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Abstract: Alzheimer’s Disease (AD) is the most frequent form of degenerative de-
mentia and its early diagnosis is essential for effective treatment. Functional imag-
ing modalities including Single Photon Emission Computed Tomography (SPECT)
are often used with such an aim. However, conventional evaluation of SPECT im-
ages relies on manual reorientation and visual evaluation of tomographic slices
which is time consuming, subjective and therefore prone to error. Our aim is to
show an automatic Computer-Aided Diagnosis (CAD) system for improving the
early detection of the AD. For this purpose, affine invariant descriptors of 3D
SPECT image can be useful. The method consists of four steps: evaluation of
invariant descriptors obtained using spherical harmonic analysis, statistical testing
of their significance, application of regularized binary index models, and model ver-
ification via leave-one-out cross-validation scheme. The second approach is based
on Support Vector Machine (SVM) classifier and visualization with use of self-
organizing maps. Our approaches were tested on SPECT data from 11 adult pa-
tients with definite Alzheimer’s disease and 10 adult patients with Amyotrophic
Lateral Sclerosis (ALS) who were used as controls. A significant difference be-
tween SPECT spherical cuts of AD group and ALS group was both visually and
numerically evaluated.
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1. Introduction

Alzheimer’s Disease (AD) is the most frequent form of degenerative dementia and
early diagnosis is essential for effective treatment [8]. Despite significant progress in
the field of neurology and neurosciences during the last years, accurate diagnosis of
AD is still challenging. Current diagnostic criteria for AD remain based on clinical
appreciation, such as Diagnostic and Statistical Manual of Mental Disorders, fourth
edition: DSM-IV-TR [1]; and the National Institute of Neurological Disorders
and Stroke-Alzheimer Disease and Relative Disorders working group: NINCDS-
ADRDA [19]. Its sensitivity and specificity reach about 80-87 % [9]. Neuroimaging
may be particularly helpful in increase the diagnostic precision. For this reason,
many research groups have recently focused on additional tools based on various
image processing principles in order to refine diagnostic results: (i) hippocampal
shape analysis of magnetic resonance images [12, 13, 25, 28]; (ii) hippocampal vol-
ume analysis of magnetic resonance images [18]; (iii) cerebral texture analysis of
positron emission tomography sinograms [24].

Single Photon Emission Computed Tomography (SPECT) is a non-invasive
and widely accessible imaging method which maps regional blood flow in different
cerebral areas. Selective hypoperfusion in temporal and parietal regions has been
attributed to AD with an overall specificity of 60-70 % and sensitivity of about
80 % [20, 26]. When using professional SPECT images obtained by experienced
physicians in specialized centers, both sensitivity and specificity increase. However,
the sensitivity and specificity proved not high enough for routine use of SPECT
to be recommended for diagnostic purposes [6]. On the contrary, if the sensitivity
and specificity further increase by more relevant data processing, SPECT would
be ideal for routine use because of its reasonable financial costs and the possibil-
ity to use SPECT repeatedly for monitoring of disease’s progression and dynamic
patterns. Moreover, SPECT imaging could reliably differentiate local hypoperfu-
sion in frontal and cingulate areas in depressive pseudodementia (memory clinics
in depression, second most frequent condition in patients with memory complaints)
from the typical temporo-parietal pattern in AD. As Magnetic Resonance Imaging
(MRI) is unable to distinguish between AD and depression, SPECT could be very
helpful in this respect.

The aim of our work was to develop a more adapted SPECT analysis proto-
col as a supportive method for discerning early symptoms of Alzheimer’s disease.
The principal approach takes advantage of the medical finding that affected brain
is usually characterized by a different structure of gray and white matter and
is based on mathematical and computer analysis of 3D brain scans. Having 3D
intensity image of any structure, various characteristics can be defined and mea-
sured. We focus on characteristics, which are invariant with respect to any spatial
affine transformation. In other words and more specifically, via 3D integration
of SPECT brain scans with spherical harmonic functions we obtain characteris-
tics (descriptors) which are not sensitive to body translation, rotation and scaling.
Such characteristics are further processed, their dimension is reduced and their
classification ability is determined and verified using statistical binary response
models [27], particularly logistic regression [14], and the datamining techniques
such as support vector machine or self-organizing neural network. Comparison of
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various classification approaches including regularized regression is included in [4].
Self-organizing neural network was successfully used as classifier for 2D image in-
variant descriptors in [15].

2. Affine invariant descriptors

Our approach is based on affine invariant descriptors, which are independent on
translation, rotation, and coordinate-by-coordinate scaling of 3D SPECT image. It
is useful for elimination of image registration techniques from data preprocessing.

2.1 Affine transform of intensity image in Rn

The first aim of affine invariance can be introduced via affine transformation de-
scription in Rn related to n-dimensional intensity image investigated in continuous
coordinates. Lately, the dimension will be set to n = 3 and space discretization
will be permitted. The original intensity image can be declared as a density of
n-dimensional random variable X in mathematical statistics

f : Rn → R+
0 (1)

satisfying ∫
x∈Rn

f(x) dx = 1, (2)

where

dx =
n∏
k=1

dxk. (3)

When the image is constrained in size and intensity, all image moments are finite.
Then we can define the image momentum vector as mean value

x0 = EX =

∫
x∈Rn

x f(x) dx. (4)

Corresponding covariance matrix C of original image f is supposed to be positive
definite, which is valid for non-degenerated image of full dimension. Adequate
formula is then

C = E(X − x0)(X − x0)T =

∫
x∈Rn

(x− x0)(x− x0)Tf(x) dx. (5)

Let Y be a random vector satisfying the whitening conditions

EY = 0 ∈ Rn, EY Y T = I ∈ Rn×n. (6)

Let A ∈ Rn×n, b ∈ Rn be unknown regular matrix and shifting vector of general
affine transform from Rn to Rn as

X = AY + b. (7)
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According to (4) and linearity principle we obtained the shifting vector

x0 = A(EY ) + b = b. (8)

According to (5) and linearity principle we obtained the relationship between co-
variance matrix C and matrix A as

C = E(X − x0)(X − x0)T = E(X − b)(X − b)T = (9)

= EAY Y TAT = A(EY Y T)AT = AIAT = AAT > 0,

which is equation for unknown affine transformation matrix A with infinite number
of solutions, which can be generated by rotation of a particular solution. The
combination of Singular Value Decomposition (SVD) of matrix A and Eigen Value
Decomposition (EVD) of matrix C is the trick for the solution of (9).

Let U, S, V, Q, E ∈ Rn×n be unknown matrices satisfying conditions SVD
and EVD as

A = USVT, C = QEQT, (10)

UTU = VTV = QTQ = I ∈ Rn×n. (11)

Finally, S, E are diagonal positive definite matrices.
Performing EVD of covariance matrix C, we obtain diagonal matrix E of eigen-

values and orthogonal matrix Q of eigenvectors. The solution of (9) can be obtained
by substitution of A via SVD as

C = AAT = USVT
(
USVT

)T
= USVT VSUT = US2 UT = QEQT. (12)

Finally, we directly obtained the matrices

U = Q, S = E
1
2 (13)

and the matrix V of the second rotation is undetermined, then free. The solution
of (9) is any matrix of the form

A = QE
1
2 VT. (14)

The inverse transformation of (7) is very useful for the future affine invariant sys-
tem. It is defined as

Y = A−1 (X − x0) = VE−
1
2 QT (X − x0). (15)

It can be decomposed using unique particular transform

Yp = E−
1
2 QT (X − x0). (16)

And then perform unknown rotation around origin as

Y = V Yp. (17)

Adequate density of stochastic variable Yp is

g(Yp) = f(x0 + QE
1
2 Yp) det

(
E

1
2

)
. (18)

We plan a processing of Yp which will be invariant to any rotation around origin.
So it will bring the same values of characteristics as the processing of Y . Then the
whole system will be affine invariant.
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2.2 Spherical harmonic functions

Before defining spherical harmonics [21], let us assume that spherical functions are
square integrable mappings (θ, ϕ) → C lying in the Hilbert space L2(S2, where
S2 is two-dimensional sphere in R3 and variables 0 ≤ θ < π, 0 ≤ ϕ < 2π come
from spherical coordinate system. Then spherical harmonics are a set of functions
Y(θ, ϕ) = Θ(θ)Φ(ϕ) solving the Laplace equation ∇2F = 0 expressed in the spher-
ical coordinates. Assuming that Pml (x) is an associated Legendre polynomial [22]
over interval [−1; 1] with integers l ∈ N0 and m ∈ {0, . . . , l}, the solution of such
Laplace differential equation is

Ym
l (θ, ϕ) = N

|m|
l P

|m|
l (cos θ)e imϕ. (19)

Thus, Ym
l (θ, ϕ) is a single spherical harmonic function with degree l and order m,

where −l ≤ m ≤ l and Nm
l stands for a normalization coefficient. This coefficient

can be derived from the equation which proves orthogonal property of spherical
harmonic system as

2π∫
0

π∫
0

Ym
l (θ, ϕ)Y

m′

l′ (θ, ϕ) sin θ dθ dϕ = δm,m′ δl,l′ , (20)

where δi,j is the Kronecker delta. Then the coefficient is

Nm
l =

√
2l + 1

4π
· (l −m)!

(l +m)!
. (21)

The orthogonal property of Ym
l (θ, ϕ) enables us to constitute an orthonormal

basis of the L2(S2) space for the projection of other spherical functions similarly as
is done for the Fourier transform. The projection of a real-valued spherical function
F(θ, ϕ) ∈ L2(S2) into spectral coefficients can be computed as

cl,m =

2π∫
0

π∫
0

F(θ, ϕ)Y
m

l (θ, ϕ) sin θ dθ dϕ. (22)

There is a special spectral characteristic

sl =

(
+l∑

m=−l

|cl,m|2
) 1

2

, (23)

which is invariant to any rotation of SO(3) group [11] for given l ∈ N0. It means
that any rotation of function f within sphere S2 does not change the value of sl
which is useful in classification applications.

2.3 Affine invariant characteristics in R3

The affine invariant characteristics for the classification of 3D image will be designed
in R3. The combination of spherical harmonic function with any radial symmetric
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function will produce affine invariant weighted moments. The problem will be
studied in spherical polar coordinates [22] of yp as

y1p = r sin θ cosϕ,

y2p = r sin θ sinϕ, (24)

y3p = r cos θ.

Let w : R+
0 → R be weight function. The recognition system is based on generalized

spectral coefficients

ql,m =

π∫
0

2π∫
0

∞∫
0

g (r sin θ cosϕ, r sin θ sinϕ, r cos θ) w(r) Y
m

l (θ, ϕ) r2 sin θ dr dϕdθ.

(25)
We can define radial projection of image intensity (density) h as

h(θ, ϕ) =

∞∫
0

r2 w(r) g (r sin θ cosϕ, r sin θ sinϕ, r cos θ) dr. (26)

After the direct application of Fubini theorem [22] to (25) and using (26) we derived

ql,m =

2π∫
0

π∫
0

h(θ, ϕ)Y
m

l (θ, ϕ) sin θ dθ dϕ. (27)

There is a direct analogy between (22) and (27), where ql,m are spectral coefficients
of radial projection h. Finally, according to (23), we obtained new affine invariant
characteristics

Il =

(
+l∑

m=−l

|ql,m|2
) 1

2

. (28)

Both radial projection function (26) and the spectral coefficients (27) are linear
with respect to weight function w(r), which means the world of spectral coeffi-
cients is not too rich. But the final invariant characteristics (28) are not linear
with respect to the weight function. So, the world of invariant characteristics has
many useful properties and special shapes of w(r) can bring an advantage in the
recognition task. The practical recognition is based on the discrete 3D image in Z3

with many additional problems. They are caused by space discretization, intensity
quantization and noise. Resulting recognition system is not perfectly affine invari-
ant as we would wish to be. This negative effect can be decreased by the higher
resolution in the space coordinates and intensity axes together with noise filtering.

There are many possibilities how to design the weight function w(r). The
analyzed image after the transform g(yp) is normalized and thus the radius r is
dimensionless. We introduce scaling factor ρ > 0 in radius, which enables to
analyze the normalized image in given resolution. First we define constrained weight
function by conditions

w(ρ) > 0, ∀r > ρ : w(r) = 0. (29)

22



Horaisova K. et al.: Discrimination between Alzheimer’s disease and amyotrophic. . .

As a case of constrained weight function which is based on the tradition in 3D
image processing was chosen spherical cut defined as

w(r) = ρ−2 δ(r − ρ), (30)

where δ(x) is Dirac function. After the integration in (26) we recognize that the
radial projection is

h(θ, ϕ) = g (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ) . (31)

Therefore, we are prepared to calculate individual invariant descriptors of 3D
SPECT image of human brain and for hypotheses testing about their significance
in Alzheimer’s disease diagnostics.

3. Binary response index model

For better classification power, we can combine individual descriptors of various
orders and radii. Binary response index model (logit, probit) is a traditional choice
in the case of classification into two classes.

We suppose a model [27] with m real inputs x and single binary output y in
the form

y = h
(
xTβ + e

)
, (32)

where

h(z) =

{
1, z > 0
0, z ≤ 0

(33)

is the Heaviside’s unit step function, x, β ∈ Rm+1, x0 = 1, e is the continuous
random variable with positive and symmetric probability density function g(z)
around zero. Its cumulative distribution function is

G(z) =

z∫
−∞

g(u) du. (34)

So, the output y is also of stochastic nature and it can be described via probability

p(x) = prob(y = 1|x) = prob
(
xTβ + e > 0

)
=

= prob
(
e > −xTβ

)
= 1−G

(
−xTβ

)
= G

(
xTβ

)
, (35)

which is well known formula [14,27] for binary model related to logistic regression.
It is necessary to satisfy 0 < G(z) < 1 for all real arguments z. Fortunately, it
implies from g(z) > 0 everywhere, which was declared above.

3.1 Special cases of binary model

Binary model was first published [3] as a probit model with nonlinearity

G(z) = Φ(z) =
1√
2π

z∫
−∞

exp

(
−u

2

2

)
du (36)
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and corresponding density function of standard normal distribution as

g(z) =
1√
2π

exp

(
−u

2

2

)
. (37)

Then, the logit model (logistic regression) with nonlinearity

G(z) =
1

1 + exp(−z)
(38)

and corresponding density function of logistic distribution

g(z) =
exp(−z)

(1 + exp(−z))2
(39)

was published [2].
This model is frequently used in many applications. The logit model approaches

its asymptotes less rapidly than the probit one. The other models are also possible
to use. The density of Cauchy (t1) distribution

g(z) =
1

π (1 + z2)
(40)

generates the nonlinearity

G(z) =
1

2
+

1

π
arctan z (41)

with several amazing properties corresponding to heavy tail effect of Cauchy dis-
tribution. The variety of nonlinear characteristics can help us to choose a binary
model and its parameters with the best possible quality of fitting.

3.2 Parameter estimation

The estimation of model parameters is frequently performed via maximization of
likelihood function or its logarithm. Resulting point estimate (if exists) has a very
good asymptotic properties [14,27]. Let N be number of observations and (xk,yk)
be individual observation for k = 1, . . . , N . Thus, the density of y for individual
xk is

ϕ (y|xk, β) =
[
G
(
xT
k β
)]y [

1−G
(
xT
k β
)]1−y

. (42)

The logarithmic likelihood function over all observations is defined as

L(β) =

N∑
k=1

(
yk log G

(
xT
k β
)

+ (1− yk) log
(
1−G

(
xT
k β
)))

. (43)

Maximization of L(β) on Rn is impossible in the case of linear separable pat-
tern sets. Using Bayesian approach, we suppose prior parameter distribution
β ∼ N(0, σ2I) as n-dimensional Gaussian one with parameter σ = 0. Adequate
quasi-log-likelihood function is

B(β) = L(β)− 1

2σ2
‖β‖2 . (44)
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This approach is called Bayesian regularization.
The point estimate b of parameter vector is obtainable via maximization of

objective function L on Rn as

b = β̂ ∈ argmax
β∈Rn

B(β). (45)

The existence but not uniqueness of the estimate b is guaranteed in this case. The
analysis of asymptomatic variance begins with matrix

U =
N∑
k=1

g
(
xT
k b
)
xk x

T
k

G
(
xT
k b
) (

1−G
(
xT
k b
)) + σ2I. (46)

When the matrix U is regular, it is also positive definite and the asymptotic vari-
ance of estimate b is

Avar(b) = V = U−1. (47)

The asymptotic standard error of estimate b is

Astd(b) = s = diag(V)
1
2 (48)

and corresponding approximate 95 % confidence interval (CI) is

β ∈ [b− 1.96s,b + 1.96s] . (49)

The confidence interval is more useful for final report than for significance testing
due to its sensitivity to singularity of matrix U.

4. Case study: Alzheimer’s disease diagnostics

Both affine invariant descriptors (28) and three binary index models (36), (38),
(41) can be directly applied to 3D SPECT of human brain related to diagnostics
of Alzheimer’s disease.

4.1 Patients and control groups

SPECT data from 11 adult patients (6 males, 5 females) with definite Alzheimer’s
disease confirmed by post mortem brain autopsy were used for analysis. Hip-
pocampal regions and neocortical areas observations using a silver stain impreg-
nation method was confirmed through immunohistochemical testing using specific
monoclonal antibodies against hyperphosphorylated tau protein and amyloid beta
peptide. The neocortical stage of Alzheimer’s disease was consistent with the final
diagnostic features. When SPECT images were obtained (between 2003 and 2005),
the patients fulfilled diagnostic clinical criteria for mild to moderate probable AD.
All of these patients were demented.

SPECT data from 10 adult patients (7 males, 3 females) with Amyotrophic
Lateral Sclerosis (ALS) were used as controls. Besides SPECT, these patients
underwent detailed cognitive evaluation focusing on the general cognitive status as
well as the executive, language and visuospatial functions. Using such protocol it
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is safe to claim, that these patients were definitely not demented at the moment
of SPECT data acquisition. Also the post mortem neuropathological investigation
did not show significant signs of AD related pathology.

SPECT study was started after the injection of hexamethyl propylene amine
oxime labeled with 99mTechnetium. Dual-head gamma camera DST-XL SOPHA
with LEHR collimator [26] was used. Software Multi Dim Cerebral SPECT for
semiquantitative analysis regional uptake was applied. Data from SPECT regional
cerebral perfusion in selected brain regions were analyzed for both hemispheres sep-
arately, preferentially in orbito-frontal, dorsolateral prefrontal, anterior temporal
and parietal regions.

4.2 Methodology of image processing and testing

Individual 3D scans were represented as 128× 128× 128 matrices of non-negative
intensities (see Fig. 1). Applying normalization conditions (2), we can continue
in evaluation of x0 (4), C (5), and transformed density g(yp) (18) for any dimen-
sionless vector yp. Using spherical cut (30) for radii ρ = 0.3, 0.4, 0.5, . . . , 3.0 (see
Fig. 2, 3) we directly calculate affine invariant descriptors Il (28) for l = 0, 1, . . . , 20
via integration with spherical harmonic functions (Fig. 4). Therefore, we obtain
588 numerical descriptors of various orders and radii for each patient.

Fig. 1 Original SPECT image data of AD patient (8 equidistant slices).
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Fig. 2 Spherical cuts (30) of typical AD patient for ρ = 0.6, 1.5, 1.9, 2.6 in front
(left) and back (right) view.

4.2.1 Traditional analysis with logistic regression

In the first experiment, we test hypothesis H0 : Mk(AD) = Mk(ALS) against
alternative HA : Mk(AD) 6= Mk(ALS) using Wilcoxon-Mann-Whitney (WMW)
test on level α = 0.05 where Mk is median of kth descriptor in given group of
patients.

Probit (36), logit (38), and Cauchy (41) models with regularization are used in
the third step. The main aim of binary response model application consists in se-
lection of statistically significant orders l and radii ρ. It is useful for dimensionality
reduction, biomedical interpretation, and good cross-validation properties.

Leave-one-out scheme of cross-validation is used in the last step. This approach
is useful mainly in the case of small number of patterns. Binary models (36), (38),
(41) are applied to complete pattern set except ith pattern. This removed pattern
is then used for response verification. Repeating this procedure for all patients, we
can easily evaluate classification error err as a fraction of misclassified patterns.
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Fig. 3 Spherical cuts (30) of typical ALS patient for ρ = 0.6, 1.5, 1.9, 2.6 in front
(left) and back (right) view.

Fig. 4 Real part of spherical harmonic functions (19) for l = 0, 1, 2, 3 (rows) and
−l ≤ m ≤ l (columns).
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4.2.2 Advanced analysis via SVM and SOM

Another experiment was based on use of Support Vector Machine (SVM) classi-
fier [7]. We use standard library LIBSVM [5] which implements among others also
linear SVM. All 588 invariant features are used for classification by SVM. Our aim
is to find groups of three, four, and five features, which separate AD and ALS
patients by linear hyperplane with the smallest classification error.

Leave-one-out scheme of cross-validation is used because we have small number
of patterns. SVM is applied to complete pattern set except ith pattern. This re-
moved pattern is then used for response verification. Repeating this procedure for
all patients, we can easily evaluate classification error err as a fraction of misclas-
sified patterns. As the last step we use Kohonen Self-Organizing Maps (SOM) [16]
neural network for cluster forming and relationship visualization. Our aim is cat-
egorization of patients with minimum errors. This technique will be applied only
to the promising feature combinations.

4.3 Results

4.3.1 Traditional analysis with logistic regression

After the first two steps we obtained statistically significant affine invariants. Their
list is included in Tab. I for pvalue < 0.05. Dimensionless radius ρ = 0.6 frequently

invariant ρ median(AD) median(ALS) pvalue

0 0.6 0.0606 0.0668 0.0257
1 2.6 0.0006 0.0030 0.0036
1 0.5 0.0135 0.0072 0.0058
1 2.5 0.0026 0.0055 0.0073
1 0.6 0.0131 0.0057 0.0091
1 0.4 0.0137 0.0099 0.0113
1 0.7 0.0125 0.0078 0.0113
1 1.9 0.0051 0.0081 0.0211
3 2.6 0.0012 0.0021 0.0211
5 0.9 0.0061 0.0038 0.0058
8 1.7 0.0038 0.0033 0.0257
10 2.2 0.0026 0.0018 0.0036
11 2.3 0.0022 0.0018 0.0257
12 0.5 0.0016 0.0021 0.0091
13 1.7 0.0021 0.0024 0.0211
14 1.2 0.0023 0.0028 0.0173
16 0.5 0.0004 0.0007 0.0257
17 0.3 0.0003 0.0003 0.0257
18 0.7 0.0011 0.0014 0.0211
18 2.6 0.0003 0.0006 0.0211
20 2.3 0.0014 0.0011 0.0173

Tab. I Individual invariants with pvalue < 0.05 (according to WMW test).
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occurs in Tab. I. Therefore, all invariants of this radius are collected in Tab. II.
The best invariant from this table is I1. Its dependency on dimensionless radius
ρ is demonstrated in Tab. III. There are two interesting ranges: ρ ∈ [0.4, 0.7] and
ρ ∈ [2.5, 2.7], where I1 reaches very low pvalue’s.

invariant median(AD) median(ALS) pvalue

0 0.0606 0.0668 0.0257
1 0.0131 0.0057 0.0091
2 0.0070 0.0062 0.3447
3 0.0083 0.0054 0.0539
4 0.0051 0.0044 0.0640
5 0.0034 0.0041 0.4727
6 0.0039 0.0037 1,0000
7 0.0036 0.0040 0.7913
8 0.0037 0.0037 0.6232
9 0.0035 0.0034 0.3847
10 0.0025 0.0033 0.0757
11 0.0026 0.0033 0.1620
12 0.0020 0.0028 0.0890
13 0.0019 0.0024 0.0640
14 0.0016 0.0019 0.1041
15 0.0013 0.0016 0.1212
16 0.0009 0.0013 0.0539
17 0.0007 0.0009 0.0452
18 0.0006 0.0009 0.0539
19 0.0004 0.0006 0.0640
20 0.0004 0.0005 0.0890

Tab. II Individual invariants for ρ = 0.6.

General aim of cross-validation is to find the best selection of invariants, the
best selection of radii, and the best regularization parameter σ, which have the
lowest possible error err. Final results are collected in Tab. IV. The best choice
is to use I1, I3, and I5 for radii ρ = 0.6 and ρ = 2.6 in combination with logit
or Cauchy model, which comes to 5 % error in leave-one-out cross-validation. The
probit model was less successful because of absence of heavy-tails.

4.3.2 Advanced analysis via SVM and SOM

Linear SVM classifier was used for all combinations of three, four, and five features
separately to find the optimal combinations, which were able to separate 11 AD
patients and 10 ALS patients with linear hyperplane without error. Our aim is to
create an automatic CAD system for detection of the AD, therefore other combi-
nations are not useful. The value of margin M between feature vectors of AD and
ALS patients is measured. Consequently, the leave-one-out cross-validation was
performed for these successful combinations. The minimum value of all 21 margins

30



Horaisova K. et al.: Discrimination between Alzheimer’s disease and amyotrophic. . .

ρ median(AD) median(ALS) pvalue

0.3 0.0145 0.0104 0.0757
0.4 0.0137 0.0099 0.0113
0.5 0.0135 0.0072 0.0058
0.6 0.0131 0.0057 0.0091
0.7 0.0125 0.0078 0.0113
0.8 0.0114 0.0077 0.0376
0.9 0.0109 0.0080 0.2413
1.0 0.0090 0.0087 0.6776
1.1 0.0082 0.0101 0.5708
1.2 0.0086 0.0117 0.5708
1.3 0.0097 0.0128 0.6232
1.4 0.0123 0.0142 0.5708
1.5 0.0141 0.0153 0.5205
1.6 0.0123 0.0158 0.4727
1.7 0.0124 0.0146 0.1620
1.8 0.0094 0.0116 0.0452
1.9 0.0051 0.0081 0.0211
2.0 0.0038 0.0048 0.0757
2.1 0.0038 0.0037 0.5205
2.2 0.0072 0.0055 0.1212
2.3 0.0082 0.0066 0.2413
2.4 0.0055 0.0066 0.6232
2.5 0.0026 0.0055 0.0073
2.6 0.0006 0.0030 0.0036
2.7 0.0001 0.0012 0.0312
2.8 0.0000 0.0002 0.3038
2.9 0.0000 0.0000 0.353
3.0 0.0000 0.0000 0.7798

Tab. III Individual radii for the first invariant I1.

type σ invariants ρ’s err pvalue

probit 1885 1; 3; 5 0.6; 2.6 0.10 3.61× 10−3

logit 17510 1; 3; 5 0.6; 2.6 0.05 1.83× 10−4

Cauchy 2361 1; 3; 5 0.6; 2.6 0.05 1.83× 10−4

Tab. IV Cross-validation of regularized logistic regression.

obtained from all leave-one-out tests is measured and denoted as Mloa. Results are
summarized in Tab. V for five best groups of three features, in Tab. VI for five best
groups of four features, and in Tabs. VII, VIII for five best groups of five features.
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all samples training set testing set
invariants (ρ’s) M Mloa err err

1 (2.6); 3 (1.6); 19 (0.9) 0.1471 0.0205 0.0000 0.1052
1 (2.6); 3 (2.6); 19 (0.9) 0.1249 0.0117 0.0000 0.1052
1 (2.6); 8 (2.0); 19 (0.9) 0.0999 0.0108 0.0000 0.1667
1 (0.7); 1 (2.6); 19 (0.9) 0.0794 0.0078 0.0000 0.2353
1 (0.6); 1 (2.6); 19 (0.9) 0.0768 0.0075 0.0000 0.2353

Tab. V Cross-validation for combinations of three features.

We can easily find out from Tab. V, that no combination of three features is able
to separate the patients without error by the leave-one-out cross validation. First
column of the table includes invariants and their appropriate values of ρ, second
and third column include the value of margins M and Mloa, fourth column includes
the mean value of errors measured on 21 training sets, and the last column includes
the error measured consecutively on 21 testing sets. Reached results are ordered
by descend margin M (we obtained the same order for Mloa) and the best is the
combination of I1 for ρ = 2.6, I3 for ρ = 1.6, and I19 for ρ = 0.9, where we reached
the margin M = 0.15 and the classification error err = 0.11. Many combinations of
four features were able to distinguish between AD and ALS patients without error.
Five combinations with the top margin M (we obtained the same order for Mloa)
can be seen in Tab. VI. The best is the combination of I1 for ρ = 0.6 and ρ = 2.6,
I11 for ρ = 0.8, and I19 for ρ = 0.9, where we reached the margin M = 0.56.

Responsibility of this method could increase with growing amount of features.
This is the reason, why combinations of five features were tested consequently.
Values of M and Mloa increased as well as the amount of successful combinations.
The list of five combinations with the top margin M can be seen in Tab. VII. The
best is the combination of I1 for ρ = 0.7, ρ = 2.6, and ρ = 2.8, I11 for ρ = 0.8,
and I19 for ρ = 0.9, where we reached margins M = 0.69 and Mloa = 0.31. For
comparison, the results ordered by Mloa can be seen in Tab. VIII. Here we obtained
the best combination of I1 for ρ = 0.7 and ρ = 2.6, I3 for ρ = 2.8, I11 for ρ = 0.8,
and I19 for ρ = 0.9, where we reached margins M = 0.64 and Mloa = 0.41.

all samples training set testing set
invariants (ρ’s) M Mloa err err

1 (0.6); 1 (2.6); 11 (0.8); 19 (0.9) 0.5572 0.3081 0.0000 0.0000
1 (0.6); 1 (2.6); 11 (1.7); 19 (0.9) 0.5242 0.2959 0.0000 0.0000
1 (0.7); 1 (2.6); 11 (1.7); 19 (0.9) 0.5009 0.2306 0.0000 0.0000
1 (0.5); 1 (2.6); 11 (0.8); 19 (0.9) 0.4746 0.1950 0.0000 0.0000
1 (0.7); 1 (2.6); 11 (0.8); 19 (0.9) 0.4646 0.1716 0.0000 0.0000

Tab. VI Cross-validation for combinations of four features.
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all samples training set testing set
id invariants (ρ’s) M Mloa err err

1
1 (0.7); 1 (2.6); 1 (2.8);

0.6930 0.3080 0.0000 0.0000
11 (0.8); 19 (0.9)

2
1 (0.6); 1 (2.6); 3 (2.6);

0.6634 0.3568 0.0000 0.0000
11 (1.7); 19 (0.9)

3
1 (0.5); 1 (2.6); 1 (2.7);

0.6614 0.3383 0.0000 0.0000
8 (1.9); 19 (0.9)

4
1 (0.7); 1 (2.6); 3 (2.6);

0.6604 0.2549 0.0000 0.0000
11 (1.7); 19 (0.9)

5
1 (0.6); 1 (2.6); 8 (1.1);

0.6594 0.3815 0.0000 0.0000
11 (1.7); 19 (0.9)

Tab. VII Cross-validation for combinations of five features (ordered by M).

all samples training set testing set
id invariants (ρ’s) M Mloa err err

1
1 (0.7); 1 (2.6); 3 (2.8);

0.6367 0.4123 0.0000 0.0000
11 (0.8); 19 (0.9)

2
1 (0.5); 1 (2.6); 9 (1.6);

0.5515 0.4053 0.0000 0.0000
11 (2.3); 19 (0.9)

3
1 (0.7); 1 (2.6); 1 (2.7);

0.6034 0.3860 0.0000 0.0000
11 (0.8); 19 (0.9)

4
1 (0.6); 1 (2.6); 5 (2.1);

0.5886 0.3851 0.0000 0.0000
11 (0.8); 19 (0.9)

5
1 (0.6); 1 (2.6); 8 (1.1);

0.6594 0.3815 0.0000 0.0000
11 (1.7); 19 (0.9)

Tab. VIII Cross-validation for combinations of five features (ordered by Mloa).

As the last step, we use Kohonen Self-Organizing Maps (SOM) neural network
for cluster forming and relationship visualization with the goal to categorize the
patients with minimum errors. Standard hexagonal and rectangular topologies were
used for map sizes (m− 1)×m and m×m for m ∈ {3, 4, 5, 6}. The SOM learning
began with 1000 epochs for α ∈ {0.9, 0.8, 0.7, 0.6, 0.5} and R = m, and finished
with 10000 epochs for α ∈ {0.5, 0.45, 0.4, . . . , 0.1, 0.05} and R =

⌊
m
2

⌋
. The learning

process was realized with use of the standard software [17] and the categorization
quality was measured by mean value of errors reached for 21 training sets and the
error for the testing set was obtained by sequel in 21 steps.

The results for five combinations from Tab. VII (for M order) are summarized in
Tab. IX. For each topology and map size are specified the least errors on training
and testing sets (errtrn and errtst) and id’s of combinations, that were able to
achieve these best results of learning. We can see, that the first combination of
features reached the minimum errors for the most of the maps. The particular
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topology map size errtrn errtst id’s

hexagonal

2× 3 0.0072 0.0000 1
3× 4 0.0000 0.0500 1
4× 5 0.0000 0.0500 1
5× 6 0.0000 0.0500 1, 3
3× 3 0.0024 0.0000 1
4× 4 0.0000 0.0000 1
5× 5 0.0000 0.0000 1
6× 6 0.0000 0.0000 1, 5

rectangular

2× 3 0.0000 0.0500 1
3× 4 0.0000 0.0500 1
4× 5 0.0000 0.0000 1, 4
5× 6 0.0000 0.0500 1, 3
3× 3 0.0000 0.0500 1
4× 4 0.0000 0.0000 1
5× 5 0.0000 0.0500 1
6× 6 0.0000 0.0000 5

Tab. IX SOM results for M minimization.

results for this best combination are summarized in Tab. X. It is possible to see, that
for hexagonal topology we reached best results with map sizes 4×4 (Fig. 5a), 5×5,
and 6 × 6, for rectangular topology with map size 4 × 4. Sammon’s mapping [23]

topology map size α1 α2 errtrn errtst

hexagonal

2× 3 0.60 0.15 0.0072 0.0000
3× 4 0.90 0.50 0.0000 0.0500
4× 5 0.90 0.40 0.0000 0.0500
5× 6 0.90 0.40 0.0000 0.0500
3× 3 0.90 0.30 0.0024 0.0000
4× 4 0.90 0.40 0.0000 0.0000
5× 5 0.80 0.20 0.0000 0.0000
6× 6 0.70 0.50 0.0000 0.0000

rectangular

2× 3 0.90 0.15 0.0000 0.0500
3× 4 0.90 0.50 0.0000 0.0500
4× 5 0.90 0.35 0.0000 0.0000
5× 6 0.90 0.05 0.0000 0.0500
3× 3 0.80 0.30 0.0000 0.0500
4× 4 0.90 0.50 0.0000 0.0000
5× 5 0.90 0.45 0.0000 0.0500
6× 6 0.90 0.45 0.0000 0.0500

Tab. X SOM results for I1 (ρ = 0.7, ρ = 2.6, ρ = 2.8), I11 (ρ = 0.8), I19 (ρ = 0.9).
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of SOM codebook vectors was performed to R2, using coordinates s1, s2. The
corresponding Sammon’s mapping for hexagonal topology and map size 4× 4 is in
Fig. 5b.

The results for five combinations from Tab. VIII (for Mloa order) are summa-
rized in Tab. XI. We can see, that the first combination of features reached the zero
errors for the most of the maps. Thus, the minimum margin Mloa reached across
all training sets plays the more important role than the margin M between all AD
and ALS patients. The particular results for the first combination are summarized
in Tab. XII. It is possible to see, that this combination of features leads to correct
classification for all maps except of hexagonal topology maps with sizes 2×3, 3×4,
and 3× 3. The SOM for rectangular topology map with the size 2× 3 is depicted
in Fig. 6a. The corresponding Sammon’s mapping is in Fig. 6b.

4 AD 3 ALS 1 ALS

1 AD 2 ALS

2 AD

2 AD 2 AD 1 ALS 3 ALS

(a) SOM

s
1

-1.5 -1 -0.5 0 0.5 1 1.5 2
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2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4 AD

1 AD

2 AD

2 AD

2 AD

3 ALS

1 ALS

1 ALS

2 ALS

3 ALS

(b) Sammon’s projection

Fig. 5 Results for map of size 4× 4 and hexagonal topology, features I1 (ρ = 0.7,
ρ = 2.6, ρ = 2.8), I11 (ρ = 0.8), I19 (ρ = 0.9).

5 AD 1 ALS 5 ALS
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(b) Sammon’s projection

Fig. 6 Results for map of size 2× 3 and rectangular topology, features I1 (ρ = 0.7,
ρ = 2.6), I3 (ρ = 2.8), I11 (ρ = 0.8), I19 (ρ = 0.9).
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topology map size errtrn errtst id’s

hexagonal

2× 3 0.0000 0.0000 2
3× 4 0.0000 0.0000 2
4× 5 0.0000 0.0000 1, 2, 4
5× 6 0.0000 0.0000 1, 2, 4
3× 3 0.0000 0.1052 4
4× 4 0.0000 0.0000 1, 4
5× 5 0.0000 0.0000 1
6× 6 0.0000 0.0000 1, 4, 5

rectangular

2× 3 0.0000 0.0000 1
3× 4 0.0000 0.0000 1
4× 5 0.0000 0.0000 1, 3
5× 6 0.0000 0.0000 1, 4
3× 3 0.0000 0.0000 1
4× 4 0.0000 0.0000 1
5× 5 0.0000 0.0000 1, 4
6× 6 0.0000 0.0000 1, 4

Tab. XI SOM results for Mloa minimization.

topology map size α1 α2 errtrn errtst

hexagonal

2× 3 0.80 0.45 0.0145 0.0000
3× 4 0.60 0.10 0.0000 0.1052
4× 5 0.70 0.50 0.0000 0.0000
5× 6 0.70 0.35 0.0000 0.0000
3× 3 0.70 0.25 0.0048 0.0500
4× 4 0.70 0.25 0.0000 0.0000
5× 5 0.80 0.10 0.0000 0.0000
6× 6 0.90 0.50 0.0000 0.0000

rectangular

2× 3 0.90 0.50 0.0000 0.0000
3× 4 0.90 0.50 0.0000 0.0000
4× 5 0.90 0.50 0.0000 0.0000
5× 6 0.90 0.50 0.0000 0.0000
3× 3 0.90 0.50 0.0000 0.0000
4× 4 0.90 0.50 0.0000 0.0000
5× 5 0.90 0.50 0.0000 0.0000
6× 6 0.90 0.50 0.0000 0.0000

Tab. XII SOM results for I1 (ρ = 0.7, ρ = 2.6), I3 (ρ = 2.8), I11 (ρ = 0.8), I19
(ρ = 0.9)
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5. Conclusion

The study compares the datamining techniques (SVM, SOM) with pure statistical
approach (probit, logit, and Cauchy regressions). We obtained fair comparison of
mentioned approaches on given data set. The logistic and Cauchy regression lead
to statistically significant classifiers meanwhile SVM guarantees linear separability
and SOM also exhibit a good separation of AD and ALS patients. Invariance to
translation, rotation, scaling, deformation, and radiomarker amount means elimina-
tion of measurement conditions in the case of SPECT and PET (Positron Emission
Tomography) imaging and analysis. Affine invariant descriptors of 3D image were
applied to SPECT scans of human brain activity. Despite of well known princi-
ple, that invariant characteristics contain less information then the original data
source, we found statistically significant descriptors for the decision, whether the
patient has got Alzheimer’s disease or amyotrophic lateral sclerosis. Combining six
descriptors of radii 0.6, 2.6 and of spherical harmonics orders 1, 3, 5 we obtained
regularized logistic classifier between these two forms of dementia. Resulting clas-
sifier was tested using leave-one-out technique. Cross-validation error was only 5 %
and corresponding pvalue is 1.83 × 10−4, which corresponds to already published
results of meta-analysis [9]. In the second experiment we combined five descriptors
I1 for radii 0.7 and 2.6, I3 for radius 2.8, I11 for radius 0.8, and I19 for radius 0.9,
and consequently we obtained the classifier which distinguish AD patients from
ALS patients without errors with use of leave-one-out technique. The SOM with
rectangular topology and only six “neurons” was used for visualization of rela-
tionships between all AD and ALS patients. Corresponding Sammon’s mapping
proved, that results of learning process are correct. Such a results are promising,
however in order to use our approach as a supportive tool for Alzheimer’s disease
diagnostics from SPECT scans, more tests with broadened data set is needed. Pre-
sented method should be applied also on SPECT scans of other brain disorders
groups as well as a healthy group.
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