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Abstract: In this paper, a deep learning-based method for earthquake prediction
is proposed. Large-magnitude earthquakes and tsunamis triggered by earthquakes
can kill thousands of people and cause millions of dollars worth of economic losses.
The accurate prediction of large-magnitude earthquakes is a worldwide problem.
In recent years, deep learning technology that can automatically extract features
from mass data has been applied in image recognition, natural language process-
ing, object recognition, etc., with great success. We explore to apply deep learning
technology to earthquake prediction. We propose a deep learning method for con-
tinuous earthquake prediction using historical seismic events. First, we project the
historical seismic events onto a topographic map. Taking Taiwan as an example,
we generate the images of the dataset for deep learning and mark a label “1” or
“0”, depending on whether in the upcoming 30 days a greater than M6 earthquake
will occur. Second, we train our deep leaning network model, using the images
of the dataset. Finally, we make earthquake predictions, using the trained net-
work model. The result shows that we can get the best result, when we predict
earthquakes in the upcoming 30 days using data from the past 120 days. Here,
we use R score as the performance metrics. The best R score is 0.303. Although
the R score is not high enough, using the past 120 days’ historic seismic event to
predict the upcoming 30 days’ biggest earthquake magnitude can be seen as the
pattern of Taiwan earthquake because the R score is rather good compared to other
datasets. The proposed method performs well without manually designing feature
vectors, as in the traditional neural network method. This method can be applied
to earthquake prediction in other seismic zones.
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1. Introduction

An earthquake is a highly destructive natural disaster. If earthquakes can be
accurately predicted, many lives can be saved and economic loss can be avoided.
China is a country with high seismic activity. A famous instrument for earthquake
monitoring in ancient times was Di Dong Yi in the Han Dynasty. Unfortunately,
it was not handed down and was lost.

In the last several decades, the first accurately predicted earthquake was the
Haicheng earthquake in 1975 [29]. But, the Tangshan earthquake in 1976 was not
predicted, and it led to 250,000 deaths and 160,000 injuries.

Taiwan is one of the districts with the highest seismic activity. The extension
direction of the fault in Taiwan island is with the island contours in the same
direction, mainly from north to south [6]. On September 21, 1999, at 01.47 h local
time, a strong earthquake, with a 7.3 magnitude on the Richter scale and a depth
of approximately 7.5 km, occurred near the town of Chi-Chi in central Taiwan
N23.78, E120.84. The island suffered catastrophic damage, with 2,375 lives lost,
over 10,000 injuries, and more than 30,000 collapsed buildings [31].

Methods used to predict earthquakes in the last decade can be divided into
those based on probability and statistics and those based on artificial intelligence.

Among the first category, Petersen et.al assumes that the occurrence proba-
bility of earthquakes follows a Poisson distribution [25]. Shen et al. presented a
probabilistic forecast method based on strain rate [26]. A model based on smoothed
seismicity to predict earthquakes of magnitude equal to or larger than 5.0 in south-
ern California was proposed by Kagan et al. [14].

Methods based on artificial intelligence can be divided into non-supervised
learning frameworks and supervised learning frameworks. In a non-supervised
learning framework, some methods based on clustering techniques [8, 21] or as-
sociation rules [9,12] have been applied to predict earthquake magnitudes in areas
with high seismic activity in Chile, Portugal, and Spain. Mirrashid et al. used
a neuro-fuzzy inference system based on a C-means algorithm to predicate earth-
quakes in Iran [20].

The supervised learning framework, namely regression or classification tech-
niques, has been preferred by the majority of researchers to forecast earthquakes
in recent years. H. Adeli et al. proposed a probabilistic neural network to predict
earthquakes in a specific zone, using eight kinds of earthquake indicators to train
the model, and obtained good results (two of four earthquakes were predicted cor-
rectly) for earthquakes with magnitudes ranging from 4.0 to 6.0 [1]. Then, they
used a recurrent neural network to predict the time and location of earthquakes
with magnitudes equal to or greater than 6.0, again with good results [23]. A multi-
layer perception neural network has been used to predict earthquakes using the total
electron content (TEC) time series data [3]. An artificial neural network based on
some earthquake predictors has been proposed to the prediction of earthquakes of
medium-large magnitude for the city of Tokyo [5].

Recently, deep learning technology has been applied to image recognition, natu-
ral language processing, object detection, motion modeling, etc., with great success.
The basic notion of a deep learning algorithm is extracting features from low- to
high-level data with multiple structures. In the field of machine learning, the per-
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formance of a model is often strongly influenced by how the data are represented.
Thus, devising effective representations of the data is an important component of
constructing a high-performing model [30]. Deep learning can automatically learn
these underlying representations or features from the data itself. Deep learning
technology is leading the third upsurge of artificial intelligence research.

At the same time, in the domain of traffic flow prediction [18], toxicity prediction
[28], and event-driven stock prediction [7], people used deep learning technology
and achieved good results.

Nonetheless, although artificial intelligence technology has been applied to earth-
quake prediction in many zones, to the authors’ knowledge, a deep learning algo-
rithm has not been used for prediction of earthquakes in Taiwan.

We will explore to apply deep learning technology to earthquake prediction in
Taiwan. The remainder of the article is structured as follows: Section 2 shows the
basic research methodology; Section 3 covers deep learning fundamentals; Section 4
addresses data set construction and optimization; Section 5 shows the deep learning
model and optimization; Section 6 provides the result and discussion; and Section 7
is the summary.

2. Methodology

This experimental setup meets the requirements established by Allen [4], whose
work claimed that an earthquake prediction must provide

1. a specific location or area (Taiwan, N21-26,E119-123);

2. a specific span of time (within the next 30 days);

3. a specific magnitude range (magnitude greater than or equal to 6.0).

We selected the Taiwan seismic events from China Seismic Information net
[2]. Then we constructed our dataset elaborately, to meet the Caffe deep learning
framework [13]. We then trained our neural network model. Finally, we put the test
images into the model and obtained the prediction result. The complete procedure
is shown in Fig. 1.

3. Deep learning fundamentals

3.1 Convolutional and subsampling layers

The convolutional layer and subsampling (also called pooling) layer are the key lay-
ers of a convolutional neural network (CNN). CNNs were proposed by LeCun [17],
which are inspired by biological processes. The traditional multi-layer perception
neural networks have too many weights and often overfitting. CNNs use three
techniques to solve above problems : local receptive fields, shared weights and sub-
sampling. Each unit of a layer receives input from a set of units located in a small
neighborhood in the previous layer. The technique is called local receptive fields.
The convolutional layer is composed of feature maps. All units in a feature map
share the same weights. The shared weights technique will reduce many weight
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Fig. 1 The methodology procedure.

parameters and form more useful feature maps. Subsampling layer is also called
polling layer. The subsampling layer will reduce the resolution of the feature maps
and reduce the sensitivity of the output to shifts and distortions.

3.2 Activation functions

In neural networks, the activation function of a node defines the output of that node
given an input or set of inputs. The popular activations are Sigmoid and ReLU
(rectified linear unit). In chapter 5.2, we will point out our activation function.

3.3 Reducing overfitting

A common problem in the training process of artificial neural network is over-
fitting. There are many methods to reduce overfitting, such as label-preserving
transformations [17], dropout [10] and so on. Here, we use the method “dropout”.
This method will set the output of each hidden neuron to zero with an adjustable
probability (0.5 is very popular). Through the method, more useful robust feature
can be learned [17].
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4. Data set construction and optimization

In consideration that we must use more seismic events data whose magnitude is
lower than 6. So, we used the data from the website of China Earthquake informa-
tion net [2], on which the complete data started from January 1, 1970. They were
in the CSV format, and were marked with earthquake time, magnitude, longitude,
and latitude. The time range was between January 1, 1970, and May 25, 2016.

First, we preprocessed the data. We selected the seismic events in the Taiwan
dangerous zone (from 119 to 123 degrees east longitude and from 21 to 26 degrees
north latitude). The range of longitude and latitude was confirmed based on all
the earthquakes occurring in Taiwan with magnitude greater than 7 (Fig. 2).

Fig. 2 All M7 and greater earthquakes in Taiwan.

Then, we constructed the dataset. We set M6 as the seismic event threshold
because M6 or greater earthquakes are often destructive. M6 or greater seismic
events happening in the upcoming 30 days were positive samples, and less than
M6 seismic events were negative samples. The seismic events superposition within
N days were projected on the Taiwan map and marked with a “1” if the largest
earthquake’s magnitude in the upcoming 30 days was greater than or equal to
6. The background map is useless because all samples have the same background
map but it make the sample looks not dull. In the same way, negative samples
were marked with a “0”. According to the Omori´s law [22], aftershock activity is
predictable. So, the earthquake events within the radius of 50 Km within 7 days
after the occurrence of the M6+ main-shock were deleted from the catalogue. From
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the starting time of January 1, 1970, we got a sample every step forward 30 days.
Finally, we got all samples in the dataset. The image size of each sample is 256
pixel length and 256 pixel width. Thus, we had a dataset in accordance with the
Caffe deep learning framework [13]. Fig. 3 shows the whole procedure.

Earthquake 

events 

within N 

days

Earthquake 

events 

within N 

days

Label:1 

Positive Sample

Label:0 

Negative Sampe

Image and label txt example of the Dataset

55_20121120071800-20130218071800_3-10.jpg 0

56_20130305071800-20130603071800_3-10.jpg 1

57_20130618071800-20130916071800_3-10.jpg 0

......

Day Time Latitude Longitude Magnitude

1970/1/2 6:14:14 24.1 119.47 3.2

1970/1/2 12:56:00 23.7 122.5 3.5

… … … … …

2016/5/25 12:51:37 23.98 121.06 3.5

2016/5/25 21:54:18 22.01 120.48 4.5

M6 

event in 

the next 30  

days

M6 

event in 

the next 

30  days

1.Seismic event data acquisition  

2.From 1970/1/1, count N days, look if M6

earthquake occur in N~N+30 day. If yes,

it is a positive sample with a label as 1. If

no, it is a negative sample with a label as 0.

3.All earthquake events within current N

days are projected on the map as points with

size and brightness depending on their

magnitudes. Then, one sample is completed.

4. Step forward 30 days, repeat step 2 and 3

,and generate a new sample. Do this until

2016/4/23 and all the samples are completed.

Fig. 3 The procedure of data set construction and example.

Finally, we carried out the dataset production optimization:

1. Earthquakes occurring in the same place within several seconds to several
minutes are regarded as the same seismic event.

2. The sample ratio of the training set and testing set is 5:1.

Through changing the value of N, we obtained seven kinds of datasets: DS30-30-
30, DS60-30-30, DS90-30-30, DS120-30-30, DS150-30-30, DS180-30-30, and DS210-
30-30. For example, DS150-30-30, means every sample in the dataset uses the past
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150 days to predict the largest earthquake’s magnitude in the next 30 days. We
listed details of all the data sets in Tab. I. We got 95 samples in the testing set
in DS30-30-30, DS60-30-30. . . DS180-30-30. Due to the longer time window of the
DS210-30-30, only 94 samples were got in the testing set.

Data set
Samples of The Last Day of Samples of

Training set the Training set Testing set

DS30-30-30 468 Jul 10, 2008 95
DS60-30-30 467 Jul 10, 2008 95
DS90-30-30 466 Jul 10, 2008 95
DS120-30-30 465 Jul 10, 2008 95
DS150-30-30 464 Jul 10, 2008 95
DS180-30-30 463 Aug 9, 2008 95
DS210-30-30 463 Aug 9, 2008 94

Tab. I Data set details.

We obtained the above datasets automatically using software developed based
on MATLAB R2014a.

5. Deep learning model and optimization

5.1 Model

We modified the Cifar10 model [16] to obtain our model because we only needed
to classify two classes. At the same time, we added two dropout layers to reduce
overfitting. The model structure can be seen in Fig. 4. The detailed configuration
information are listed in Tab. II.

Convolution 
Layer 1

Pooling 
Layer 1

Convolution 
Layer 2

Pooling 
Layer 2

Convolution 
Layer 3

Pooling 
Layer 3

Inner 
Product 
Layer 1
& Drop 
out 1

Inner 
Product 
Layer 2 
&Drop 
out 2

Fig. 4 Our deep neural network model for earthquake prediction.

5.2 Tune and optimization

We used momentum and weight delay technology in our model. The update rule
for weight w was formula (1,2). In the formulas i is the iteration index, ∆w is the
weight variable, β is the momentum , λ is the weight decay, L is the cost function,
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Layer Kernel Size Stride Pad Other

Convolution 1 5 1 2 –
Pooling 1 3 2 0 Max pooling

Convolution 2 5 1 2 –
Pooling 2 3 2 0 Average pooling

Convolution 3 5 1 2 –
Pooling 3 3 2 0 Average pooling

Tab. II Model configurations.

α is the learning rate and 〈 ∂L∂w |wi
〉
Di

is the average over the ith batch Di of the

derivative of the objective with respect to w, evaluated at wi

∆wi+1 = β ∗∆wi − λ ∗ α ∗ wi − α ∗ 〈
∂L

∂w
|
wi

〉
Di

, (1)

wi+1 = wi + ∆wi+1. (2)

In the selection of learning rate, we found that higher (0.1) and lower (0.0001)
base learning rates would decrease the accuracy(only about 55%). We got the best
result when the learning rate was 0.001(about 90%). The momentum were used
to accelerated model convergence. In this paper, we used 0.9 as the momentum
value. Weight decay is one kind of regularization and will decrease useless weight to
zero [17]. We used a weight decay of 0.0005. The dropout rate of the two dropout
layers was 0.5, meaning the relative hidden neuron weight would be set to zero
with the probability 0.5 to avoid overfitting [17].

The loss function during the training of the models that achieved the best
results reported in this paper was the standard Softmax loss function, that is,
the log-likelihood error function described in [15]. For better normalization, we
used the rectified linear unit activation function(ReLU), not the sigmoid activation
function.

All experiments were run on a Quadro K1200 GPU. The Quadro K1200 server
has 4 GB of GPU RAM and 32 GB of regular RAM.

6. Results and discussion

6.1 Performance evaluation

In the machine learning domain, there are some performance evaluation metrics for
unbalanced samples, such as the confusion matrix, receiver operating characteristic
(ROC), and area under curve (AUC). Among them, the confusion matrix is often
employed when using artificial intelligence to predict earthquakes [1, 19]. Here,
the true positive (TP) is the number of times that an upcoming earthquake has
been correctly predicted. The true negative (TN) is the number of times that
neither an earthquake prediction model has triggered an alarm nor an earthquake
has occurred. A false positive (FP) is the number of times that an earthquake
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prediction model has triggered an alarm but no earthquake has occurred. A false
negative (FN) is the number of times that a classifier has not triggered an alarm but
an earthquake did occur. The table below is the confusion matrix in our research.

Predictied class

Actual class M6 earthquake less than
or greater M6 earthquake

M6 earthquake or greater TP FN
less than M6 earthquake FP TN

Tab. III Confusion matrix for our reseach.

Based on the confusion matrix, there is a popular performance evaluation metric
in the earthquake prediction domain called the R score [1, 23, 24, 27]. It is defined
by formula (3). The value domain of the R score is between −1 and 1. An R
score is approximately 0 for completely random guesses, and approximately 1 for
completely successful predictions [24]

R =
TP

TP + FN
− FP

TN + FP
. (3)

In our research, we got the best result on DS120-30-30. The R score is 0.303.
The detailed results are in Table IV. The Result is better than random prediction.
Next, We did the significance test to further validate the result. We randomized
the catalogue and got different data set with the same parameters for the process-
ing(length of windows, number of samples, numbers of neural network, convolution,
activation function, and so on). These random catalogue were named as “RDS30-
30-30”, “RDS60-30-30” et al. Through the same process, we got another group R
scores in Tab. V. At last, we did the one-way analysis of variance(ANOVA) [11]
under the significant level α as 0.05 and got the p value 0.0185. The null-hypothesis
was reject. There are obvious difference between the two R score groups.

Data Set TP FN FP TN R Score

DS30-30-30 0 19 0 76 0
DS60-30-30 3 16 1 75 0.145
DS90-30-30 5 14 2 74 0.236
DS120-30-30 14 5 33 43 0.303
DS150-30-30 11 8 37 39 0.092
DS180-30-30 7 12 16 60 0.157
DS210-30-30 2 16 4 72 0.058

Tab. IV Prediction results for different datasets.

6.2 Discussion

Earthquake prediction is a complex, worldwide problem. In the domain of pre-
dicting earthquakes using neural networks, the number of test datasets is often
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Data Set TP FN FP TN R Score

RDS30-30-30 0 19 0 76 0
RDS60-30-30 1 18 2 74 0.026
RDS90-30-30 2 17 5 71 0.039
RDS120-30-30 10 9 35 41 0.065
RDS150-30-30 4 15 12 64 0.052
RDS180-30-30 6 13 22 54 0.026
RDS210-30-30 2 16 7 69 0.019

Tab. V Prediction results for different randomized datasets.

small. Our research uses 95 or 94 samples in the test dataset, and 19 or 18 positive
samples. Using the past N days of seismic events to predict whether the largest
earthquake magnitude in the upcoming 30 days is greater than M6, we found that
we can get a relatively good result (0.303) when N = 120. We saw that we can
not get the best result when N is too small or too large. We think it is mainly
due to the destructive earthquakes need a certain time preparation process. If N is
too small( much less than the preparation process time), the model can not learn
enough useful information and can not do a good prediction. Similarly, if N is too
big, the model will be interfered by useless information and also can not do a good
prediction. At the same time, we did the significance test. The significance test
shows that the result is better than random prediction.

7. Summary

Deep learning is a set of powerful machine learning algorithms and concepts that
have seen groundbreaking success for the last 10 years. The main benefit of deep
neural networks is their ability to learn complex, nonlinear hypotheses through
data without the need to explicitly model features.

We applied deep learning technology to the large earthquake prediction domain
and received a good result. We received the good result when using the past 120
days of seismic events to predict the largest earthquake magnitude in Taiwan in the
upcoming 30 days. This temporal pattern of Taiwan earthquake was found. The
pattern may be useful for further earthquake prediction and disaster reduction.

Next, we will try to further optimize the dataset and the model. At the same
time, we will apply deep learning technology to other seismic danger zones (such
as Japan and Chile).
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[15] KRÄHENBÜHL P., KOLTUN V.: Parameter learning and convergent inference for dense
random fields. In: ICML. 2013, (3), pp. 513–521.

[16] KRIZHEVSKY A.: Convolutional deep belief networks on cifar-10, 2012.

[17] KRIZHEVSKY A., SUTSKEVER I., HINTON G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems, 2012, 25(2).

[18] LV Y., DUAN Y., KANG W., LI Z., WANG F.Y.: Traffic flow prediction with big data:
A deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2015,
16(2), pp. 1–9.
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