
FPGA IMPLEMENTATION OF ANN
TRAINING USING LEVENBERG AND

MARQUARDT ALGORITHMS

M.A. Cavuslu∗, S. Sahin∗

Abstract: Artificial Neural Network (ANN) training using gradient-based Leven-
berg & Marquardt (LM) algorithm has been implemented on FPGA for the solution
of dynamic system identification problems within the scope of the study. In the
implementation, IEEE 754 floating-point number format has been used because
of the dynamism and sensitivity that it has provided. Mathematical approaches
have been preferred to implement the activation function, which is the most critical
phase of the study. ANN is tested by using input-output sample sets, which are
shown or not shown to the network in the training phase, and success rates are
given for every sample set. The obtained results demonstrate that implementation
of FPGA-based ANN training is possible by using LM algorithm and as the result
of the training, the ANN makes a good generalization.

Key words: Levenberg and Marquardt, FPGA, MLP and ANN training

Received: October 15, 2017 DOI: 10.14311/NNW.2018.28.010
Revised and accepted: April 16, 2018

1. Introduction

Artificial neural networks (ANN), which can effectively model the nonlinear rela-
tionship between input and output in a system [1], are successfully used to solve
problems in many areas [2], [3], [4], [5]. Back-propagation (BP) algorithm is com-
monly used in training of ANNs [6]. But, BP algorithm has some disadvantages
such as lower training efficiency [7] and bad convergence speed [6].

Algorithms that require second derivative information such as Levenberg and
Marquardt (LM) prominently increases ANN’s learning speed [7]. LM algorithm,
which combines the speed of Newton algorithm and stability of the steepest descent
method, is used efficiently in network training [8].

The studies related to implementation of an ANN training and/or a trained
ANN on FPGA are presented in the literature. Ferrer, Gonzalez, Fleitas, Acle and
Canetti [9], Savich, Moussa and Areibi [10], Farmahini-Farahani, Fakhraie and Sa-
fari [11] have used fixed-point number format at various bit lengths. Nedjah, Silva,
Mourelle and Silva [12], Çavuşlu, Karakuzu and Şahin [13], Çavuşlu, Karakuzu,

∗Mehmet Ali Çavuşlu; Suhap Şahin; – Corresponding author; Computer Engineering, Kocaeli
University, Izmit, Kocaeli, Turkey, E-mail: alicavuslu@gmail.com, suhapsahin@kocaeli.edu.tr

c©CTU FTS 2018 161

mailto:alicavuslu@gmail.com
mailto:suhapsahin@kocaeli.edu.tr

Neural Network World 2/2018, 161–178

Şahin and Yakut [14], Çavuşlu, Karakuzu and Karakaya [15] have used floating-
point number format at various bit-lengths. Won, on the other hand, has used
integer format in his study [16].

Nedjah, Silva, Mourelle and Silva [12], Won [16], Çavuşlu, Karakuzu and Şahin
[13], Çavuşlu, Karakuzu, Şahin and Yakut [14], Çavuşlu, Karakuzu and Karakaya
[15], Savich, Moussa and Areibi [10] have used logarithmic sigmoidal approaches
as activation function. Farmahini-Farahani, Fakhraie and Safari [11], Ferrer, Gon-
zalez, Fleitas, Acle and Canetti [9], Farmahini-Farahani, Fakhraie and Safari [11],
Çavuşlu, Karakuzu and Karakaya [15] have used tangent hyperbolic activation
function approaches as activation function.

Won [16],Farmahini-Farahani, Fakhraie and Safari [11] have used look-up table
approach for hardware implementations of activation functions. Ferreira, Ribeiro,
Antunes and Dias [17], Ferrer, Gonzalez, Fleitas, Acle and Canetti [9], Savich,
Moussa and Areibi [10] have used piecewise linear approach.Nedjah, Silva, Mourelle
and Silva [12] have used parabolic approach. Çavuşlu, Karakuzu and Şahin [13],
Çavuşlu, Karakuzu, Şahin and Yakut [14], Çavuşlu, Karakuzu and Karakaya [15]
have used mathematical functional approach.

Savich, Moussa and Areibi [10], Çavuşlu, Karakuzu, Şahin and Yakut [14]
have used back-propagation algorithm for network training. Farmahini-Farahani,
Fakhraie and Safari [11], Çavuşlu, Karakuzu and Karakaya [15] have used PSO
algorithm in network training.

Implementation of ANN training with LM algorithm over FPGA in 32-bit
floating-point number format is explained in this study with examples in system
identification problems. Mathematical approach is used for neural cell activation
functions. The difference of this approach from other studies is the use of divi-
sion module in addition to the addition and multiplication modules used in the
piecewise linear and parabolic approaches. The approach used in the study has
advantages such as not requiring as much memory as in the reference table or con-
trol expressions as in the piecewise linear approach. Parallel RAM architecture,
which utilizes parallel data processing capability of the FPGA, is implemented to
ensure rapid parameter update, especially in systems that require online training.
Parameter update operations are reduced in the implementation phase with this
architecture, allowing the system to respond more quickly to updates.

2. Multilayer Perceptron

In MLP, the cells are organized as layers, and the outputs of the cells in a layer are
weighted and given as input to the next layer. MLP consists of 3 layers including
input layer, hidden layer, and output layer (Fig. 1). In Eq. 1, u1k refers to the total
value of kth cell in hidden layer, m refers to total input number, x refers to input
value, and ω refers to weight value. In the presentation of the weight values, upper
index parameter indicates the layer number. In lower index value, the first param-
eter refers to the relevant weight input index, and the second parameter indicates
the cell to which the weighted input value belongs. Output values obtained in the
hidden layer are given as input to the cells in output layer. Transfer of these values
to output after the weighting procedure is given in Eq. 2. In Eq. 2, n shows the
cell number in the output layer.

162

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

u1k =
m∑
i=1

ω1
ikxi + b1k

sk = ϕ
(
u1k

)
 k = 1, . . . , q (1)

u2k =

q∑
i=1

ω2
iksi + b2k

yk = ϕ
(
u2k

)
 k = 1, . . . , n (2)

Fig. 1 MLP architecture.

2.1 Activation function

Logarithmic sigmoidal and tangent hyperbolic activation functions, which are widely
used in literature, have been preferred in the study. As it is not possible to imple-
ment the exponential expression used in the functions directly on FPGA, mathe-
matical approaches have been implemented on FPGA as hardware.

Mathematical approaches have been used in Eq. 3 and Eq. 4 respectively for
hardware implementation of logarithmic sigmoidal and tangent hyperbolic func-
tions [18].

Qlogsig =
1

2

[
x

1 + |x|

]
(3)

Qtansig =
x

1 + |x|
(4)

Gradient based training algorithm is realized in this study, derivatives of ap-
proaches related to logarithmic sigmoidal and tangent hyperbolic functions are

163

Neural Network World 2/2018, 161–178

shown in Eq. 5 and Eq. 6 respectively.

Q
′

logsig =

{
0.5

(1−x)2 , x < 0
0.5

(1+x)2 , x > 0
(5)

Q
′

tansig =

{
1

(1−x)2 , x < 0
1

(1+x)2 , x > 0
(6)

In Fig. 2, logarithmic sigmoid piecewise linear function used by Savich, Moussa
and Areibi [10], and the Logarithmic sigmoid function mathematical approach given
in Eq. 5 are comparatively illustrated within the range of [−10, 10].

Fig. 2 Comparison of logarithmic sigmoid function and its approaches.

On the other hand, in In Fig. 3, the original logsig is shown with the suggested
approach and the derivatives of piecewise linear approached used in Savich, Moussa
and Areibi [10] are shown comparatively [19].

3. Levenberg and Marquardt algorithm

Parameter updating process related to LM algorithm derived from steepest descent
and Newton algorithms is given by Eq. 7. In Eq. 7, ω represents weight vector,
I represents unit matrix, and µ represents combination coefficient. J represents
the Jacobian matrix in [(P.n), N] dimensions, e represents error vector in [(P.n), 1]
dimensions, P refers to the training sample number, n refers to the output number
and N refers to the weight number [7].

∆ω = (JTJ + µI)−1JT e (7)

LM algorithm performs the parameter update processes by using the error vec-
tor and Jacobian matrix created for sample values related to all inputs. Jacobian
matrix described in Eq. 7 is obtained in Eq. 8, whereas the error vector is obtained
as in Eq. 9.

164

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

Fig. 3 Comparison of logarithmic sigmoid function and its approaches derivatives.

J =



∂e11
∂ω1

∂e11
∂ω2

. . . ∂e11
∂ωN

.
∂e1n
∂ω1

∂e1n
∂ω2

. . . ∂e1n
∂ωN

.
∂eP1

∂ω1

∂eP1

∂ω2
. . . ∂eP1

∂ωN

.
∂ePn

∂ω1

∂ePn

∂ω2
. . . ∂ePn

∂ωN


(8)

e =



e11

. . .

e1n

. . .

eP1

. . .

ePn


(9)

The parameter described in Eq. 7 is an adjustable parameter as seen in Eq. 10.
If this parameter is too large, LM algorithm acts like steepest descent gradient
method. If it is too small, it acts like the Newton method [7].

µ(n) =

{
kµ(n− 1) E[t] > E[t− 1]

µ(n− 1)/k E[t] ≤ E[t− 1]
(10)

In Eq. 10, E[t] is used for fitness value calculation (Eq. 11).

E[t] =
∑P

i=1 ei (11)

165

Neural Network World 2/2018, 161–178

4. Creating the Jacobian matrix

The placement structure of the row values of the Jacobian Matrix, which is de-
fined in Eq. 8, used in the FPGA-based implementation is shown in Eq. 12. This
structure is used for all input sets with reference to Fig. 4 (Eq. 13 – Eq. 18).

[
∇ω1

11 . . . ∇ω1
1q . . . ∇ω1

m1 . . . ∇ω1
mq ∇b11 . . .∇b1q . . .

]
(12)

The v values shown in Fig. 4 are calculated as shown in Eq. 13. Update value of
the bias parameters in the output layer is calculated as shown in Eq. 14. Parameter
update value of the weighting process of the outputs of the cells in the hidden layer
is calculated as shown in Eq. 15. In Eq. 15, si is ith cell output at the hidden layer
in the feed forward phase. The z values in Fig. 4 are calculated as shown in Eq. 16.
Updating value of bias parameters in the hidden layer is calculated as shown in
Eq. 17. Parameter updating value of the weighting process of inputs is calculated
as shown in Eq. 18.

Fig. 4 Block diagram of MLP parameters update by LM algorithm.

vk = ϕ
′

k; k = 1, . . . , n (13)

∇b2k = vk; k = 1, . . . , n (14)

∇ω2
ik = sivk; k = 1, . . . , n; i = 1, . . . , q (15)

zi = ϕ
′

k

∑n
k=1 vkω

2
ik; i = 1, . . . , q (16)

∇bi = zi; i = 1, . . . , q (17)

∇ω2
ni = xkzi; i = 1, . . . , q; n = 1, . . . ,m (18)

166

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

5. FPGA implementation of Levenberg and Mar-
quardt algorithm

Levenberg and Marquardt Algorithm is implemented step by step in the phase
of hardware implementation on FPGA as described in Eq. 7. These steps are
summarized briefly as follows.

5.1 Creating of Jacobian matrix memories

The parallel data processing capability of FPGA is intended to be used at a high
level during the hardware implementation phase, within the scope of the study. In
line with this, separate memory units were created to retain the values related to
each parameter in the phase of creating the Jacobian matrix. By using separate
memory units, read and write processes can be performed simultaneously for each
parameter value.

In the study, for N parameters to be optimized, same number of RAM blocks
were created. The length of each RAM block is equal to the input sample number,
P . The depths of memory units are adjusted as 32 bits (Fig. 5).

Fig. 5 Block RAMs created for Jacobian matrix.

5.2 Multiplying the transpose Jacobian matrix with the Ja-
cobian matrix

In this step, a transpose Jacobian matrix in size of N.P will be multiplied the
Jacobian matrix in size of P.N . A matrix of N.N will be obtained as the result
of the multiplication. For the purpose of parallel data processing, multiplication
results are stored in N number of memory units, in depth of 32 bits with a length
of N (Fig. 6).

The Jacobian matrix implemented similarly in Section 5.1, by creating separate
memory units for each parameter, saves time by simultaneous performance of read,
multiplication and addition processes. Additionally, by use of the parallel memory
unit, operation load is reduced from N2P to NP in implementation.

In the multiplication processes of the transposed Jacobian matrix and the Ja-
cobian matrix, the data from the memory units created for the Jacobian matrix
needs to be read first. For this aim, in the 1st step, k index-data is read from the
relevant memory unit for each parameter. In the 2nd step, m index-memory unit

167

Neural Network World 2/2018, 161–178

Fig. 6 Block RAMs created for multiplication results.

element is selected from the values read from memory units, to be used in the next
multiplication process. In the 3rd step, all values read from memory units in the
1st step are multiplied with the value selected in the 2nd step. In the 4th step,
the results of multiplications obtained in the 3rd step are added with the S(k), the
total value obtained in the previous k index value, to obtain the new total value
S(k + 1). Initial total value is zero (S(0) = 0) for k = 0 situation. In the 5th step,
k value is incremented by 1, if k value is lower than input sample value (P), the
process returns back to the 1st step, otherwise it moves on to the 6th step (Fig. 7).

Fig. 7 Block diagram of the multiplication of transposed Jacobian matrix with
Jacobian matrix – 1.

In the 6th step, the total values obtained in the 4th step are written to the
memory units (RAM M) created for storing the matrix multiplication results. In
the 7th step aims the implementation of (JTJ +µI) expression described in Eq. 7.

168

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

For this reason, the diagonal values of the matrix obtained at the result of the mul-
tiplication are recorded in the memory unit. For these processes to be performed,
the matrix has (m,m) diagonal values in the mth step, (mth element of the mth

memory unit is taken), the diagonal value found in the 8th step is written to mth

value of memory unit (RAM S). In the 9th step, the m value is incremented by one.
If this value is smaller than the N value, process returns to the 1st step. Otherwise,
it proceeds to the 10th step (Fig. 8).

Fig. 8 Block diagram of the multiplication of transposed Jacobian matrix with
Jacobian matrix – 2.

In 10th step, the value stored in the nth address of memory unit (RAM S), in
which the matrix diagonal values are stored, is read. In the 11th step, the value
read in the 10th step is directed to the 12th step, depending on the diagonal value,
and in the 12th step, µ parameter is added. In the 13th step, it is written at the
nth address of the memory units (RAM M), in which matrix multiplications are
stored. In the 14th step, n value is incremented by one. If this value is smaller
than the N value, process returns to the 1st step again. Otherwise, it proceeds to
the next step (Fig. 9).

5.3 Inverse matrix calculation

Suppression methods such as adjoint, LU, QR, Hermitian, Analytic, Blockwise,
Gauss-Jordan are suggested in literature for taking reciprocal matrix. In the study,
it was performed on hardware implementation by using the Gauss-Jordan suppres-
sion method without any restriction with regards to matrix dimensions.

The reciprocal process for matrix consists of the following phases. In the 1st

phase, first the multiplication values stored in RAM Ms and the values at mth

address of RAM I’s created as a unit matrix, are read. In the 2nd phase, the value

169

Neural Network World 2/2018, 161–178

Fig. 9 Block diagram of the multiplication of transposed Jacobian matrix with
Jacobian matrix – 3.

in mth RAM M is selected. In the 3rd phase, all values read in the 1st phase are
divided into the value obtained in the 2nd step. The results of the division are
written again on their locations at the mth addresses of RAM Ms and RAM Is, in
the 4th phase (Fig. 10).

Fig. 10 Inverse matrix calculation – 1.

In the 5th step, whether the x value is equal to the m value is checked. If equal,
process passes on to the 13th step by incrementing the m value by one. Otherwise,
it passes to the 6th step. In the 6th step, xth values are read from the memory
units, in which the multiplication values (RAM M), and the inverse values (RAM
I) are stored. And in the 7th step, the value related to the mth RAM is selected as

170

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

index value, from the RAM M’s in which multiplication values are stored. In the
8th step, all values read from the RAM’s are stored in the memory (Fig. 11).

Fig. 11 Inverse matrix calculation – 2.

In the 9th step, xth values are read from the memory units, in which the multi-
plication values and their reciprocal values are stored. In the 10th step, the values
read are multiplied with the index value. In the 11th step, the values, stored in
memory in the 8th step, are subtracted from the multiplication values obtained
in the 10th step. And in the 12th step, the result of the subtraction is written
at the xth addresses in the RAM M’s and RAM I’s. In the 13th step, x value is
incremented by 1. If the x value is less than the number of parameters , then the
process returns to the 5th step, otherwise it passes on to the 14th step. In the
14th step, the m value is incremented by 1. If this value is smaller than the num-
ber of parameters, process returns to the 1st step, otherwise the process is ended
(Fig. 12).

5.4 Multiplication with error matrix

In the 1st step, mth values are read from the memory units, in which the reciprocal
matrix values are stored. Whereas in the 2nd step, xth values are read from the
memory units, in which the Jacobian matrix parameters are stored. In the 2rd

step, the values read in the 1st and 2nd are multiplied with vector. In the 4th step
the result of vector multiplication is multiplied with the error value obtained for
the xth input samples. In the 5th step, the result of multiplication is added to
the multiplication result obtained in the previous step. In the 6th step, x value is
incremented by 1. If the x value is smaller than the number of samples, the process
returns to the 2nd step, otherwise it passes to the 7th step. In the 7th step, the
total of the multiplications of error and matrix for all input samples is stored as
the update value of the mth parameter. In the 8th step, m value is incremented by
1. If this value is smaller than the number of parameters, then the process returns
to the 1st step, otherwise the process is ended (Fig. 13).

171

Neural Network World 2/2018, 161–178

Fig. 12 Inverse matrix calculation – 3.

Fig. 13 Multiplication with error matrix.

6. Experimental results

ANN training implementation on FPGA by using LM algorithm is experimentally
tested in two sample system identification problem. Experimental studies have
been implemented by using ISE Design Suite 14.6 program over Xilinx Kintex 7
xc7k325tffg900-2 FPGA.

172

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

6.1 System identification problem – 1

Dynamic system identification problem is the process of adjustment of the param-
eters, which will represent the system, in a suitable manner. This adjustment
process is implemented by optimization of the success function established on the
error between the actual output of the system to be identified and the output of
the model to be selected for identification. For this sample, the system given in
Eq. 19 has been identified [5]. In Eq. 19, u[k] has been identified as in Eq. 20.

y[k + 1] =
y[k]

1 + y2[k]
+ u3[k] (19)

u[k] = cos[
2kπ

100
]; k = 1, 2, · · · , 100 (20)

For system identification, the MLP with the inputs of u[k] and y[k], and with
3 cells in its hidden layer and 1 cell in output layer has been used. Logarithmic
sigmoidal function has been used as activation function for hidden layer cells, and
linear activation has been used for function output cells.

Fig 14a illustrates the hardware outputs related to LM algorithm and dynamic
system identification process for Example 1. Fig. 14b shows the errors related to
the hardware implementation of LM algorithm and dynamic system identification
for Example 1.

Sample Index
0 10 20 30 40 50 60 70 80 90 100

O
ut

pu
t

-1.5

-1

-0.5

0

0.5

1

1.5
Desired Output
Hardware Implementation

(a)

Sample Index
0 10 20 30 40 50 60 70 80 90 100

E
rr

or

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(b)

Fig. 14 Experimental results of the training phase for the Example 1.

Input series given in Eq. 21 are used to test the ANN training according to
input series given in Eq. 20.

u[k] = sin[
2kπ

100
]; k = 1, 2, · · · , 100 (21)

Fig. 15a shows the outputs related to dynamic system identification for input
series given in Eq. 21 , for Example 1. Fig. 15b exhibits the hardware implementa-
tion errors related to dynamic system identification process for the network trained
with the LM algorithm for input series given in Eq. 21.

173

Neural Network World 2/2018, 161–178

Sample Index
0 10 20 30 40 50 60 70 80 90 100

O
ut

pu
t

-1.5

-1

-0.5

0

0.5

1

1.5

Desired Output
Hardware Implementation

(a)

Sample Index
0 10 20 30 40 50 60 70 80 90 100

E
rr

or

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(b)

Fig. 15 Experimental results of the test phase for the Example 1.

Tab. I shows the fitness values of the network trained according to the input
series, and the fitness values of the input series that are not shown to the network.
Fitness values are given as the average of fitness values obtained from 10 different
trainings.

Training Test Iteration

0.0081 0.0073 20

Tab. I Fitness values of training and test data for Example 1.

Tab. II exhibits the synthesis results for the implementation of ANN trained
with LM algorithm on FPGA.

Logic Utilization Used Available Utilization

Number of Slice Registers 19314 407600 4%
Number of Slice LUTs 54858 203800 26%

Number of Block RAMs 22 445 4%
Number of DSP48E1s 150 840 17%

Max. Freq. (MHz) 68.036

Tab. II Synthesis results for Example 1.

174

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

6.2 System identification problem – 2

System identification given in Eq. 22 has been implemented for this example [20].

y(k + 1) =− 1.17059y[k − 1] + 0.606861y(k)+

0.679190y2[k]y[k − 1]− 0.136235y4[k]y[k − 1]+

0.165646y3[k]y[k − 1]− 0.00711966y6[k − 1]+

0.114719y5[k]y[k − 1]− 0.0314354y[k]y[k − 1]+

0.0134682y3[k]

(22)

For system identification, the MLP with the inputs of y[k] and y[k − 1] , and
with 3 cells in its hidden layer and 1 cell in output layer has been used. Tangent
hyperbolic function has been used as activation function for hidden layer cells, and
linear activation function has been used for output cells. In obtaining input values,
initial values have been selected as y[k] = y[k − 1] = 0.1.

Fig. 16a, illustrates the hardware outputs related to LM algorithm and dynamic
system identification process for Example 2. Fig. 16b shows the errors related to
the hardware implementation of LM algorithm and dynamic system identification
for Example 2.

Fig. 16a, the hardware outputs related to LM algorithm and dynamic system
identification process are shown for Example 2. Fig. 16b shows the errors related to
the hardware implementation of LM algorithm and dynamic system identification
for Example 2.

Sample Index
0 10 20 30 40 50 60 70 80 90 100

O
ut

pu
t

-1.5

-1

-0.5

0

0.5

1

1.5
Desired Output
Hardware Implementation

(a)

Sample Index
10 20 30 40 50 60 70 80 90 100

E
rr

or

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 16 Experimental results of the training phase for the Example 2.

Fig. 17a shows the hardware outputs related to the dynamic system identifica-
tion process for input series created with initial values of y[k] = y[k − 1] = −0.1.
Fig. 17b shows the hardware output errors related to the dynamic system identifi-
cation process for input series created with initial values of y[k] = y[k − 1] = −0.1
for the network trained with LM algorithm.

Tab. III shows the fitness values according to the algorithms used in the training
of the network, trained with the given input series, and the fitness values obtained

175

Neural Network World 2/2018, 161–178

Sample Index
0 10 20 30 40 50 60 70 80 90 100

O
ut

pu
t

-1.5

-1

-0.5

0

0.5

1

1.5

Desired Output
Hardware Implementation

(a)

Sample Index
10 20 30 40 50 60 70 80 90 100

E
rr

or

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 17 Experimental results of the test phase for the Example 2.

for input series that are not shown to the network. Fitness values are given as the
average of fitness values obtained from 10 different trainings.

Training Test Iteration

0.3844 0.6155 20

Tab. III Fitness values of training and test data for Example 2.

Tab. IV exhibits the synthesis results for the implementation of ANN training
with LM algorithm on FPGA.

Logic Utilization Used Available Utilization

Number of Slice Registers 19314 407600 4%
Number of Slice LUTs 53709 203800 26%

Number of Block RAMs 22 445 4%
Number of DSP48E1s 150 840 17%

Max. Freq. (MHz) 68.036

Tab. IV Synthesis results for Example 2.

7. Conclusion

The most important advantage of ANNs is their parallel data processing feature.
Therefore it is very important for ANN to be implemented within a hardware en-
vironment that will emphasize its parallel data processing feature. In this respect,
FPGAs are one of the most suitable platforms used to implement this feature of
ANNs. In the study, the implementation of ANN training over FPGA by using
Levenberg and Marquardt algorithm is presented. Hardware implementation is

176

Cavuslu M.A., Sahin S.: FPGA implementation of ANN training using Levenberg. . .

tested by using dynamic system identification problems, and the experimental re-
sults obtained are shown in Fig. 14, Fig. 15, Fig. 16 and Fig. 17, and are given
comparatively in Tab. I and Tab. III. As a result of hardware implementation for
the system identification problems, illustrated also in the Tables and Figures, the
test results obtained with samples shown or not shown to the network reveal that
the ANN trained by using LM algorithm makes a successful generalization. As
seen also in Tab. II and Tab. IV, the synthesis results obtained demonstrate that
ANN with LM training can be successfully implemented on FPGA hardware.

References

[1] MERCHANT S., PETERSON G., KONG S. Intrinsic Embedded Hardware Evolution of
Block-based Neural Networks, International Conference on Engineering of Reconfigurable
Systems & Algorithms, 2006.

[2] KARAKUZU C., ÖZTÜRK S. A Comparison of fuzzy, neuro and classical control techniques
based on an experimental application, Journal of Quafquaz University, 6, pp. 189–198, 2000,
doi: 10.1109/EEEI.2000.924354.

[3] ÇAVUŞLU M. A., KARAKAYA F., ALTUN H. ÇKA Tipi Yapay Sinir Aği Kullanılarak
Plaka Yeri Tespitinin FPGA’da Donanımsal GerCeklenmesi, In: Proc. Akıllı Sistemlerde
Yenilikler ve Uygulamalar Sempozyumu, 2008.

[4] LI X., AREIBI S. A Hardware Software Co-design Approach for Face Recognaiton, Micro-
electronics, ICM 2004 Proceedings. The 16th International Conference on, 2004, pp. 55–58,
doi: 10.1109/ICM.2004.1434204.

[5] NARENDRA K.S., PARTHASARATY K. Identification and Control of Dynamical Systems
Using Neural Network, IEEE Transactions on Neural Networkworks, 1990, 1(1), pp. 4–27,
doi: 10.1109/72.80202.

[6] FERRARI S., JENSENIUS M. A constrained optimization approach to preserving prior
knowledge during incremental training, IEEE Trans. Neural Netw., 2008, 19(6), pp. 996–
1009, doi: 10.1109/TNN.2007.915108.

[7] WILAMOWSKI B.M., CHEN Y., MALINOWSKI A. Efficient algorithm for training neural
networks with one hidden layer, In: Proceedings of the International Joint Conference on
Neural Networks, 1999, 3, pp. 1725–1728, doi: 10.1109/IJCNN.1999.832636.

[8] DOHNAL J. Using of Levenberg-Marquardt Method in Identification by Neural Networks,
In: Student EEICT 2004. Student EEICT 2004. Brno: Ing. Zdenk Novotn CSc., 2004,
pp. 361–365.

[9] FERRER D., GONZALEZ R., FLEITAS R., ACLE J.P., CANETTI R. NeuroFPGA –
Implementing Artificial Neural Networks on Programmable Logic Devices, Proceedings of
Design, Automation and Test in Europe Conference and Exhibition, 2004, 3, pp. 218–223,
doi: 10.1109/DATE.2004.1269233

[10] SAVICH A.W., MOUSSA M., AREIBI S. The Impact of Arithmetic Representation on
Implementing MLP-BP on FPGAs: A Study, IEEE Transactions on Neural Networks,
18:1(2007), pp. 240–256, doi: 10.1109/TNN.2006.883002.

[11] FARMAHINI-FARAHANI A., FAKHRAIE S. M., SAFARI S. Scalable Architecture for on-
Chip Neural Network Training using Swarm Intelligence, Proc. of the Design, Automation
and Test in Europe Conf. (DATE’08), Munich, Germany, 2008, pp. 1340–1345, doi: 10.

1109/DATE.2008.4484865.

[12] NEDJAH N., SILVA R.M.D., MOURELLE L.M.M., SILVA M.V.C.D. Dynamic MAC-based
architecture of artificial neural networks suitable for hardware implementation on FPGAs,
Neurocomputing, 2009, 72(10–12), pp. 2171–2179, doi: 10.1016/j.neucom.2008.06.027.

[13] ÇAVUŞLU M.A., KARAKUZU C., ŞAHİN S. Neural Networkwork Hardware Implementa-
tion Using FPGA, In: ISEECE 2006 3rd International Symposium on Electrical, Electronic
and Computer Engineering Symposium Proceedings, Nicosia, TRNC, 2006, pp. 287–290.

177

http://dx.doi.org/10.1109/EEEI.2000.924354
http://dx.doi.org/10.1109/ICM.2004.1434204
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1109/TNN.2007.915108
http://dx.doi.org/10.1109/IJCNN.1999.832636
http://dx.doi.org/10.1109/DATE.2004.1269233
http://dx.doi.org/10.1109/TNN.2006.883002
http://dx.doi.org/10.1109/DATE.2008.4484865
http://dx.doi.org/10.1109/DATE.2008.4484865
http://dx.doi.org/10.1016/j.neucom.2008.06.027

Neural Network World 2/2018, 161–178

[14] ÇAVUŞLU M.A., KARAKUZU C., ŞAHİN S., YAKUT M. Neural Network Training Based
on FPGA with Floating Point Number Format and It’s Performance, Neural Computing &
Application, 2011, 20(2), pp. 195–202, doi: 10.1007/s00521-010-0423-3.

[15] ÇAVUŞLU M.A., KARAKUZU C., KARAKAYA F., Neural identification of dynamic sys-
tems on FPGA with improved PSO learning, Applied Soft Computing, 2012, 12(9), pp. 2707–
2718, doi: 10.1016/j.asoc.2012.03.022

[16] WON E. A hardware implementation of artificial neural networks using field programmable
gate arrays, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 2007, 581(3), pp. 816–820, doi: 10.
1016/j.nima.2007.08.163

[17] FERREIRA P., RIBEIRO P., ANTUNES A., DIAS F.M. A high bit resolution FPGA im-
plementation of a FNN with a new algorithm for the activation function, Neurocomputing,
2006, 71(1-3), pp. 71-77, doi: 10.1016/j.neucom.2006.11.028

[18] ELLIOT D.L. A Better Activation Function for Artificial Neural Networks, Technical Re-
search Report T.R. 93-8, Institute for Systems Research, University of Maryland, (1993).

[19] ÇAVUŞLU M.A., KARAKUZU C. Nöral ve Bulanık Sistem Hücre Aktivasyon Yaklaşımları
ve FPGA’da Donanımsal Gerceklenmesi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Der-
gisi, 2011, 15(1), pp. 8–16.

[20] CHEN S., BILLINGS S.A. Neural networks for nonlinear dynamic system modelling and
identification, Int. J. Control, 1992, 56(2), pp. 319–346, doi: 10.1080/00207179208934317.

178

http://dx.doi.org/10.1007/s00521-010-0423-3
http://dx.doi.org/10.1016/j.asoc.2012.03.022
http://dx.doi.org/10.1016/j.nima.2007.08.163
http://dx.doi.org/10.1016/j.nima.2007.08.163
http://dx.doi.org/10.1016/j.neucom.2006.11.028
http://dx.doi.org/10.1080/00207179208934317

