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Abstract: This paper presents a hybrid probabilistic neural network (PNN) and
particle swarm optimization (PSO) techniques to predict the soil liquefaction. The
PSO algorithm is employed in selecting the optimal smoothing parameter of the
PNN to improve the forecasting accuracy. Seven parameters such as earthquake
magnitude, normalized peak horizontal acceleration at ground surface, standard
penetration number, penetration resistance, relative compaction, mean grain diam-
eter and groundwater table are selected as the evaluating indices. The predictions
from the PSO-PNN model were compared with those from two models: back-
propagation neural network (BPNN) model and support vector machine (SVM)
model. The study concluded that the proposed PSO-PNN model can be used as a
reliable approach for predicting soil liquefaction.
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1. Introduction

Liquefaction is defined as the transformation of a granular material from a solid
to a liquefied state as a consequence of increased pore-water pressure and reduced
effective stress [13]. During the liquefaction, pore water pressure exerts a pressure
on the soil particles that influences how tightly the particles themselves are pressed
together. Prior to an earthquake, the water pressure is relatively low. However,
earthquake shaking can cause the water pressure to increase to the point where the
soil particles can readily move with respect to each other. The effective stress of
the soil reduces, therefore, causing loss of bearing capacity [18, 19]. It then is said
that soil liquefaction has occurred. Liquefaction of saturated sandy soils has been
considered as the main cause of most geotechnical hazards during earthquakes [3].
Examples of liquefaction hazards were observed in the historical earthquakes, such
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as the 1964 Niigata, the 1964 Alaska, the 1971 San Fernando, the 1976 Tangshan,
the 1989 Loma Prieta, the 1995 Kobe, the 1999 Taiwan, the 2001 Bhuj, the 2008
Wenchuan, the 2011 Tōhoku, and the 2015 Nepal earthquakes. Therefore, the
assessment of liquefaction potential due to an earthquake at a site is an imperative
task in geotechnical earthquake engineering.

Although many of the existing assessment methods, such as standard penetra-
tion test (SPT) [10,11,16,27] and the cone penetration test (CPT) [8,9] were used
for simple liquefaction assessment by many geotechnical engineers. However, all of
the above methods are associated with some inherent uncertainties [20] and it is
difficult to select a suitable empirical equation for regression analysis due to the
high uncertainty in earthquake environments and soil characteristics [4].

In recent years there are several attempts to use intelligent computational sys-
tems such as artificial neural networks (ANNs) in geotechnical engineering. This
growing interest among researchers is stemming from the fact that these learning
machines have an excellent performance in the issues of pattern recognition and
the modeling of non-linear relationships of multivariate dynamic systems. How-
ever, ANNs have several inherent drawbacks such as over-fitting, slow convergence,
poor generalizing performance, arriving at local minimum [14]. To overcome these
limitations, Specht [22, 23] introduced the probabilistic neural network (PNN).
The learning time for the PNN is generally shorter than that for the multilayer
feed-forward algorithm, as only one smoothing parameter requires adjustment or
optimization. This paper investigates the potential of PNN for prediction of soil
liquefaction. To improve the forecasting accuracy, the particle swarm optimization
(PSO) algorithm was employed in obtaining the optimal smoothing parameter of
the PNN in this study.

2. Probabilistic neural network

The PNN is basically a pattern classifier that combines the well-known Bayes de-
cision strategy with the Parzen [15] nonparametric estimator of the probability
density functions of different classes. Generally, the PNN structure consists of four
layers: an input layer, a pattern layer, a summation layer, and an output layer. For
illustration purposes, a simple PNN architecture comprising four layers is depicted
in Fig. 1. The overview of the PNN is briefly described below.

Considering a pattern vector x with m dimensions that belongs to one of two
categories K1 and K2. According to the Bayes’ decision rule, x belongs to K1 if
[2, 6]

F1 (x)

F2 (x)
>
L1P2

L2P1
(1)

Conversely, x belongs to K2 if

F1 (x)

F2 (x)
<
L1P2

L2P1
(2)

where F1(x) and F2(x) are the probability density functions for the classification
categories K1 and K2, respectively. L1 is the loss or cost function associated with
misclassifying the vector as belonging to category K1 while it belongs to category
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Fig. 1 The basic architecture of the PNN.

K2, L2 is the loss function associated with misclassifying the vector as belonging
to category K2 while it belongs to category K1, P1 and P2 are the prior probability
of occurrence of category K1 and K2, respectively.

If the j-th training pattern for category K1 is x j , then the Parzen estimate of
the probability density function for category K1 can be expressed as [6,7]

F1 (x) =
1

(2π)
m/2

σmn

n∑
j=1

exp

[
− (x− xj)T (x− xj)

2σ2

]
(3)

where n is the number of training patterns, m is the input space dimension, j is
the pattern number, and σ is an adjustable smoothing parameter.

3. PNN optimized by PSO (PSO-PNN)

PSO algorithm developed by Kennedy and Eberhart [12], is a population-based
heuristic search technique inspired by social behavior of bird flocking and fish
schooling [5, 17, 24]. In this approach, global optimums can be searched as well
as local optimal solutions [1, 25, 26]. Let t be a time instant the velocity and
position of each particle are updated by Eqs. (4) and (5), respectively.

vt+1
i = κvti + c1r1

(
Pi − xti

)
+ c2r2

(
Pg − xti

)
, i = 1, 2, · · · , N (4)

xt+1
i = xti + vt+1

i (5)
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where c1 and c2 are the acceleration coefficients; r1 and r2 are two independent
random numbers uniformly distributed in the range [0, 1]; κ is the inertia weight.
Pi is the best previous position of the particle, while Pgis the best position among
all the particles in the swarm.

In this study, the PSO algorithm has been selected for optimization of the σ
value in the PNN classifier. It should be noted that the searching domain of the
σ parameter in this study has been restricted to the range σ ∈ [0.1, 5]. Here, it is
assumed that the chosen values can cover a range of the parameter search space,
which leads to a high prediction accuracy. To evaluate the performance of the
proposed PSO-PNN approach, the correct classification rate of samples is used as
follows:

Accuracy(%) =
Ncorrect

N
× 100% (6)

where Ncorrect is the number of correctly classified samples. N is the total number
of samples.

The implementation of the proposed PSO-PNN model was carried out using
the MATLAB R2012b program in this study. The main steps of the proposed
PSO-PNN approach are described below.

Algorithm 1 The proposed PSO-PNN algorithm.

1: take the smoothing parameter σ as swarms and initialize a population of
particles with random positions and velocities
2: train the PNN model and evaluate the objective values of all particles (see
Eq. (6))
3: let each particle’s own best position and its objective value be equal to its
current position and objective value, and let the global best particle and its
objective value be equal to the position and the objective value of the best
initial particle
4: update the velocity and position of each particle (see Eqs. (4) and (5))
5: evaluate the objective values of all particles
6: for each particle, one compares its current objective value with the objective
value of its own best position; if the current value is better, then update its
own best position and its objective value with the current position and objective
value
7: determine the best particle of the current swarm according to the best objec-
tive value; if the objective is better than the objective value of the global best
position, then update the global best position and its objective value with the
position and the objective value of the current best particle
8: if the maximum of the iteration is achieved or the optimum solution is ac-
quired, then the algorithm is stopped; otherwise, go back to Step 2
9: obtain the PNN model at the optimal parameter and get the output data

A flowchart of the proposed PSO-PNN algorithm is illustrated in Fig. 2.
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Fig. 2 Flowchart of the PSO-PNN algorithm.

4. Case study

Database It should be noted that the susceptibility of soil deposits to liquefaction
is determined by a combination of various factors to which they may be subjected,
such as soil properties, geological conditions and ground motion characteristics.
Among the factors above, soil properties and geological conditions determine the
resistance of the deposit to liquefaction, while earthquake characteristics control
the seismic loading conditions [8]. Accordingly, the following factors are chosen
as the evaluating indices: earthquake magnitude (M), normalized peak horizontal
acceleration at ground surface (αmax), standard penetration number (N63.5), pen-
etration resistance (Ps), relative compaction (Dr), mean grain diameter (D50) and
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groundwater table (dw), whereas the liquefaction grade is the output parameter.
The database used in this study includes 24 field observations from the 1976 Tang-
shan earthquake and the 1997 Sanshui earthquake (Tab. I) [21]. Two thirds of the
case records were selected for the training phase and the remaining one third for
the testing phase. Liquefaction grade was divided into 4 grades: serious liquefac-
tion, medium liquefaction, slight liquefaction and non-liquefaction (Tab. II) [21].
Again, for each case, “1” represents serious liquefaction, “2” represents medium
liquefaction, “3” represents slight liquefaction and “4” denotes non-liquefaction.

No. M αmax(m/s) N63.5 Ps(kPa) Dr D50(mm) dw(m) Liquefaction
grade

1 6.1 0.2 8 1.2 0.25 0.22 1.0 1
2 5.8 0.25 11 2.31 0.3 0.18 1.5 1
3 4.2 0.15 8 0.75 0.4 0.18 0.6 2
4 6.4 0.2 36 17.30 0.85 0.1 2.5 4
5 5.6 0.2 42 17.12 0.8 0.05 2.4 4
6 2.3 0.1 15 9.18 0.3 0.3 1.6 3
7 3.5 0.1 30 15.33 0.6 0.28 3.0 4
8 4.7 0.15 7 0.94 0.2 0.07 0.8 1
9 5.2 0.15 10 4.78 0.3 0.13 1.3 2
10 5.0 0.1 46 17.32 0.7 0.04 2.0 4
11 6.3 0.15 24 11.36 0.6 0.1 2.1 3
12 7.3 0.2 17 9.57 0.55 0.17 3.2 3
13 8.4 0.2 19 6.21 0.33 0.05 1.7 2
14 7.6 0.25 15 7.8 0.4 0.12 0.9 2
15 4.2 0.25 9 3.43 0.3 0.13 1.2 1
16 4.2 0.05 19 9.82 0.65 0.04 1.1 3
17 4.2 0.1 14 15.87 0.55 0.1 1.0 3
18 4.2 0.1 11 4.85 0.35 0.2 1.8 2
19 4.3 0.15 16 6.94 0.3 0.17 2.2 2
20 6.1 0.2 8 3.45 0.25 0.15 1.0 1
21 4.2 0.5 32 16.76 0.5 0.1 2.5 4
22 4.2 0.5 39 15.41 0.65 0.09 2.2 4
23 4.2 0.5 17 9.61 0.55 0.25 2.0 3
24 4.2 0.1 13 5.62 0.5 0.03 1.2 3

Tab. I Dataset used in case study (data from [21]).

Results and discussion As mentioned, the goal of the optimization process is
to maximize the PNN accuracy value. In this study, the PSO parameters are given
as follows: nmax = 20 (maximum iterations), Np = 30 (swarm size), c1 = c2 = 2.0.
The PNN smoothing parameter σ = 1.5, presented in Fig. 3, has been obtained
after the training and optimization process. The PNN Accuracy and PSO epoch
has also been established on the basis of the same training set, as shown in Fig. 4.
Fig. 5 shows the predicted results of training samples. As can be seen from Figs. 3,
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4 and 5, the predictions using the PNN with σ = 1.5 for the training data had a high
success rate of 100 %. Therefore the model of the PNN classifier was completely
built and used for the testing data.

 

Fig. 3 Accuracy vs. smoothing parameter σ.

 

Fig. 4 Accuracy vs. PSO epoch.

To verify the effectiveness of the proposed PSO-PNN model, the predicted
results are compared to those obtained by means of some other methods, such
as back-propagation neural network (BPNN) model and support vector machine
(SVM) model [21]. Tab. III shows a comparison of the three models for the pre-
diction of soil liquefaction.

From Tab. III it can be seen that the predictions using the PNN with σ = 1.5
for the testing data had an overall classification accuracy rate of 100 %. This
represents a significant improvement over the BPNN method [21], which had 1 error
or a success rate of 87.5 % for the testing samples. Prediction results demonstrate
that the PSO-PNN model can be used as a reliable approach for predicting soil
liquefaction. Of course, it cannot be denied that the SVM model is also a powerful
computational tool that can be used to assess the soil liquefaction potential.
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Fig. 5 Predicted results of training samples: (a) Classification; (b) Error.

No. Liquefaction grade PSO-PNN BPNN SVM

17 3 3 3 3
18 2 2 2 2
19 2 2 2 2
20 1 1 1 1
21 4 4 4 4
22 4 4 4 4
23 3 3 3 3
24 3 3 2 3

Tab. III Comparison between the forecasted and actual results.

5. Conclusions

Determination of liquefaction potential is a complex geotechnical engineering prob-
lem due to the heterogeneous nature of the soils and the participation of a large
number of factors that affect the liquefaction occurrence due to earthquake. This
study presents a hybrid PNN and PSO techniques to predict the soil liquefaction.
PSO was employed in selecting the optimal smoothing parameter of PNN to en-
hance the forecasting accuracy. The results show that the PSO-PNN is a powerful
computational tool that can be used to analyze the complex relationship between
soil and seismic parameters in liquefaction assessment. Moreover, the results also
indicate that the PSO-PNN achieves greater classification accuracy than BPNN
model. Thus, PSO-PNN is a novel liquefaction assessment tool worthy of promo-
tion and support.
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