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Abstract: The Self-Organizing Map model considers the possibility of 1D and 3D
map topologies. However, 2D maps are by far the most used in practice. Moreover,
there is a lack of a theory which studies the relative merits of 1D, 2D and 3D maps.
In this paper a theory of this kind is developed, which can be used to assess which
topologies are better suited for vector quantization. In addition to this, a broad set
of experiments is presented which includes unsupervised clustering with machine
learning datasets and color image segmentation. Statistical significance tests show
that the 1D maps perform significantly better in many cases, which agrees with
the theoretical study. This opens the way for other applications of the less popular
variants of the self-organizing map.
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1. Introduction

Since the self-organizing map (SOM) was proposed [39, 40], many variations of the
original model have been developed [41]. It has always been recognized that the
topology can be one, two or three dimensional, but the two dimensional version
has been by far the most used in practice. This may be caused by the fact that
a 2D map can be displayed on an output device directly, which facilitates the
interpretation of the trained map. Visualization of high dimensional data is one
of the key features of SOMs, so practitioners find easier to use 2D lattices even in
applications which are not directly related to visualization because they can assess
the quality of the trained maps easily. In contrast, the possibility of using 1D and
3D map lattices has received very little attention. In particular, three dimensional
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SOMs are confined to applications where 3D data must visualized [35] or processed
[12, 17, 21, 42]. However, some researchers have realized their suitability for other
tasks where 3D data are not involved [7, 11, 26].

The situation for 1D SOMs is different, since in this case they are not suitable
for visualization applications. The usage of these topologies is frequently linked
to specific datasets where the data to be learned is known to lie in a curve, i.e. a
one-dimensional manifold [2, 10, 29, 45]. But there are also some cases where the
1D SOMs are employed for general datasets where this constraint does not hold
[16, 47).

A comparative theoretical study of the three above mentioned variants of the
original SOM according to the lattice dimensionality has not been developed to
date. Formal results about the 1D SOM are comparatively abundant [22, 23, 28,
31], because it is easier to analyze than the typical 2D SOM. Nevertheless, these
works do not offer clues about which lattice dimensionality should be chosen for a
particular application.

From the preceding it can be concluded that the differences among 1D, 2D and
3D lattices have not been researched adequately. It might be the case that 1D or
3D SOMs are better than 2D SOMs for applications where the visualization over
a 2D output device is not necessary. Our aim here is to examine this possibility
in detail, both from the theoretical and applied points of view, to assess which
lattice dimensionalities are the most suitable in terms of vector quantization and
topographic quality.

The structure of this paper is as follows. First the self-organizing map model is
reviewed, with special attention to 1D and 3D maps (Section 2). Then the role of
the lattice dimension is examined (Section 3). Experiments are shown in Section 4.
Some key findings are discussed in Section 5. Finally, Section 6 is devoted to
conclusions.

2. Basic concepts

In this section the fundamental concepts which this work is based on are reviewed.
A Dbrief outline of Kohonen’s Self-Organizing Map [39] is presented. First the
network architecture and the learning rule for the SOM are considered (Subsec-
tion 2.1). Then the energy function associated to a SOM is discussed (Subsec-
tion 2.2).

2.1 Architecture and learning rule

Here the original Kohonen’s SOM is reviewed, and the notation that will be used
through the paper is presented. Let M be the number of neurons of the self-
organizing map, which are arranged in a lattice of size a x b x ¢, where M = abe.
A 1D map lattice is obtained if we set a > 1, b = ¢ = 1, while 2D maps correspond
to a,b > 1, ¢ = 1. Finally, 3D maps have a,b,c > 1. The topological distance
between the neurons i and 4, located at positions (y1, y2,y3) and (y1, y5, y5) in the
lattice space, is given by:

a6, = (g — 9> + (2 — 5% + (s — )™ (1)
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Every neuron ¢ has a prototype vector w; which represents a cluster of input
samples. Please note that w; € RP, where D is the dimension of the input space.
At time step n, a new sample x (n) is presented to the network, and a winner
neuron is declared:

. _ . I 9
Winner (x(n)) arg _omin [x (n) —w; (n)]l, (2)
where a tie breaking criterion must be defined. Then the prototypes of all the units
are adjusted, for ¢ € {1,...,M}:
w;(n+1)=
= w; (n) +n(n) A (i, Winner (x (n))) (x (n) — w; (n)), (3)

where 7 (n) is a decaying learning rate and the neighborhood function A varies with
the time step n and depends on a decaying neighborhood radius A (n):

n(n+1)<n(n), (4)

— 9
A (i, Winner (x (n))) = exp <_ <d(Z7W1Zn(‘z)(X (”)))) ) 7
A(n+1) <A(n). (6)

The receptive field of neuron 4, i.e. the region of the input space which is
represented by ¢, is defined as:

F; = {xeR” |i=Winner (x)}. (7)

Self-organizing maps are unsupervised learning neural networks which perform
a vector quantization-type process. The performance of a map for this task is
commonly measured by the mean squared error [4, 13, 19, 32]:

K

- 2
MSE = — . o 8
K ;je{llr,l,l.r.l,M}ka will” (8)

where K is the number of input samples.
Next we see how SOMs can be linked to the minimization of the M SFE by their
energy function.

2.2 Energy function
The theoretical basis for the SOM algorithm given by Kohonen [9, 38] considers an

energy measure,
1K M

. 2
= DD 10 € F) Y AGL]) I —wil?, )
k=1 j

i=1 Jj=1

where A is the neighborhood function, and I is the indicator function,
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0 iff Condition is false

. . (10)
1 iff Condition is true.

I (Condition) = {

Then the energy £ is minimized by means of stochastic approximation (Robbins-
Monro method). In order to guarantee the almost sure convergence of the algo-
rithm, the step size v (t) of the Robbins-Monro method (which corresponds to the
learning rate in the SOM) must verify the following conditions [28]:

S () =, (1)

Y (r(m)* < oo (12)

This is typically achieved by selecting.

a

v =g

where a and b are suitable constants, as seen in [20], for example.

(13)

3. The role of the lattice dimensionality

This section studies the effect of the lattice dimensionality on the SOM from several
points of view. First of all, the energy function of the SOM is decomposed to show
the differences among topologies from a network level perspective (Subsection 3.1).
Then a method to assess the optimal neuron configurations produced by a SOM
energy function is developed; it focuses on the adaptation of the neurons to the
local features of the input distribution (Subsection 3.2). Thirdly the implications
of the intrinsic structure of the input distribution are explored (Subsection 3.3).
Finally, the behavior of the network near a local minimum of the energy function
is considered (Subsection 3.4).

3.1 Energy function decomposition

Here the energy function of a SOM is to be decomposed according to its lattice
dimensionality. First of all, a way to obtain a SOM of a lower dimensionality is
considered (Fig. 1). Given a 3D lattice of size a X b X ¢, we can obtain a 2D lattice
with the same number of neurons by joining side by side the ¢ rectangular lattices
(sheets) of size a x b which form the original 3D lattice, as shown in Fig. 1a. This
yields a 2D lattice of size a x bc. Moreover, we can obtain a 1D lattice with the
same number of neurons by connecting one after the other the a rows of size bc
which form the 2D lattice, as shown in Fig. 1b. This yields a 1D lattice of size
1 x abe.
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Fig. 1 Lattice dimension reduction: (a) obtaining a 2D lattice of size 3 X 16 from
a 3D lattice of size 3 x 4 x 4, (b) obtaining a 1D lattice of size 1 x 16 from a 2D
lattice of size 4 x 4. The topological connections which are kept are shown as black
lines.

Let us note the topological distances for the three lattices ds, do, and d;, re-
spectively. The corresponding neighborhood functions will be noted Az, As, and
A1, where we assume that the neighborhood radius A (n) is the same for the three
lattices at all time steps n. Now, from the definition of the lattices the following
relations hold for all pairs of neurons i, j:

do (3,7) < dq (i,7) . (15)

For reasons that will become clear later, the topological distances for a null
topology and a fully connected topology are also defined:

i i — g
do (i, ) = {2@ I (16)
drun (4,7) = 0. (17)

From (16) and (17) we get:

drun (4,7) < ds (i, 7)), (18)

Equations (14), (15), (18) and (19) imply that:

AFull (7/?.7) > A3 (27.]) ) (20)

Vhe {1,2,3}, A (i,5) > Any (i, 7). (21)

Next we can decompose the energy function of the 3D map as follows:
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Ep=FEy+ E + Ey + E3, (22)
| KM M

By =5 ;;I(Xk € F)) Zle (i.9) e — wil (23)
iz o

Vhe{1,2,3}, B, =

| KoM M
ZZI(Xk €F) Z (A (4,5) — Ap—1 (4, 9)) ||xx — WJ'HQ- (24)
j=1

k=11=1

From (16) and (21) we obtain:

Vhe {0,1,2,3}, Ej, > 0. (25)
Then, from (8) and (23):

Eo = MSE. (26)

Finally, the energy functions for the 1D SOM and the 2D SOM can be decom-
posed as follows:

ElD :Eo JrEl, (27)

Ep = Eg+ E1 + Es. (28)

From the preceding it can be inferred that a 1D SOM has an energy function
which is closer to the M SE than a 2D SOM, and that the energy function of a 3D
SOM is even farther from the MSFE than that of a 2D SOM. It is also interesting
to remember that the competitive learning neural network, which corresponds to
the null topological distance dy, minimizes the MSFE. So we can sort the models
according to the importance of the M SFE in their energy functions: competitive
learning (maximum importance), 1D SOM, 2D SOM and 3D SOM (minimum im-
portance).

Some insight about the effect of adding topological connection terms to the
energy function can be obtained if we consider a fully connected topology, which
corresponds to this energy:

K M M
gFull—EZZ XkeFi)ZAFull(iaj) ||Xk_wj||2a
k=1 j=1

=FEy+E +Ey+E3+ Epu.
K M
*ZZHM—W;H (29)

k=1 j=1
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where
1 M M
.. .. 2
Erun = 7 ;;I(Xk € Fi); (Apan (4,5) — Az (4,9)) [|xx — w1~ . (30)

It must be noted that (20) and (30) imply that:

Epu > 0. (31)

Next we prove that that Ep,y is minimized for w; = E [x], where E [x] stands
for the mean vector of the overall input distribution:

Theorem 1. The global minimum of Epyy is w; = E [x].

Proof. To see that Ep,y is minimized for w; = E [x] we set w; = E [x] + J; and
evaluate Epy. We obtain

Erutl = Erulllw;=B) + Z + A, (32)
where
9 K M
7= EZZ(X,C —Ez])-6; =0 (33)
k=1j=1
and
M
2
A="151" >0 (34)
j=1

so the theorem follows.

This theorem means that for a fully connected topology the energy is minimized
if and only if all the prototypes collapse to the global mean of the input distribution.
From these considerations, we conclude that the more topological connections that
are added to the map, the less importance that it gives to the minimization of the
MSE and the stronger the attraction of the learned prototypes towards the global
mean of the input distribution.

However, this does not imply that the plain minimization of the M SFE, which
corresponds to a purely competitive neural network, would yield the best results
in terms of MSFE. As known, the absence of cooperation among neurons leads to
local minima corresponding to dead neurons, i.e. units with little or no samples in
their receptive fields. It is worth noting that these local minima are removed by
the introduction of the E; term, since this connects all neurons together so that a
dead neuron is no longer a local minimum of the energy function. Consequently,
the extra terms Fs, Fj,...offer no further advantage in this sense.

Here the overall goal of the network (its energy function) has been studied from
a global point of view. That is, the adaptation to the local features of the input
distribution has not been considered. In the next subsection, the energy function
is assessed from a local viewpoint.
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3.2 Energy function assessment

The energy function decomposition that has been carried out in Subsection 3.1
does not give specific information about the distribution of the local minima of the
energy functions associated to different topologies. This task can not be accom-
plished by comparing the energy functions directly, because an energy function has
M D parameters (the components of the M prototype vectors), so it is defined on
RMD which is a very high dimensional space. Even worse, since the neighborhood
radius varies during the learning process the energy function also varies, which
implies that the study of any particular case of the energy function does not apply
to the overall learning process. Of course, one can always compare the resulting
MSE for different topologies, but the M SE is a global scalar performance mea-
sure, so it conveys no information about the way that the networks adapt to the
input distribution.

Let us consider a hypercube V (x) in the input space centered around x € R”
where V (x) C RP, and let Vol (V (x)) be its D-dimensional volume. Let n (V (x))
be the expectation of the number of neurons that are inside V' (x) when the SOM
algorithm finishes, given an input distribution and a certain choice of the SOM
learning parameters. Then we define the neuron density at the point x € R” as
follows:

. n(V(x)
P = Vel V(%) (35)

Now, if we note fy, (x) the probability density of the final value of the i-th
prototype vector of the SOM, we have:

1 M
p(X) = 37 2 o (%) (36)

It is also worthwhile noting that the integral of the neuron density over the
entire input space is one:

/ p(x)dx =1. (37)
R]D

We propose the use of the neuron density p as a tool to examine the optimal
neuron configurations corresponding to the local features of the input data. Neuron
density has been previously studied in literature. The well known SOM magnifica-
tion factor result states that p (x) weakly converges when M — oo to the following
probability distribution [22, 28]:

_ e 55)
o (0 (x)) 72

where p (x) is the input distribution.

However, the result (38) is not directly applicable to practical SOMs because
the number of neurons M is a finite number. On the other hand, the detailed
examination of p (x) for a given SOM with a certain set of learning parameters and
network topology can give some insights about the adaptation of the network to

p (%)

64



Ramos A.D., Lépez-Rubio E., Palomo E.J.: The role of the lattice...

the input distribution at hand. High values of p (x) mean that prototype vectors
usually finish near x, which implies that putting a prototype near x usually leads to
a lower value of the energy function of the SOM. Consequently, the local maxima of
p (x) correspond to neuron locations associated to minimal energy configurations
of a SOM. This allows to indirectly evaluate the difference between the MSFE
and the energy function associated to a SOM by comparing the neuron density of
competitive learning neural network and that of the SOM. The closer the neuron
density of the competitive network to that of the SOM, the more similar their
energies. A fundamental advantage of this methodology is that the energy function
is defined over RMP | while the neuron density is defined over R”. Hence the neuron
density is easier to assess than the energy function, and it is even possible to plot
it for D = 2. Moreover, the neuron density carries information about the whole
learning process, while the energy function varies over this process, as mentioned
before.

3.3 Intrinsic dimensionality of the input

In this subsection a study of the effect of the intrinsic dimensionality of the input
distribution is carried out. A simple distribution is chosen for this purpose, so that
a full mathematical treatment is possible. In particular, the uniform distribution
on a D-dimensional box (also called orthotope) is considered, with the following
input probability density:

D
p(x) = [ U @n an B, (39)
h=1
where ay,, B are the lower and upper limits of the box in the h-th dimension, and
U stands for the univariate uniform distribution. It must be pointed out that it is
assumed that the box is aligned with the coordinate axes, without loss of generality.
Let A, be the length of the box in the hA-th dimension,

An = Brn — . (40)

It is also assumed without loss of generality that

VhE{l,...,D—l},)\hZ)\thl (41)

that is, the first principal direction (the direction with the highest variance) is
dimension 1, and so on. Next the performances of 1D, 2D and 3D SOMs over this
distribution are compared.

3.3.1 1D versus 2D SOMs

For a 1D SOM the globally optimum configuration of the map is one where the
neurons are evenly distributed over the first principal direction, provided that the
difference between A1 and A, is large enough that no curved configurations of the
map are better, and neglecting the border effects near the limits of the box. This

means that each receptive field is a box with length /\T\/} over the first dimension,
and Ap, over the remaining dimensions, h € {2,...,D}. The mean squared error

65



Neural Network World 1/2018, 57—85

corresponding to this optimal configuration can be computed as the sum of the
variances in a receptive field over the D dimensions of the input space. This
amounts to the sum of the variance of a uniform distribution for each of the D
dimensions:

MSEp = %2 < ) o Z A2 (42)

On the other hand, for a 2D SOM with the same number of neurons and a
square topology, i.e. a v/M x v/M topology, the globally optimum configuration of
the map is one where the neurons are evenly distributed over the first and second
principal directions, provided that the difference between Ao and A3 is large enough
that no curved configurations of the map are better, and neglecting again the border
effects near the limits of the box. This implies that each receptive field is a box

with length \;‘ﬁ over the first dimension, )‘ZZM over the second dimension, and \p

over the remaining dimensions, h € {3,..., D}. The associated mean squared error
is:

LAY 1) 1
MSES uare — To — | ——= - )\2. 43
? 12 (,ﬁM) T (,ﬁM) * 12}; h (43)
Under these conditions, the M SE performance of the 1D SOM is better than
that of the 2D SOM with square topology iff the following condition holds:

MSElD < MSESqumne, (44)

18 1, 1N 11X
12M2 1272 T 12M  12M’
which is satisfied for \; > Ao, i.e. when the intrinsic dimensionality of the input
distribution is one.
If the analysis is generalized to arbitrary 2D rectangular topologies of size a x %,
the receptive fields are boxes with sizes % and %}2 over the first and second
dimensions

(45)

a1 fak )
MSE,W_H(Q) +12( ) 122)\ (46)

The rectangular topology which minimizes M SE,...; is obtained as follows:

OMSE,cct 1 >\2 2a)3
T oa 2\ e ar )70 (47)
A2 2a\3
207; = M;, (48)
M
a= N L (49)
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If the intrinsic dimensionality is one, i.e. A1 > As, then the solution for a grows
without limit. Consequently the optimal map size is M x 1, so we recover the 1D
SOM. On the other hand, if A\; = Ay (the two first principal directions have the
same variances) the optimum is attained for a = v/M, which is the square topology.
It can be concluded from (49) that the optimal topology becomes more elongated
as the ratio between the variance of the first principal direction and the second
principal direction grows.

3.3.2 2D versus 3D SOMs

For a 3D SOM with M neurons and a cubic topology, i.e. a VM x /M x /M
topology, the globally optimum configuration of the map is one where the neurons
are evenly distributed over the first, second and third principal directions, provided
that the difference between A3 and A4 is large enough that no curved configurations
of the map are better, and neglecting the border effects near the limits of the box.

This implies that each receptive field is a box with lengths \;—ﬁ \22\7 and \/M over
the first three dimensions, and A over the remaining dimensions, h € {4,...,D}.
The associated mean squared error is:
MSEcubic =
1 1 &
——= (AT + A+ ) + 5 DA (50)
3 ( 1 2 3 h
12~/ M2 12 het

Under these conditions, the MSE performance of the 2D SOM with square
topology is better than that of the 3D SOM with cubic topology iff the following
condition holds:

MSEsqua're < MSEcubim (51)
1A A 1
(M + M + )\2) EITEL (AT +X3+X3). (52)

which is satisfied for Ao > A3, i.e. when the intrinsic dimensionality of the input
distribution is lower than three. This result is in agreement with the one that was
obtained for 1D and 2D SOMs, so that it can be inferred that a lattice dimension-
ality that matches the intrinsic dimensionality of the input yields the best results
in terms of M SFE.

For a rectangular cuboid of size a x b x % we are led to

MSErect =

1/\121/\221ab/\3 2
12() +12(b> T 122” (53)

To find the critical points we proceed as before:
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OMSE,c: 1 ( N 2a0°\3
T oa 12 (—%3 e )= (54)
OMSE,. 1 A 20aA3\

ob 12 (_2b3 e ) =0 (55

Solving for a or b in one equation and substituting in the other one we find:

S M2 S| M2
— db= . 56
“ Morg o MAs (56)

When the intrinsic dimensionality of the input is 1 or 2, i.e., for As > A3, we also
have A1 > A3 and both a and b become as large as we wish. When the three
first principal directions have equals variances, Ay = Ay = A3, the cubic solution
a = b= /M is the optimum one.

3.4 Local analysis

The study of energy minimization carried out in previous sections showed dimension-
depending features of SOM. A general analysis of its behavior on an iteration-by-
iteration basis seems impossible. Nevertheless, in this section and under some
hypotheses, we shall accomplish such an investigation, providing an alternative
confirmation of the characteristics of SOM previously described.

Assume the network has reached a local minimum for M SE. Then a number
of samples equal to the number of neurons, KX = M, are presented in the order
X1,...,XK. We further impose the condition that x; belongs to the receptive field
of neuron j, Fj.

To simplify, we consider a constant learning rate n and a constant neighborhood
radius A = 1 throughout the iterations. Moreover, because the learning rule (3)
is continuous on 7, we may also assume that the winner neuron on iteration k is
the neuron j = k by taking n small enough. It is straightforward then that after
K iterations we have

K
w; (K) = a; 0w; (0) + Z Bi ki 1 Xk, (57)
=1

where w;(0) = w; = x5, Bir = nA(i, k) and o, = H]K:kﬂ(l — Bik)- Note that
Bi.i = n and the strong order-depending behavior.
If we let the distance in the lattice grow without limit, d — oo, then we have

k=1 1 k>
Bix — K Z.Emdoéik—> 72.
’ 0 ki ’ l—n k<i

and Eq. (57) becomes

w; (K) = (1 —n)w; (0) + nx;.
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This shows that in this setup vector quantization does remain close to the local
minimum for M SE. On the other hand, if we let d decrease without limit, d — 0,
then we have 8;, — 1, a;x — 1 —n and Eq. (57) becomes

K

wi (K) = (1—n)"w; (0)+ > _n(1 =" *x;.
k=1

Note that, because 0 < 1 —n < 1, the expression (1 —n)! approaches 0 as [ grows.
So for small lattice distances, the network forgets the early samples and the original
state w;(0) and moves towards the late samples.

As we observed in Section 3.1, the distance of the lattice d is inversely pro-
portional to the dimension of the lattice D. So the conclusions outlined in the
paragraph above for large or small d also apply to small or large D. Anyhow, to
examine in a more explicit way the impact of lattice dimensionality on Eq. (57) we
study the coefficients in this expression. We start by computing the average value
B of B for k different from i. Notice that 3; , depends only on the distance d(i, k)
from i to k. So, if we write M; for the number of neurons at distance [ from the
neuron ¢ (hence My = 1) and we let 7 be the maximum distance to ¢ we have

1 T
— MnA(D),
s M1+M2+...+MZ mA (L)

=1

where A(l) = exp(—[?). The dimension of the lattice provides the estimates M a2
M;I1P~1 and M =~ rP which gives finally

- S 1P~ texp(—1?)
n Z;‘ZI |D-1 :

This number £ is a increasing function of D. For instance, let us consider the
following values of M; for D = 1,2,3 and small {:

B (58)

D | My | M, | My | M | M,
2 [ 2 | 2 | 2

8 | 16 | 24 | 32
26 | 104 | 234 | 416

1
2
3

= =] =

Then for fixed number of neurons M = 27 we have:

D r B/n

1| 13 | 0.0297

2 | ~2 | 0.1348 |
31 1 |0.3679

The coefficient of w;(0) in (57) can be approximated by (1 — 3)%. Hence, this
coefficient is decreasing in D. The ratio of the coefficients of x; (k # i) and of x;

is close to . Kk
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This function is increasing in § for small enough values of 3, and for this it suffices
to choose 7 small enough too. Hence, this ratio is an increasing function of D.

To sum up, the larger the dimension D the less spread the distances among
the neurons of the lattice. This causes the neuron i tends to forget its initial state
w;(0), suffers larger influence of samples which do not belong to its receptive field
F; and move away from the local minimum. In contrast, for low dimensions D, the
neurons of the lattice are more evenly distributed proportionally to its distance to
a fixed neuron. In this case, the network tends to stay near the local minimum for
MSE.

4. Experiments

In order to assess the proposed grid topologies, two kinds of experiments have
been designed'. Synthetic 2D and 3D datasets have been used to study the neuron
density under different conditions (Subsection 4.2). Then the unsupervised cluster-
ing performance of the methods has been tested over image and machine learning
data (Subsection 4.3). Before they are presented, the elements of the experimental
design which are common to all the experiments are specified (Subsection 4.1).

4.1 Experimental design

The proposals have been implemented in Matlab with the most time consuming
sections coded in C language, and they have been run on a single core of a 3GHz
CPU with 64 bit architecture and 8GB of RAM.

Each prototype vector has been initialized to a training sample chosen uniformly
at random from the training set. Next we detail the parameter selection strategy
for the experiments. Let N be the overall number of time steps of the training
process. It has been set to N = 100, 000 for all the experiments. We have divided
the training process into an ordering phase and a convergence phase with the same
number of time steps, i.e. % time steps each. During the ordering phase, the
learning rate and the neighborhood radius experience a linear decay:

1 (n) = o (1—%), (60)
A(n) = Ay (1—”;{1) (61)

During the convergence phase, constant values have been used to carry out the
fine tuning of the maps: n(n) = n., A (n) = A.. Hence, the set of parameters to
be chosen is: 19, Ag, 7¢, Ac. The parameter choice strategy has been different for
the synthetic and real datasets, as specified next.

4.1.1 Synthetic datasets

For the 2D synthetic datasets (Subsection 4.2) competitive learning, 1D and 2D
topologies have been compared. No 3D topologies have been tested, since it does

1The source code and demos of our proposal will be published in case of acceptance.
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not make sense for 2D datasets. On the other hand, for the 3D synthetic datasets
we have also carried out tests with 3D topologies. We have fixed 9 = 0.4 and

7. = 0.01. Then for the 2D and 3D topologies we have chosen Ay = VM and

32
A, = ﬁ‘/g. For the 1D topologies we have chosen Ag = % and A, = 6M4. The

values have been selected by hand so as to obtain good adaptations of the networks
to the synthetic input distributions; the adaptation has been assessed visually. The
map sizes for 2D datasets have been 4 x4x 1, 6 x 6 x 1 and 8 x 8 x 1 for 2D SOMs,
and the same numbers of neurons (M = 16, 36, 64) for competitive learning and
1D SOMs. For the 3D datasets we have tested 2D map sizes of 8 x 8 x 1 and
10 x 15 x 1, 3D maps sizes of 4 x 4 x 4 and 5 x 5 x 6, and the same numbers of
neurons for competitive learning and 1D SOMs (M = 64, 150).

4.1.2 Real datasets

For the real datasets, which have D > 3 it is not advisable to select the parameters
by hand, since it is difficult to plot the resulting configurations of the maps. Conse-
quently, we have considered the Mean Squared Error (8) as the objective function
to be minimized. The Nelder-Mead optimization method John A. and R. [25] has
been used to carry out the parameter optimization, which is quite robust with re-
spect to noise in the objective function. To this end we split the available set of
samples into a training set (90% of the data) and a validation set (the remaining
10%). The map is trained with the training set and then the MSE is evaluated
over the validation set. In this set of experiments competitive learning, 1D, 2D
and 3D topologies have been considered. For each dataset, simulations have been
repeated for map sizes of 64 x 1 x 1, 150 x 1 x 1, 216 x 1 x 1, 294 x 1 x 1, and
729 x 1 x 1 neurons (1D); 8 x 8 x 1, 10 x 15 x 1, 12 x 18 x 1, 14 x 21 x 1 and
27 x 27 x 1 neurons (2D); and 4 x4 x4, 5Xx5x6,6x6x6,7x7x6and 9x9x9
neurons (3D). Please note that the same numbers of neurons have been used for
1D, 2D and 3D maps: 64, 150, 216, 294 and 729, respectively. The numbers of
neurons for the competitive learning networks have been the same.

4.2 Neuron density

In this set of experiments the goal is to compare the neuron densities produced by
competitive learning, 1D SOMs and 2D SOMs. Since competitive learning corre-
sponds to plain M SE minimization, neuron densities similar to that of competitive
learning are expected to be associated with low values of the M SFE.

Three 2D and two 3D input datasets have been considered (see Fig. 2). For
each 2D dataset, number of neurons and model, 1,000 runs have been carried out,
while 10,000 runs have been executed for 3D datasets because the higher input
dimension requires a higher number of samples to estimate p accurately. Then the
final prototype vectors have been fed to the FIGTree implementation [43, 44] of
the Improved Fast Gauss Transform (IFGT) with bandwidth ¢ = 0.02 in order to
produce an accurate estimation of the neuron density p.

The results for 2D datasets are shown in Figs. 3 to 5. It can be noticed that the
neuron density for the competitive learning smooths out as the number of neurons
grows. It tends to follow the input density, although there are spots with higher
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Fig. 2 Synthetic datasets: (a) square, (b) star, (c) two shapes, (d) Swiss roll, (e)
punctured sphere. For the star dataset, darker tones mean higher input density.
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Fig. 3 Neuron densities for the square dataset. From left to right: competitive
learning, 1D SOM and 2D SOM. From top to bottom: M = 16, M = 36 and
M = 64. The neuron density keys are shown below each subfigure.
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Fig. 4 Neuron densities for the star dataset. From left to right: competitive learn-
ing, 1D SOM and 2D SOM. From top to bottom: M = 16, M = 36 and M = 64.
The neuron density keys are shown below each subfigure.

p at the corners of the input distribution. This means that M SFE is significantly
lowered whenever a neuron is placed in one of these spots. The 1D SOM follows the
same trend, and it smooths out even faster than competitive learning. On the other
hand, the 2D SOM shows a completely different behavior. Either p concentrates
on discrete spots, even for high values of M (Figs. 3 and 5), or it develops complex
patterns which have nothing to do with the input distribution and are due to the
2D lattice constraint (Fig. 4).

The obtained neuron densities for 3D datasets are depicted in Figs. 6 and 7.
It is worth noting that the Swiss roll dataset has a uniform density over all the
manifold, while the punctured dataset has a higher density in the points of the
manifold which are closer to the hole. Again competitive learning follows the input
density, with high p spots in the extreme points of the input distribution. 1D
SOMs also follow the input, although they tend to place some neurons in the inner
region of the roll which has no input samples, and in the hole of the punctured
sphere. 3D SOMs offer even better adaptation to the input, even if they still place
a few neurons in zero density regions which lie among high input density regions.
Finally, 2D SOMs yield the worst performance, since they spread the neurons all
over the zero input density regions of the interior of the Swiss roll, and they fail to
place neurons in the lower input density regions of the punctured sphere.
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Fig. 5 Neuron densities for the two shapes dataset. From left to right: competitive
learning, 1D SOM and 2D SOM. From top to bottom: M = 16, M = 36 and
M = 64. The neuron density keys are shown below each subfigure.
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Fig. 6 Neuron densities for the SwissRoll dataset over the plane which splits the
roll into two halves. From left to right: competitive learning, 1D SOM, 2D SOM
and 3D SOM. From top to bottom: M = 64 and M = 150. The neuron density
keys are shown below each subfigure.
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Fig. 7 Neuron densities for the punctured sphere dataset over a plane which splits
the dataset into two halves. From left to right: competitive learning, 1D SOM, 2D
SOM and 3D SOM. From top to bottom: M = 64 and M = 150. The neuron
density keys are shown below each subfigure.

It can be concluded that 1D SOMs distribute their neurons in a way that follows
the input distribution more closely than 2D SOMs, which are strongly constrained
by the 2D lattice. On the other hand, 3D SOMs offer a good performance in the
3D datasets, which can be related to the match of the input space dimension and
the map lattice dimension.

4.3 Unsupervised clustering

A natural application of self organizing maps is unsupervised clustering, since these
maps do not need previously labeled training samples in order to obtain a meaning-
ful clustering of an input distribution [3, 18, 27, 34, 37, 46]. Hence, several datasets
have been selected from two domains: color images and machine learning.

We have chosen six well known benchmark images from the USC-SIPI Image
Database [5], which are shown in Fig. 8. All of them have size 512 x 512 pixels
except House, which is 256 x 256 pixels. The pixel values for each RGB channel
have a precision of 8 bits, and they lie in the range [0, 255]. Our second application
domain deals with machine learning datasets from the UCI Repository of Machine
Learning Databases [1]. The considered datasets are listed in Tabs. I (small size
datasets) and II (large size datasets).

Three quantitative performance measures have been obtained for this set of
experiments: Mean Squared Error (M SE, Eq. 8), Mean Silhouette Value (M SV)
and Mean Tied Rank (MTR), that we discuss below.

The silhouette value is specifically designed to assess the quality of an unsu-
pervised clustering [6, 33, 36]. Let o be the average distance from sample x (k)
to the other points in its own cluster, and o, the average distance from x (k) to
points in another cluster j. The silhouette value for a sample SV (x (k)) € [—1,1]
and the Mean Silhouette Value (higher is better) are given by:
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—0r + minj Ok

SV (x(k)) = max {o}, min; 0}’ (62)
1 K
MSV = — ; SV (x (k). (63)

In order to compare the topology preservation ability of a self-organizing map,
the topographic error is commonly used [4, 8, 14, 30]. However, it can not be used
to compare maps with different topologies, because the T'E depends critically on

(d) (o) ®

Fig. 8 Benchmark color images: (a) F16, (b) House, (¢) Lake, (d) Lena, (e)
Mandrill, (f) Peppers.

Dataset D # samples

BalanceScale 4 625
BreastCancerWisconsin 9 683

Cloud 10 2,048

Contraceptive 9 1,473
Dermatology 34 358
Glass 9 214
Haberman 3 306
HayesRoth 4 132
Liver 6 345
Pima 8 769
Vowel 10 990
Wine 13 178

Yeast 8 1,484

Tab. I Small UCI benchmark datasets considered for unsupervised clustering.
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Dataset D # samples

CorelColorHistogram 32 68,039
CorelColorMoments 9 68,039
CorelCoocTexture 16 68,039
CorelLayoutHistogram 32 66,615

CoverType 10 581,010
Letter 16 20,000
MiniBooNE 50 130,063

SkinSegmentation 3 245,056

Tab. IT Large UCI benchmark datasets considered for unsupervised clustering.

the number of immediate neighbors of each unit, and the number of immediate
neighbors varies (4 neighbors for 2D topologies and 6 neighbors for 3D topologies).

In order to obtain a topology preservation measure which treats all possible
map topologies on equal terms, the Mean Tied Rank (MTR) can be used [15]. For
each test sample we compute the list of all the units of the map which are not the
first best matching unit, sorted by topological distance to the first best matching
unit. Then we compute the tied rank of the second best matching unit in this list.
Finally, the MTR is defined as the mean of these tied ranks for all test data (lower
is better):

1 K
MTR = — > 1 (x(k), (64)
k=1

where 7 (x (k)) stands for the tied rank of the second best matching unit for sample
x (k) in the above described list. For example, if the second best matching unit is
the sixth closest neighbor of the first best matching unit for some test sample, then
we accumulate 6 to the computation of the MTR. If several units have the same
topological distance to the first best matching unit i.e. there is a tie among them,
then their average rank is used for M TR computation in case that one of them is
the second best matching unit for some test sample. Please note that MT R does
not make sense for competitive learning because no topology is defined, so it is not
reported for this model in the presented results.

A statistical significance study has been carried out for all the quantitative per-
formance measures. Once the map parameters for a proposal, network size and
dataset are obtained by the procedure detailed in Subsection 4.1, 100 runs of hold-
out cross-validation are executed, each with randomly split training set (90% of the
samples) and test set (10% of the samples). The reported quantitative values are
the mean and standard deviation computed over the 100 runs corresponding to the
best performing map size for each competing method. After that, the nonparamet-
ric Friedman test with the corresponding post-hoc Dunn test are used to determine
whether the difference of the best competing method with respect to all the others
is statistically significant. These tests are robust for multi-way comparisons [24].
A 95% confidence level has been chosen in all cases.

The detailed results of the three performance measures for the machine data
and image datasets are listed in Tabs. III to XI. The overall result of these exper-
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Competitive 1D SOM 2D SOM 3D SOM

BalanceScale 1.00 (0.00) 0.91 (0.03)* 1.02 (0.05) 1.16 (0.07)
BrCanWis 771 (148)  7.69 (1.52)  9.71 (1.89)  11.42 (2.18)
Cloud 551 (349)* 996 (1144) 2310 (2795) 3632 (4264)
Contraceptive  2.06 (0.12)*  2.37 (0.15) 2.95 (0.27)  3.20 (0.31)
Dermatology ~ 13.69 (1.21)  11.69 (1.23)*  12.88 (1.80)  13.37 (1.95)
Glass 0.69 (0.56)  0.64 (0.56)*  0.82 (0.63)  1.00 (0.72)
Haberman  6.57 (3.35)  6.57 (3.52) 855 (5.76)  10.3 (7.38)
HayesRoth  0.45 (0.21)  0.38 (0.19)*  0.45 (0.21)  0.56 (0.22)
Liver 183 (71.9) 166 (61.7)* 222 (106) 254 (146)
Pima 350 (211)* 380 (273) 617 (594) 831 (747)
Vowel 0.21 (0.02)*  0.33 (0.03)  0.702 (0.052)  0.92 (0.06)
Wine 249 (291) 186 (293)  271.9 (598.9) 372 (781)
Yeast .008 (.001)* 011 (.001) 015 (.002)  .017 (.003)

Tab. III Mean Squared Error results for the small machine learning datasets exper-
iments. Best results are marked in bold. An asterisk indicates that the difference
among the best method and all the others is statistically significant.

Competitive 1D SOM 2D SOM 3D SOM

BalanceScale 0.84 (0.07) 0.87 (0.05)*  0.78 (0.08) 0.70 (0.09)
BrCanWis 0.89 (0.05)  0.90 (0.04)  0.77 (0.07)  0.65 (0.08)
Cloud 0.78 (0.03)*  0.73 (0.04)  0.59 (0.04)  0.53 (0.05)
Contraceptive  0.80 (0.04)* 0.76 (0.05) 0.59 (0.06) 0.58 (0.05)
Dermatology ~ 0.91 (0.06)  0.94 (0.05)*  0.87 (0.07)  0.85 (0.06)
Glass 0.96 (0.05)  0.96 (0.05)  0.91 (0.07)  0.87 (0.10)
Haberman 0.94 (0.05) 0.95 (0.05)  0.93 (0.064)  0.90 (0.07)
HayesRoth  0.96 (0.06)  0.98 (0.04)  0.97 (0.06)  0.94 (0.074)
Liver 0.93 (0.06)  0.94 (0.05)  0.89 (0.07)  0.86 (0.08)
Pima 0.89 (0.04)  0.88 (0.04)  0.73 (0.07)  0.65 (0.08)
Vowel 0.94 (0.02)* 091 (0.03)  0.71 (0.05)  0.62 (0.06)
Wine 0.98 (0.03)  0.98 (0.03) 0.98 (0.03)  0.97 (0.04)
Yeast 0.78 (0.04)*  0.73 (0.05)  0.53 (0.06)  0.46 (0.07)

Tab. IV Mean Silhouette Value results for the small machine learning datasets
experiments. Best results are marked in bold. An asterisk indicates that the dif-
ference among the best method and all the others is statistically significant.

iments is that the 1D SOM outperforms the other two SOMs in most cases with
respect to MSE, MSV and MTR. An exception to this is the M SV for the image
experiments, where 2D and 3D maps are better. It must be highlighted that the
competitive learning networks are the best in terms of M SFE, with very good M SV
results, and that 1D SOMs are the second best in terms of M SE. This agrees with
the theoretical results developed in Section 3, where it is highlighted that compet-
itive learning minimizes the M SFE, while 1D SOM minimizes an energy function
which is closer to M SE than the energy functions of 2D SOMs and 3D SOMs. Con-
sequently, the experiments indicate that 1D SOMs are the self-organizing maps of
choice whenever vector quantization performance is the most important goal.
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1D SOM 2D SOM 3D SOM

BalanceScale  8.917 (1.952) 8.214 (1.837)  7.562 (1.818)
BrCanWis  4.489 (1.101)  4.522 (0.904)  5.118 (0.865)
Cloud 2.658 (0.560)*  3.985 (0.427)  7.867 (1.035)
Contraceptive  3.916 (0.519)* 4.943 (0.528) 6.673 (0.484)
Dermatology ~ 3.431 (0.969)  3.576 (0.406)  6.085 (0.815)
Glass 4580 (1.636)  4.185 (1.466)  4.742 (1.387)
Haberman 6.030 (2.033) 3.551 (0.876)* 5.146 (0.882)
HayesRoth  4.120 (2.934)  5.003 (3.042)  5.181 (2.536)
Liver 6.893 (1.746)  4.268 (1.143)*  5.620 (0.970)
Pima 3.606 (0.662)*  4.711 (0.668)  7.290 (1.278)
Vowel 6.068 (1.282)  5.559 (1.090)  6.058 (1.112)
Wine 1.751 (0.177)* 11.907 (3.087) 16.480 (3.710)
Yeast 7.951 (1.090)  5.543 (0.928)  6.075 (0.932)

Tab. V Mean Tied Rank results for the small machine learning datasets experi-
ments. Best results are marked in bold. An asterisk indicates that the difference
among the best method and all the others is statistically significant.

Competitive 1D SOM 2D SOM 3D SOM

CorelColorHistogram ~ 0.67 (0.00) 0.67 (0.00) 0.63 (0.01) 0.64 (0.00)
CorelColorMoments 0.67 (0.00) 0.67 (0.00) 0.64 (0.00) 0.63 (0.00)
CorelCoocTexture 0.67 (0.00) 0.67 (0.00) 0.65 (0.00) 0.62 (0.00)
CorelLayoutHistogram  0.67 (0.00) 0.67 (0.00) 0.63 (0.01) 0.64 (0.00)
CoverType 0.33 (0.00)*  0.32 (0.00)  0.31 (0.00) 0.30 (0.00)
Letter 0.26 (0.00)*  0.20 (0.01)  0.22 (0.01) 0.17 (0.01)
MiniBooNE 0.26 (0.01)*  0.19 (0.00)  0.14 (0.00) 0.12 (0.02)
SkinSegmentation 0.63 (0.01)*  0.49 (0.01)  0.49 (0.02) 0.44 (0.02)

Tab. VI Mean Silhouette Value for the large machine learning datasets experi-
ments. Best results are marked in bold. An asterisk indicates that the difference
among the best method and all the others is statistically significant.

1D SOM 2D SOM 3D SOM
CorelColorHistogram ~ 1.478 (0.001)*  17.460 (1.026)  17.419 (0.984)
CorelColorMoments ~ 1.478 (0.001)*  17.139 (1.130)  18.199 (0.788)
CorelCoocTexture 1.478 (0.001)*  16.792 (1.036) 18.569 (0.925)
CorelLayoutHistogram  1.477 (0.001)*  17.599 (1.023) 18.927 (0.905)
CoverType 8.663 (0.719)  4.449 (0.238)*  9.785 (0.619)
Letter 8.746 (0.803)*  13.647 (1.089)  15.545 (1.342)
MiniBooNE 5.655 (0.596)  4.279 (0.392)*  7.006 (0.841)
SkinSegmentation 3.646 (0.303)* 4.047 (0.269) 7.914 (0.907)

Tab. VII Mean Tied Rank results for the large machine learning datasets exper-
iments. Best results are marked in bold. An asterisk indicates that the difference
among the best method and all the others is statistically significant.
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Competitive 1D SOM 2D SOM 3D SOM
Baboon  0.38 (0.00) 0.36 (0.00)  0.38 (0.00)  0.39 (0.00)*
F16 0.39 (0.00)  0.41 (0.00)*  0.37 (0.00)  0.36 (0.00)
House  0.38 (0.01)  0.28 (0.00)  0.38 (0.01)  0.35 (0.01)
Lake  0.38 (0.00)*  0.33(0.00)  0.37 (0.00)  0.36 (0.00)
Lena  0.40 (0.00)  0.38 (0.00)  0.40 (0.00)  0.38 (0.00)
Peppers  0.41 (0.00)  0.39 (0.00)  0.41 (0.00) 0.41 (0.01)

Tab. VIII Mean Silhouette Value results for the image segmentation experiments.
Best results are marked in bold. An asterisk indicates that the difference among
the best method and all the others is statistically significant.

1D SOM 2D SOM 3D SOM
Baboon  7.270 (0.597)  4.554 (0.337)*  7.918 (0.609)
F16  3.621 (0.092)*  6.696 (0.250)  13.000 (0.689)
House  2.692 (0.095)*  4.284 (0.480)  6.126 (0.630)
Lake  4.712 (0.196)*  5.579 (0.339)  8.420 (0.709)
Lena 4.951 (0.172)  3.621 (0.241)*  9.907 (0.535)
Peppers  4.936 (0.598)  3.659 (0.174)*  7.395 (0.613)

Tab. IX Mean Tied Rank results for the image segmentation experiments. Best
results are marked in bold. An asterisk indicates that the difference among the best
method and all the others is statistically significant.

Competitive 1D SOM 2D SOM 3D SOM
CorelColorHistogram 996 (40) 999 (79) 5.24x10* (9673) 1.96x10° (2.10x10%)
CorelColorMoments 1007 (38) 1018 (74) 5.02x10* (9669) 1.90x10° (2.24x10%)
CorelCoocTexture 1016 (36) 1045 (72) 5.83x10* (1.28x10%) 1.88x10° (1.95x10%)
CorelLayoutHistogram 963 (32) 986 (70) 5.53x10* (9463) 2.14x10° 2 21x10%)
CoverType 5.26x10% (378)* 8.10x10" (527) 9.61x10" (1105) 5. 32x104 (345)
Letter 8.92 (0.12)* 13.40 (0.18) 18.85 (0.36) 21.78 (0.45)
MiniBooNE 1.78x10° (5.69x10°) 1.78x10° (5.69x10°) 1.78x10° (5.69x10°) 1.78x10° (5.69x10°)
SkinSegmentation 30.6 (3.0)* 83.9 (5.1) 199 (10) 339 (21)

Tab. X Mean Squared Error for the large machine learning datasets experiments.
Best results are marked in bold. An asterisk indicates that the difference among
the best method and all the others is statistically significant.

1D SOM
9.676x10~4 (1.512x10~5

2D SOM
1.437x107% (9.777x107¢

3D SOM
8.455x 107 (5.605x1076

Competitive
8.366x10~ (7.241x10-6)*

Baboon

) ) )

F16  1.962x107% (8.500x107%)* 3.068x10~* (2.057x107°) 1.020x107% (1.535x107%) 1.498x1073 (1.423x107%)
House  2.047x107* (7.017x1076)* 3.619x107* (1.475x107°)  5.100x107* (2.128x107°)  3.463x10~* (7.584x107°)
Lake  5.219x107% (9.546x107¢)* 1.037x107° (3.283x107%) 1.171x107% (4.412x107°) 1.582x1073 (6.783x107°)
Lena  2.713x107% (3.374x1076)* 4.842x107* (8.363x107%) 6.525x107* (2.691x107°) 8.675x10~* (3.728x107°)
Peppers  4.841x107% (8.254x107%)*  1.081x107? (5.919x107%) 1.034x107% (5.816x107°) 2.157x1073 (1.022x107%)

Tab. XTI Mean Squared Error results for the image segmentation experiments. Best
results are marked in bold. An asterisk indicates that the difference among the best
method and all the others is statistically significant.
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5. Discussion

We start by contrasting the practical aspects of neuron density (Subsections 4.2)
with the theoretical claims in Subsections 3.1, 3.3 and 3.4:

e In Figs. 3 to 5, as we navigate towards the right-hand side of the figure, the
neuron density grows near the expectation of the input density. Thus this
behavior coincides with the foreseen in Subsection 3.1: the larger the lattice
dimensionality the stronger the influence of the expected value of the samples.

e With reference to Subsection 3.3, in Figs. 3 to 5 we may observe that the lat-
tice matching the input dimensionality, i.e., 2D SOM, has the neuron density
which is less blurred. So this topology achieves the smallest M SE values on
the average, confirming the conclusions of that Subsection.

e Lastly, studying Figs. 3 to 7, we perceive that the lower the dimension the
lower the number of zones of high density and consequently the more bonded
the SOM is to local optimums. This was predicted in Subsection 3.4.

Next, key findings related to applications are discussed:

e The energy function of the 2D SOM departs from the optimization of the
M SE further away than that of the 1D SOM (Subsection 3.1). This suggests
that 1D SOMs are more suited to applications where vector quantization is
important. On the other hand, 3D SOMs have the energy function which is
the farthest from the M SFE, so it is more natural to employ it for applications
where learning a three dimensional structure is more relevant. The behavior
of the SOM near a local minimum of the M SE also favors 1D SOMs for these
applications (Subsection 3.4).

e The intrinsic dimensionality of the input dataset influences which topology
performs best (Subsection 3.3). The lattice with the matching dimension-
ality should be chosen if possible. Moreover, the specific structure of the
input dataset deeply influences the unfolding of the SOM, and each lattice
dimensionality exhibits a completely different behavior (Subsections 3.2 and
4.2). Emergence of complex patterns in the neuron density function of the
2D SOM has been discovered (Fig. 4).

e Experiments with real data (Subsection 4.3) indicate that 1D topologies are
the best SOMs overall, not only with respect to M.SE but also to topological
map quality. On the other hand, the competitive learning networks attain
even better values of M SE. These results agree with the theory developed
in Section 3.

From the above considerations it can be said that 1D and 3D lattice topologies

are heavily underutilized, since they clearly outperform the standard 2D in many
respects.
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6. Conclusions

Three alternative grid topologies for self-organizing maps have been examined.
A theoretical study of them has been carried out from several points of view.
Experiments have been carried out over synthetic and real data to compare them.
Several quantitative performance measures have been chosen to this end, and the
statistical significance of the results has been computed. The results and the further
discussion indicate that the 1D and 3D topologies are well suited to many datasets.
This indicates that there is room to improve SOM-based systems by employing
these relatively uncommon topologies.
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