator 2 tool and the
results are compared with the existing methodologies namely DFTR [21],
PDAFT [22], FIDA [24], EMDC [28], MDFU [30] and SFDLA [31] and the
simulation results emphasis our proposed work an edge over than the above
methodologies specifically in relations with energy consumption, End-to-End
delay, data delivery ratio, data accuracy, network lifetime, failure rate, and
cost of data aggregation.

In this paper work, the contributions of the fellow researchers are elaborated
in Section 2. The problem statement is done at Section 3. The proposed Q-ODA
scheme along with mathematical model derivation is explained in detail at Sec-
tion 4. The detailed analysis of network simulator outputs and its performance
comparisons are explained in Section 5. At Section 6 this paper concludes with the
result.

2. Related works

A DFTR: Distributed energy efficient and fault tolerant routing algorithm is de-
veloped by Azharuddin et al. [21]. In their work, they have achieved the focussed
energy efficiency through the selection process of one hop to another hop during
data transmission. The routing process works on the proposed algorithm which
ensures data byte transfer from successive node in case of cluster head failure. The
compromising points of this method are cost function. And it is computed from the
distance between the gateway to BS (Base Station) and the gateway of next-hop
to BS along with the cost estimation of BS and the gateway residual energy of the
next-hop which is complex and less attractive

Chen et al. [22] came up with a scheme called privacy-preserving data aggre-
gation for secure smart grid communication with fault tolerance (PDAFT). They
have utilized an encryption method known as Homomorphism Parlier Encryption
to secure the sensitive information of the user, because of this over cover makes the
base station about no clue about the originating node of the received data. Their
work missed to demonstrate any strong cover to individual node since they have
compromised a few servers at the Base station control unit.

The major privacy issue faced by the mobile nodes in the wireless sensor net-
work is addressed by Chen et al. [23]. They proposed a private data aggregation
technique they have efficiently handled the sensing problems faced by mobile crowd.
They have sensibly handled the connections and disconnections of the mobile nodes
through the group management protocol which also deals with the data-integrity
verification process in which it had addressed the retreat of data weakness of spe-
cific data range. A specific buffering methodology is proposed by the authors to
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deal with the fault tolerance of a future message. Over head during computation
as well communication difficulties are over come at a desired level while deploying
this methodology.

Wu et al. [24] developed a technique called FIDA: fault influence domainan
alysis scheme or wireless sensor network. They have proposed a domain information
system to convey the failure details to the system in the event of fault occurrences.
They have grouped the main administration into main and sub system where the
sub system keeps getting the guidelines to arrange resource management in the
event of failure. These arrangements effectively contribute to overcome the impact
of failure. The simulation with discrete event demonstrates that this domain based
system has considerable impact on failure handling in WSN.

Cheraghlou et al. [25] have proposed failure identification and retrieval mecha-
nisms for numerous fault levels in wireless sensor network. In their work they have
included ways to addresses the fault arises out of node to node communication and
fault at each and every node level as a results the networks fault tolerance level
and communication failure tolerance level increased considerably along with three
to five fold increase in life span of the overall sensor network is visualized. But all
these are not achieved with a cost while executing this protocol the information in-
terchange is enormously increased which results in much more energy expenditure
than saved because of this method and the end results in overall life span of the
WSN is reduced.

Xu et al. [26] have proposed an optimization algorithm to investigate the packet
loss rate during data transmission and queuing waiting delay under self-similar data
movement flow of WSN. Their proposed work is based on no dominated sorting
genetic algorithm. Their functional concentration is self-similar QoS parameter and
they have named it like B is the function cache and the channel data transfer rate
is C and they have done the computation of B and C at different quality of service
constrained environments. The outcome of this method is special administrative
mechanism which effectively handled the queuing delay and data byte loss of the
wireless sensor network.

Mahdi et al. [27] have proposed a weighted data aggregation routing to achieve
maximum possible data aggregation using hop-tree. Based on the local states
of each and every node the hop-tree is build and it keeps updated based on the
same through which the adaptive performance of the node shall be obtained for
event-driven WSNs. The energy saving is achieved by this methodology through
finding shortest path between the sink and source node through finding the ideal
point where the route gets overlapped. Based on the distribution, comprehensive
weights and adaptive cost the next hop is selected for data byte transmission which
they called triple cost function.

Henna et al. [28] have proposed an ideal solution to the excess energy spent
during the relay action of the fault tolerance processes of wireless sensor networks.
They have come up with approximation which could be proved mathematically and
they have called it EMDC: Energy Efficient Maximum Disjoint Coverage. Through
this approximation they have shorted out the problem of target coverage in fault
tolerance without much energy expenditure. And also it is the continuous work of
Adam Raja Basha [34–36].
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Guan et al. [29] have presented one of the best performing fault tolerance meth-
ods for smart grid environment with highest user security. They named it as Secret
Sharing of Aggregated Data with Fault Tolerance. The outcome of this proposed
algorithm is the base station or control unit receives the aggregated data with
complete user privacy and their method affectively functions even the situation
of differential attack on node during the data aggregation process. The security
analysis and performance evaluation of this scheme meet the safety obligations of
wireless sensor network. The results are comparatively has better outcome than
the other methodologies.

Almeida et al. [30] have presented a technique called MDFU: Mass Distribution
with Flow-Updating protocol using the Flow Updating concept to classic Mass
Distribution in WSN. The experimental evaluation of the mass distribution based
FU protocol becomes the first proof of its validation as well as the time required for
convergence is an evident that the stochastic message loss which will produce very
low overhead. The heuristic adjustment of MDFU provides the proportionality
with the loss in message rate with fixed deviation. It has better results than the
many of the flow based and mass distribution based protocols proposed for wireless
sensor network. The working difference of this proposed work in comparisons with
other related technologies are listed in Tab. I.

Reference Technique Type followed Contributed
parameters

[21] Distributed Fault
Tolerance Routing

Cluster/chain based Cost

[22] Privacy-preserving
Data Aggregation
for Fault Tolerance

Non-cluster based User Data Encryption

[24] Fault Influence
Domain Analysis

Non-cluster based Fault Tolerance

[28] Energy efficient
Maximum Disjoint
Coverage

Non-cluster based Delay, Energy
consumption

[30] Mass Distribution with
Flow-Updating

Non-cluster based data accuracy

[31] S SVM-based failure
detection and loss
recovery

Cluster based failure rate, Packet
drop

ours optimal data
aggregation (ODA)

Cluster based Energy consumption,
delay, delivery ratio,
data accuracy, net-
work lifetime, failure
rate, cost and data
aggregation

Tab. I Working difference comparison.
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3. Problem methodology and network model

3.1 Problem methodology

Kamalesh et al. [31] have developed a protocol called SFDLA: Support vector
machine Failure Detection and Loss recovery Algorithm in which they have done
the data aggregation by deploying the Support Vector Machine (SVM) for execution
of faultfinding and loss recovery in wireless sensor network. The cluster head opted
by the performance metrics as node connectivity, which have separated clusters
and the nodes s based on their location information. The cluster member in each
and every cluster would occupy as maximum node connectivity selected as by the
cluster head. When the clustering node obtains the binary data’s from the source
node, it will recognize the node failures of the source location based on the received
data by categorizing the faulty data and using SVMSFDLA technique minimizes
the packet drop, delay, transmission overhead and increases reliability.

From the existing papers [21–30], the authors have concentrated only on to
detect the faults rather than the corresponding loss recovery system. SFDLA
technique [31] overcomes that problem by the combined contributions, but the
employed SVM-based failure detection consumed much more power. They have
utilized a parameter correlation coefficient for fault classification which is not suit-
able for critical network. The cluster formation and backup node selection is also
not effectively described in SFDLA technique. Moreover, the designated standby
node, at any time may turn into a malicious and surely affects the activities of the
sensor node data’s [31]. To overcome the said complications of the wireless sensor
network, the proposed QoS concentrated optimal data aggregation (Q-ODA) tech-
nique become vital for the efficient sensor network. Most of the works considered
the general parameters, energy and delay are the quality metrics, in this paper,
include the additional parameters such as network lifetime, fault tolerance, and
cost function for quality check.

3.2 Network model

We have considered the wireless sensor network which has homogeneous in nature
and energy-constrained high density sensors nodes. They are distributed in random
manner over the specific area shown in Fig. 1. In this proposed work the Rank
computation is plays an important role based on which the clustering head is elected
for this purpose. Our proposed algorithm has grouped the sensing nodes and
collected its QoS metrics for Rank computation. The data is forwarded from source
node to destination node or base station through the head (H) node also called
aggregated node, that makes the communication to/from cluster takes place. The
main role would be played by aggregated node to avoid the data redundancy. It
has achieved through obtaining all the binary data information from nearby sensor
nodes and grouped it together as a single data stream as well as it will be routed
to BS through a single route as a single data bytes through which enormous energy
is saved as well the redundancy of data is avoided which results in better network
performance.
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Fig. 1 Network model of proposed Q-ODA technique 

4Proposed QoS concentrated optimal data aggregation technique 

The proposed QoS concentrated optimal data aggregation (Q-ODA) technique consists of 
two tires, first the clustering algorithm present in Section 4.1 and the fault detection describes in 
Section 4.2. 

Cluster member node

Head/Aggregated (H) node

Sub head (SH) node

Fig. 1 Network model of proposed Q-ODA technique.

4. Proposed QoS concentrated optimal data
aggregation technique

The proposed QoS concentrated Optimal Data Aggregation (Q-ODA) technique
consists of two tires, first the clustering algorithm present in Section 4.1 and the
fault detection described in Section 4.2.

4.1 Clustering using improved pair detection (IPD)
algorithm

In WSN, the end user will receive the final aggregated data through the BS (Base
Station). The main advantage of this aggregated data forwarding method brought
many advantages into the network. Specifically it reduces a much more data trans-
mission over head which results in much more energy savings in the wireless sensor
network. The concept called cluster which is a group of sensing nodes on a specific
geographic horizon and is much more helpful in data aggregation process. We may
define Clustering as a group of nodes in connection with few mechanisms. The
core need of WSN is its life term improvement which will be result of clustering
since the lifetime of the WSN is act as a vital tool to analyse the performance of
any WSN. Another handful merit of clustering is its scalable property along with
energy expenditure minimizations in the wireless sensor network. Construction of
the clustering also comprises the passing on the part to the node on the basis of
their perimeters.
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Clustering may cause abrupt packet drop in the network. Hence, it is highly
important to overcome which is done in the proposed work with the implementation
of Improved Pair Detection (IPD). IPD easily overcomes such a scenario, even the
critical mission durations; in this implemented approach we have consider the 1+N
path protections for a secured and reliable network. By using 1+N path protection
strategies, the ingress node considers the 1+N disjoint paths to send similar copies
of the burst. Hence this will secure the network from the fear of simultaneous link
failures of N links.

This proposed buffer less IPD network has N sets of nodes which are considered
with a maximum of T numbers of trunks for the given network. Considering an
ingress/egress node, at the edge of the network, with M trunks (where MεT ) to
support FM number of nodes with each and every cluster would supporting W
number of wavelengths through themin which each wavelength is considered to
support S sub-wavelength channels.

• Case 1: With distinct number of sub wavelength channels, each node is car-
rying different number of wavelengths. In which each trunk has different
number of node.

• Case 2: With same number of sub wavelength channels and each node is
carrying the same number of wavelengths. In which each trunk has same
number of nodes.

Number of channels carried by M is given as,

CM =

{
FM ×WM × SM full wavelength conversion scenario
FM ×WM no wavelength conversion scenario

for case 1, (1)

C =

{
F ×W × S full wavelength conversion scenario
F ×W no wavelength conversion scenario

for case 2. (2)

For j pair of source and destinations in the given network, the route with
minimum number of hops is used as the primary path P jprimary. The route with
minimum number of hops, excluding the primary path, is considered to be having
a protected path of P jprotected for the considered Source-Destination pair in the con-

sidered Optical Burst Switching (OBS) network. Excluding the P jprimary path, the

first protected path is considered as P jprotected1
. Similarly for the next protected

path both the P jprimary path and P jprotected1
path is excluded and the next path with

least number of hops is considered as P jprotected2
(Second protected path). This pro-

cess will continue until P jprotectedN
total paths are evaluated. When a premium burst

is received at the ingress node, it will send the same through its primary path to-
wards the destination, P jprimary and copies the same burst through each protected

path P jprotected1
, P jprotected2

, . . . , P jprotectedN
simultaneously. Similarly when a regu-

lar burst arrives at the ingress node, the same will only be sent to the destination
through the available primary path and no protected paths are employed in trans-
mission.Poisson process with rates µjpremium and µjregular are considered for burst
arrival for both the type of users respectively.
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The traffic offered by each source-destination pair, for j ∈ ψ (where ψ is the total
number pair in the network considered), the primary path experiences premium

traffic P jprimary =
µj
premium

mean value and protected path experiences traffic of P jprotectedN
=

µj
premium

mean value .

Hence P jprimary = P jprotectedN
=

µj
premium

mean value (i.e. both the paths are considered

to be mutually independent). Similarly for the same given number of source-
destination pair, the regular traffic offered to the primary path is denoted as

P jregular =
µj
regular

mean value . The burst reaches the ingress node at first will randomly
chooses one wavelength among all the trust available at path between the source-
destination pair. Only if all channels in all the given wavelengths are found busy,
the burst is blocked to propagate through the given trunk. And if any of the chan-
nels in any of the wavelength is found free, it is employed for the propagation of the
burst. When the centre positions are obtained precisely then the cluster is called
as the best configured cluster. The assigned centre points are helpful in increasing
the horizons of the clusters. The function of objective is derived from the Eq. (3).

F =

N∑
i=1

M∑
j=1

‖xi,j − C‖2 . (3)

In the Eq. (3) N represents the nodes count in the cluster, the total clusters
count is represented by M . The i-th node belongs to the j-th cluster. For each
and every search agent characterizes a set of M centres and it provides a hint that
how fit was this agent. It is understandable that the least value of F is lies with
the fittest search agent. In clustering, each and every cluster has its corresponding
individual nodes of that particular horizon. It is the rule of Thumb is that the
assignment is always done with the cluster which has the minimum distance with
centre. The nodes are assigned to clusters based only on minimum distance to
centre. After cluster formation, BS collects QoS metrics such as end-to-end delay,
energy consumption, network lifetime, fault tolerance, and cost function from every
sensor node in the network.

Each and every nodes current level of battery is at the time of initializing any
simulation is called as Energy consumption (x1) of that node, in simple terms it
is also known as initial energy. During information interchange each node spares
some energy for that particular interaction interchange, which we call transmit
energy and receiving energy respectively. The basic quality of service parameter
is the End-to-end delay (x2) which is in simple terms defined as the average time
duration in which the data packets reaches its destination which also comprises all
kind of delays like route discovery process delay, packet waiting in queue delay. The
time duration consumed by the network to finish a particular task is called Network
lifetime (x3). Complete draining of Battery, interferences due to environmental
impacts and physical damage to sensing nodes are the common scenarios which
cause the sensing node gets failed, which are not affect the overall task i.e. called
Fault tolerance (x4). The capacity to retain the sensor node activities even the
scenarios of node failure encounter is called as Fault tolerance of a network in
simple terms the capacity to work even failure of some nodes. Cost function (x5)
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represents the maximum number of paths required to satisfy the fault tolerance
and reliability. In this proposed work, we have used the Rosenbrock function for
Rank computation of nodes as follows:

F (x) =

3∑
i=0

[
(
(
xi+1 − x2

i

)
(10× 10)) + (xi − 1) (xi − 1)

]
; i = 0, 1, . . . , n (4)

Now, select head (H), sub head (SH) node as

H = max
i
{F (x)} , (5)

SH = max
i−1

(F (x)) . (6)

The final simplified format of the IPD (improved pair detection) has been displayed
in the below Algorithm 1 in Detailed way

Algorithm 1 Clustering using improved pair detection (IPD) algorithm.

Input: number of populations, control variables
Output: cluster formation, head (H), sub head (SH) selection

1: Initialize the burst of populations
2: for each search do
3: Compute CM and C using Eq. 1.
4: while the CMnot assigned C do
5: Assign node to it is nearest C
6: end while
7: end for
8: for i = 1 to n do
9: for j = 1 to k do

10: X1(Pi, Cj) = Compute (energy consumption between node i and j)
11: X2(Pi, Cj) = Compute (delay between node i and j)
12: X3(Pi, Cj) = Compute (network lifetime between node i and j)
13: X4(Pi, Cj) = Compute (fault tolerance between node i and j)
14: X5(Pi, Cj) = Compute (cost between node i and j)
15: Calculate Rank (R) using Rosenbrock function (11)
16: end for
17: end for
18: for i = 1 to n do
19: H = maxi(F (x))
20: SH = maxi−1(F (x))
21: end for
22: Return: Cluster, CH, and Level

4.2 Failure detection using multi-constraints moth-flame
decision-making (MMFD) model

The moth-flame flies having a special character that it has a unique navigation
technique which it exhibits during night time. In simple terms it will keep on a
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particular angle with moon throughout its path during the long night time travels
even the moth flame displays such characteristics with man-made light sources
that it will try to maintain a straight path which results in spiral route because
of artificial light source based on which the moth-flame optimizer (MFO) [32] is
developed which is a metaheuristic optimization technique. To put those thing
mathematically the matrix format is employed where X denotes a group or set
of moth flies by keeping all into an array format which represented by Xa. After
the naming the corresponding fitness values also stored in the same order. Lames
are the second constituents of the algorithm and it has denoted by F matrix, the
similar fashion Fa array represents their fitness values respectively.

In this paper, we have utilized this optimizer as decision making model with
multi-constraints inputs related to the fault classification, named as MMFD model.
The multiple constraints are loss rate, delivery time, and overhead at the time of
data forward from one node to others. Here, we have utilized the same Rosen-
brock function for fault level computation. When the output level is low the data
forwarded node denotes as normal node (consider below 0̃.5), otherwise, the node
treat as faulty.

Node =

{
normal; 0 < F (x) < 0.5
faulty; otherwise

. (7)

In this proposed work, by deploying above technique any fault in the network is
identified since the cluster head and members of the cluster may faces the situation
of node fault or node failures. And it will compute the backup node from the
neighbour of fault occurred node with minimum fault level. When the system
identifies faults in H nodes then this technique automatically chooses the highest
rank SH into H since SH will act as a backup node. The MMFD model starts with
the initialization process and the problem of optimization derived from Eq. (6)

MMFD (Multiconstraints Mot Flame Decision) = (K,S,T) , (8)

where K represents the function of random population K→ {X,Xa}, S represents
the fault level of data forwarding sensor nodes around search space S→ X. The T
represents the termination criteria T → {True,False}. Once the execution starts,
the function S runs iteratively, till the time the termination criteria return back to
true status. The behaviour of forwarding data will be updated with respect to a
destination direction as follows:

Xi = s (Xi, Fi) , (9)

where s represents the spiral function, i and j represents the i-th data, j-th desti-
nation respectively. The spiral’s starting point and ending point should be placed
such that the forwarded data as the origin and the placement of destination as
terminal point. Where it has to be fixed like search space as dead end and all kind
of fluctuations in the spiral path should not exceed it. MMFD’s logarithmic value
of a spiral is defined by Eq. (10)

s (Xi, Fi) = |Fj −Mi| ebt cos (2πr) + Fj , (10)

where |Fj −Mi| specifies the remoteness of the i-th data aimed at the j-th node,
and the denotation r indicates the random number and the symbol b represents
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logarithmic spiral shape. The fault level of forwarded data with respect to desti-
nation is defined from Eq. (10). And also parameter r is used to define the number
of faults present in the forwarded data. In order to upsurge the assortment of fault
level computation against premature convergence and accelerate the convergence
speed, we have improved the MMFD model by the Levy-flight. It has the projecting
stuffs to upsurge the diversity of fault levels, consecutively, and this could create
this excellently jump out of the local optimum. The new fault level of forwarded
data updated as follows:

X2
i = X1

i + u sign [r − 0.5] ⊕ Levy (O) , (11)

where the uniform distribution is confirmed by the random parameters t and u,
sign [r − 0.5] is taken as 1, 0, and −1. Levy-flight computes the fault detection
rate with the computed step lengths and the jumps conform to a Levy distribution
as follows.

Levy (O) ≈

 Γ(1+O)×sin(π×O
2 )

Γ

(
( (1+O)

2 )×O×2
(O−1)

2

)
 1

O

× µ

|ν|
1
O

(12)

The complete fault detection is formalized in Algorithm 2 which gives detailed in
sight about how the work is done.

µ and ν represent the standard normal distributions, O = 0.5, Γ represents the
standard Gamma function. To sum up, the random walk with Levy-flight is used
to add value point to the global search ability of this algorithm.

5. Simulation results

In this section, we have presented the NS-2 (Network Simulator 2) simulation
results discussion of this proposed Quality Concentrated Optimal Data Aggregation
(Q-ODA) technique and the results are compared with the performance of the
existing methodologies.

5.1 Simulation parameter and setup

The simulation performed by randomly deployed sensor nodes with a size of 1000×
1000 m2. The number of nodes is varied by 20, 40, 60, 80, 100, and 120. The radio
range of sensor node is 50 m with the first order radio model. The BS is located in
the left side corner of the sensor field. The data rate of each node is 512 bits/s. The
initial energy level of each node is 10 J. The data packet size of each node is 64 bytes.
The simulated traffic is constant bit rate (CBR). The simulation parameters are
summarized in Tab. II. In the first scenario, we vary the number of nodes by 20,
40, 60, 80, 100, and 120. In the second scenario, we vary the number of faults by
5, 10, 15, 20, and 25 with fixed number of nodes as 120. The total simulation will
take the time period of 1000 s. The performance of proposed Q-ODA technique is
analysed with the prevailing techniques and specifically DFTR [21], PDAFT [22],
FIDA [24], EMDC [28], MDFU [30] and SFDLA [31]. The comparisons are done in
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Algorithm 2 Fault detection using multi-criteria moth-flame decision-making
(MMFD).

Input: populations, search space, max. iteration
Output: fault classification and recovery

1: Initialize the loss rate, delivery time, and overhead of populations
2: Iteration = 0
3: for i = 0 to n do
4: compute initial solution using Rosenbrock function Eq. (11)
5: compute best, worst population
6: for j = 0 to k do
7: compute new solution using Eq. (17)
8: if (new solution > initial solution) then
9: solution = new solution

10: else
11: solution = initial solution
12: end if
13: end for
14: end for
15: if (iteration < max. iteration) then
16: iteration = iteration +1
17: else
18: Stop
19: end if
20: for x = 0 to m do
21: if (solution > 5) then
22: population = normal
23: else
24: population = fault
25: end if
26: for y = 0 to n do
27: if (fault = population member) then
28: select neighbour as backup population
29: else
30: backup = SH
31: end if
32: end for
33: end for
34: Return faulty detection and recovery

terms of energy consumption, delay, delivery ratio, data accuracy, network lifetime,
failure rate, and cost of data aggregation.

5.2 Varying number of nodes

In this test, we have varied the number of nodes form 20 to 120 with the fixed
faults as 5.
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Parameter Value

Size of the Network 1000× 1000
Quantity of nodes 20, 40, 60, 80, 100, and 120
Traffic source CBR
Radio range 50 m
Deployment type Random model
Data rate of node 512 bits/s
Initial energy of node 10 J
Data packet size 64 bytes
Simulation time 1000 s

Tab. II Simulation parameters for Scenario 1.

Fig. 2 (Explains how long it takes to transfer single bit of information in bi-
nary form from one node to another node i.e., Delay while increasing number of
Nodes) shows the delay comparison of proposed Q-ODA and existing techniques.
The plot clearly depicts the delay of proposed Q-ODA technique is very low in
terms of 42% than DFTR, 36 % than PDAFT, 37 % than FIDA, 34 % than EMDC,
35 % than MDFU and 41 % than SFDLA techniques. Fig. 3 (Explains percent-
age of data delivery rate from one node to another node while increasing number
of Nodes) shows the packet delivery ratio comparison of proposed Q-ODA and
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Fig. 2 Delay comparison with varying nodes.
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existing SFDLA technique. The plot clearly depicts the packet delivery ratio of
proposed Q-ODA technique is very high in terms of 32 % than DFTR, 30 % than
PDAFT, 31 % than FIDA, 33 % than EMDC, 25 % than MDFU and 34 % than
SFDLA techniques.
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Fig. 3 Packet delivery ratio comparison with varying nodes.

Fig. 4 (Explains how much energy is consumed by individual nodes while en-
gaging data transfer from one node to another node while increasing number of
Nodes) shows the energy consumption comparison of proposed Q-ODA and exist-
ing SFDLA technique. The plot clearly depicts the energy consumption of proposed
Q-ODA technique is very low in terms of 43 % than DFTR, 22 % than PDAFT,
32 % than FIDA, 36 % than EMDC, 24 % than MDFU and 41 % than SFDLA
technique.
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Fig. 4 Energy consumption comparison with varying nodes.

Fig. 5 (Explains Jitter presents during data transfer from one node to another
node while increasing number of Nodes) shows the jitter comparison of proposed
Q-ODA and existing SFDLA technique. The plot clearly depicts the jitter of
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Fig. 5 Jitter comparison with varying nodes.

proposed Q-ODA technique is very low in terms of 32 % than DFTR, 33 % than
PDAFT, 35 % than FIDA, 36 % than EMDC, 35 % than MDFU and 36 % than
SFDLA technique.

Fig. 6 (Explains Calculate the battery left that is network lifetime of the de-
ployed wireless sensor network while increasing number of Nodes) shows the net-
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Fig. 6 Network lifetime comparison with varying nodes.
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work lifetime comparison of proposed Q-ODA and existing SFDLA technique. The
plot clearly depicts the network lifetime of proposed Q-ODA technique is very high
in terms of 23 % than DFTR, 25 % than PDAFT, 32 % than FIDA, 30 % than
EMDC, 24 % than MDFU and 34 % than SFDLA technique. Fig. 7 (Explains Cal-
culation of throughput of the network in simple terms estimation of delay present
in the network while engaging the data transfer from one node another node) shows
the throughput comparison of proposed Q-ODA and existing SFDLA technique.
The plot clearly depicts the throughput of proposed Q-ODA technique is very high
in terms of 23 % than DFTR, 42 % than PDAFT, 42 % than FIDA, 46 % than
EMDC, 44 % than MDFU and 31 % than SFDLA technique.
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Fig. 7 Throughput comparison with varying nodes.

5.3 Varying number of faults

To the execution of the test the parameters mentioned in Tab. III have been incor-
porated. In this test, we vary the number of faults form 5 to 35 with the fixed node
as 120. Fig. 8 (Explains how long it takes to transfer single bit of information in
binary form from one node to another node i.e., Delay while increasing number of
Fault Nodes) shows the delay comparison of proposed Q-ODA and existing tech-
niques. The plot clearly depicts the delay of proposed Q-ODA technique is very
low in terms of 22 % than DFTR, 23 % than PDAFT, 24 % than FIDA, 25 % than
EMDC, 26 % than MDFU and 27 % than SFDLA techniques. Fig. 9 (Explains
percentage of data delivery rate from one node to another node while increasing
number of Fault Nodes) shows the packet delivery ratio comparison of proposed
Q-ODA and existing SFDLA technique. The plot clearly depicts the packet deliv-
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Parameter Value

Size of the Network 1000× 1000
Quantity of faults 5, 10, 15, 20, and 25
Traffic source CBR
Radio range 50 m
Deployment type Random model
Data rate of node 512 bits/s
Initial energy of node 10 J
Data packet size 64 bytes
Simulation time 1000 s

Tab. III Simulation parameters for Scenario 2.
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Fig. 8 Delay comparison with varying faults.
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Fig. 9 Delivery ratio comparison with varying faults.
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ery ratio of proposed Q-ODA technique is very high in terms of 31 % than DFTR,
32 % than PDAFT, 35 % than FIDA, 38 % than EMDC, 27 % than MDFU and
34 % than SFDLA techniques.

Fig. 10 (Explains how much energy is consumed by individual nodes while
engaging data transfer from one node to another node while increasing number
of Faulty Nodes) shows the energy consumption comparison of proposed Q-ODA
and existing SFDLA technique. The plot clearly depicts the energy consumption
of proposed Q-ODA technique is very low in terms of 35 % than DFTR, 32 %
than PDAFT, 26 % than FIDA, 28 % than EMDC, 29 % than MDFU and 37 %
than SFDLA technique. Fig. 11 (Explains Jitter presents during data transfer
from one node to another node while increasing number of Faulty Nodes) shows
the jitter comparison of proposed Q-ODA and existing SFDLA technique. The
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Fig. 10 Energy consumption comparison with varying faults.
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Fig. 11 Jitter comparison with varying faults.
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plot clearly depicts the jitter of proposed Q-ODA technique is very low in terms
of 32 % than DFTR, 33 % than PDAFT, 35 % than FIDA, 46 % than EMDC,
35 % than MDFU and 56 % than SFDLA technique. Fig. 12 (Explains Calculate
the battery left that is network lifetime of the deployed wireless sensor network
while increasing number of Faulty Nodes) shows the network lifetime comparison
of proposed Q-ODA and existing SFDLA technique. The plot clearly depicts the
network lifetime of proposed Q-ODA technique is very high in terms of 43 % than
DFTR, 35 % than PDAFT, 42 % than FIDA, 40 % than EMDC, 44 % than MDFU
and 45 % than SFDLA technique.

Fig. 13 (Explains Calculation of throughput of the network in simple terms
estimation of delay present in the network while engaging the data transfer from one
node another Faulty node) shows the throughput comparison of proposed Q-ODA
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Fig. 12 Network lifetime comparison with varying faults.
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Fig. 13 Throughput comparison with varying faults.
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and existing SFDLA technique. The plot clearly depicts the throughput of proposed
Q-ODA technique is very high in terms of 34 % than DFTR, 36 % than PDAFT,
38 % than FIDA, 40 % than EMDC, 41 % than MDFU and 43 % than SFDLA
technique.

6. Conclusion

This research work has proposed an optimal data aggregation (Q-ODA) with fail-
ure detection and loss recovery techniques. In this work, at first phase we have
implemented an efficient aggregation scheme based on the Improved Pair Detec-
tion (IPD) algorithm which becomes the energy efficient clustering process with
cluster head (H) and sub head (SH) selection in that the SH would act as backup
node to recovers the lost data on the second phase, the multi-criteria moths-flame
decision-making (MMFD) model is utilized to detects failure in the network. The
result analyses have proved that the efficiency of this proposed Q-ODA technique
in terms of delay, delivery ratio, energy consumption, jitter, network lifetime and
throughput are outperformed over the existing techniques.
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