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Abstract: Solving inverted pendulum by co-simulation between multi-body solver
MotionSolve and signal processing control in solidThinking Activate. The simulation
of inverted pendulum uses an innovative model of friction which is physically and
mathematically more accurate than usual CAE friction models. This model of
friction adds nonlinearity to the system. Two types of controlling mechanism for
active balancing of inverted pendulum are used: PID and ANN controller. A
non-traditional false angular deviation approach for returning a cart to its initial
position was used.
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1. Introduction

An inverted pendulum is such a pendulum whose center of gravity lies above the
axis of rotation. A control of an inverted pendulum is a classic task of controlling
an unstable system. This phenomena we encounter in day to day life. An inverted
pendulum is also a human body in a vertical position. It is noticed not only in an
elementary example as a rapid changes of speed and direction of a city bus, but
also in banal activities such as walking or standing. Understanding and controlling
the inverted pendulum is necessary for development of robotic humanoid [7]. In the
field of transportation [10], the principle of the inverted pendulum is also used in
Segway vehicles.

Example from the other sides of human knowledge: a typical inverted pendulum
is a rocket. A propulsion system at the bottom (or anywhere else, because of “The
Pendulum Rocket Fallacy” [2]) must control the position of a center of mass. From
industrial perspective it can be seen in an active driven crane in seafaring.
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In this article, the inverted pendulum has been chosen because of its simplicity.
Its dynamic system is easy to describe. Verifying the accuracy of the method is
not affected by error incurred by the complexity of the system. After verifying the
correct operation of the controllers on a simple dynamic system, the authors can
use the control mechanisms on more complex systems in the future. An example
of such system can be an active wheel suspension of vehicle, which is mentioned
in [17]. The verificated methods can also be used in follow-up work with [16] and
extend the possible control methods.

One of the ways to deal with the complexity of mechatronic systems developed
is so-called Model-Based Development (MBD). Model-Based Development is a
development method that establishes a common framework for communication
during the design of a dynamic system. The development is based on the following
4 steps:

• modeling of product and environment,

• analysis and assembly of the controller,

• simulation of the product and controller’s operation,

• combining all of previous steps by controller deployment.

This can be advantageously used not only when control system development,
but also during a design of human-machine interface as a [14] is.

The purpose of this scientific paper is to verify that a co-simulation of multi-body
solver and signal processing control can handle the first three steps of MBD for
dynamic mechanisms. And moreover it should compare results of both of used
controllers.

2. Model description

The inverted pendulum is a classical problem solved countless times. From the
recent time we can mention for example [6, 11, 13] or [18]. Our model consists of
four bodies: frame, cart, Hooke’s cross and pendulum. The kinematic constrains
are flat (frame-cart) and rotational (cart-Hooke’s cross, Hooke’s cross-pendulum).
The number of degree of freedom is:

i = 6 · (n− 1)−
∑

j · dj ,

where n is a number of bodies, and j is a number of kinematic joints of dj category
(= number of reduced degrees of freedom – DOF).

Number of bodies:
n = 4.

Number of kinematic joints of given category:

• Flat joint: j = 1, dj = 4 reduces the relative mobility by 4, it has 2 DOF
controlled by the control system.

• Rotational joint: j = 2, dj = 5 reduces the relative mobility by 5, it has
1 DOF and these joints are modelled with friction.
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Finally

i = 6 · (4− 1)− (1 · 4 + 2 · 5) = 4 DOF.

Therefore the system has 4 DOF, the flat joint is active, Hooke’s joint kinematic
quantities are control inputs.

This three-dimensional task is solved by splitting into two subtasks. Pendulum
in xz plane and pendulum in yz plane. A scheme of the planar case is shown
in Fig. 1. (Authors’ note: When angular stability is mentioned, it means the
stabilisation in xz plane. The case in yz plane is completely the analogous and will
not be described.)
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Fig. 1 Schema of the model pendulum.

The pendulum of mass M with the idealized center of gravity position in the
center of a ball is via an ideally fixed intangible rod of length l attached by a Hooke’s
joint to a cart of mass m.

Stabilization of the system is carried out by the action of the external force F
on the cart. There is no friction in the flat joint between the cart and ground, but
there is an innovative model of friction in the Hooke’s joint between the pendulum
and the cart.

The mathematical model of the pendulum does not need to identify and derive
motion equations here because the used control methods work without a mathe-
matical description of the controlled system. So they are more easily adaptable
to different changes and can be more easily coped with the fact that the system
parameters can not describe the system perfectly. In other words, they are more
robust.

Parameters of the system were chosen as follows in Tab. I.
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Quantity Value

M 0.20 kg
m 0.45 kg
l 300 mm
α 10°

Tab. I Parameters of the model pendulum.

3. Friction model

The aim is to utilise the adequate friction model. The available models are based
on a principle of a massive increase in the coefficient of static friction. It is usually
defined to such a size which burdens a simulation by computational load and
numerical errors. They occur naturally due to the fact that computers work only
with limited precision numbers. If the number exceeds the specified precision limit,
it is either cut or rounded and, with an increasing number of subsequent arithmetic
operations, the original minor rounding error increases significantly. A physically
and mathematically correct solution should be a complete removal of the relevant
DOF. Therefore, the static friction in our model is replaced by a change in the
structure of the motion mechanism. In case of static state, the Hooke’s cross is
replaced by a fixed link. The friction model used in the system causes a relatively
strong non-linearity. This is a major challenge for the control system.

4. Simulation tools

4.1 SolidThinking Activate

SolidThinking Activate is used to build block diagrams and for graphical program-
ming. This approach has the advantage of simplicity and intuitiveness. Thanks to
this, programming is also available to a person who has not yet been in contact
with it, and it is not necessary to know any programming language. However,
the possible knowledge of the programming language can be advantageously used
to create custom block diagrams. Activate supports, in addition to HyperWorks’
Open Matrix Language, the traditional C language. It will be also used in our
case. Another useful feature is a presence of a block that allows you to link the
flowchart to a multibody model created in MotionView and co-simulate along with
MotionSolve. This approach is useful because it allows you to quickly and efficiently
change the system described without the need to rewrite equations which are often
very complicated.

4.2 Altair MotionView and MotionSolve

Altair MotionView is a pre- and post-processing multibody systems modeling envi-
ronment. It enables to build and analyze mechanical system design. In many cases
(such as vehicle dynamics for example) it is possible to use mechanical templates
and prepare a model just by changing parameters. In connection with MotionSolve,
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MotionView mediates a simulation of multibody kinematic, (quasi)static, dynamic
or linear analysis. Naturally it supports flex body modeling too if needed [20].

“MotionSolve is a scalable and integrated multibody solution that enables to
graphically build systems, numerically solve the underlying equations, evaluate
system behavior by examining plots and animations and improve their performance
through design exploration and optimization.” [19]

5. Simulation method

To simulate our model and control, we chose a combination of SolidThinking
Activate, Altair MotionView and Altair MotionSolve software. In MotionView,
the physical model of the inverted pendulum was modeled. The control system
and external interventions that periodically set the pendulum into a new unstable
position within a specified interval were modeled in Activate. The simulation then
proceeded as a co-simulation between Activate and MotionSolve.

Co-simulations are a current trend in the industry. It helps to combine easily
the models of each sub-system part and simulate each one by an appropriate solver.
The method saves time and reduces errors in the development phase.

5.1 Control systems in Activate

Two control systems are programmed and generally used: a PID controller and
an artificial neural network controller. A simplified flowchart in Fig. 2 shows the
method of simulation in Activate. It is scheme of feedback system, where controlled
system is co-simulated out of the Activate environment. There is also a generator
of random destabilising forces generating short force impulses in specified periods.
The force is applied to center of mass of the pendulum and causes deviation of
pendulum angle. It demonstrates that controllers are able to control a pendulum
continously not only the initial deviation.
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Fig. 2 Schema of the control system.

Returning the cart to its initial position is solved in non-traditional way. Usually
forces from a balancing controller and a cart return controller are summed and
the resulting force is applied to a cart. In case of this article, the only one control
force is used. Returning of the cart is ensured by creating false angular deviation of
pendulum. This approach is shown in Fig. 2. A longitudinal deviation of the cart
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et(t) is input into the cart return PID controller. Its output is not control force, but
a false angle αf(t), which is add to angular deviation α(t). By this operation a false
deviation eA(t) is created and put forward to balancing controller. The balancing
controller then act as if the false deviation is real and pushes the cart more or less
than just when balancing. This results in movement of whole pendulum to relevant
side and return to requested coordinations.

5.2 PID controller

The proportional controller has the disadvantage that it usually causes a static
or constant static error [1]. So the first chosen selected control method is a
PID controller. It is a continuous controller that consists of three main parts:
proportional, integration and derivation. The control deviation e(t) enters into
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Fig. 3 Schema of the PID control system.

all of them and, when outputting them, the partial action quantities xi(t) are
summed up and the manipulated variable x(t) is generated. In the proportional
part, the manipulated variable xP(t) is directly proportional to the control deviation
e(t). In the integration part xI(t) is directly proportional to the deviation integrity
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Fig. 4 Angular deviation of pendulum with PID controller.

∫ t

0
e(τ) dτ . And analogously in the derivation part, xD(t) is directly proportional

to the derivation of the control deviation de(t)/dt.

The intended simple false angular deviation approach for returning the cart had
to be edited a little. At the moment, when longitudinal deviation was too large,
manipulated variable was so large, that it disturbed a balancing of pendulum. The
most effective solution of this problem is to insert cropping block just after the
cart returning PID controller. This block cuts off all the values higher or lower
than thresholds set. The threshold setting must respect that too high values causes
instability and too low values have no power to influence the final manipulated
variable and the cart will not return to initial position.

Both of the PID controllers were set with manual iterative tuning method.
Parameters of the PID coefficients and thresholds are described in Tab. II.

Parameter Value

KPA 0.2
KIA 0.8
KDA 0.8
KPT 0.012
KIT 0.003
KDT 0.010

thresholdmin −60
thresholdmax 60

Tab. II Parameters of the PID controller system.

The PID controllers are able to quieten a pendulum almost completely and push
the cart with pendulum to initial coordinates.
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5.3 Artificial neural network

Artificial neural network is mathematical approach inspired by elemental neurop-
hysiology [5]. At the beginning of work on ANN was a recognition that “human
brain computes in entirely different way from the conventional digital computer.
The brain is a highly complex, nonlinear and parallel computer” [8] and in many
type of tasks it achieves much better results. So ANN tries to emulate real neural
network which in much larger scale forms our brains. The similarity with brain
enables to ANN adapt itself to its surrounding system (or system changes) and to
be fault tolerant [8].
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Fig. 5 Schema of the ANN control system.

To insert an ANN controller, the opensource library FANN [12] have been imple-
mented through CCustomBlock. The library was chosen because it is programmed
in C language (Activate supports neither C++ nor C#) and it provides tools for
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complex usage of ANN. It offers several training algorithms and a lot of activation
functions.

The following steps were performed to prepare an ideal ANN:

(1) Execute the model with PID controller and export training data.

(2) Create basic ANN.

(3) Test training methods on basic ANN, choose the best one and use it in next
steps.

(4) Test combinations of activation functions in hidden and output layers, choose
the best combination and use it in next steps.

(5) Test different sizes of ANN, choose the best one and use it in following steps.

(6) Integrate defined structure of ANN into model. Execute simulation with PID
controller and let the ANN train online parallel to PID.

(7) Use the trained ANN as a controller.

The process was realized as follows:

(1) The model with PID controller was edited at the earliest. The module for
returning the cart to its default position was turned off. Then the simulation
was executed and a text file with signals was exported. It contained scaled
angular deviation of pendulum (divided by 100) and angular velocity of
pendulum (divided by 1000) as input values and actuator force (divided by
100) as an output. These values were captured for every simulation step. 10
seconds of simulation exported 1 406 samples.

(2) A four layer network was chosen as a basic ANN. This network had two inputs,
5 neurons in each hidden layer and one output. Activation function in all of
neurons was linear with steepness s = 0.5.

(3) Five training methods were tested and a MSE (Mean Squared Error) and
Bit Fail value after 2 000 training epochs was recorded. A Bit Fail value is a
count of output values theirs absolute value error from an estimated output
value is higher than a threshold. We have chosen threshold as 0.0001. The
following training methods were tested:

• Incremental method – Standard backpropagation algorithm, where
the weights are updated after each training pattern.

• Batch method – Standard backpropagation algorithm, where the weig-
hts are updated after calculating the mean square error for the whole
training set.

• RPROP – Resilient backpropagation method is a more advanced batch
training algorithm described by [9].

• QPROP – Quick resilient backpropagation method is another more
advanced batch training algorithm. This described by [4].
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• SARPROP – Simulated Annealing resilient backpropagation method
is a simulated annealing enhancement to resilient back propagation
described by [15].

It is evident from Tab. III that the Incremental method is the most efficient
one for our problem. This method was selected for following steps.

After 2000 epochs

Train method MSE Bit fail

Incremental 0.000002 0
Batch 0.011393 0
RPROP 0.000036 0
QRPROP 0.011393 0
SARPROP 0.000036 0

Tab. III Results of tested training methods.

(4) A test of the most convenient activation functions was performed. Following
functions were tested:

• Linear

• Sigmoid

• Sigmoid stepwise

• Sigmoid symmetric

• Sigmoid symmetric stepwise

• Gaussian

• Gaussian symmetric

• Elliot

• Elliot symmetric

• Linear piece

• Linear piece symmetric

• Sin symmetric

• Cos symmetric

All of these functions were combined in hidden and output layers and their
results after 3000 epochs were recorded. The best ten combinations are
assembled in Tab. IV. Based on the results, the combination of symmetric
Elliot function for hidden layers and symmetric stepwise sigmoid for output
layer was chosen. Parameters of the chosen functions are following:

• Symmetric Elliot function:

– fast symmetric sigmoid-like activation function defined by David
Elliot [3],

– span: −1 < y < 1,

– y = (x · s)/(1 + |x · s|),
– d = s · 1/((1 + |x · s|) · (1 + |x · s|)).

• Sigmoid symmetric stepwise function:

– linear approximation to symmetric sigmoid,

– span: −1 < y < 1,
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Activation function After 3000 epochs

Hidden layers Output layer MSE Bit fail

Elliot symmetric Sigmoid symmetric stepwise 9.705e-08 0
Elliot symmetric Sigmoid symmetric 9.949e-08 0
Elliot symmetric Cos symmetric 9.951e-08 0
Elliot Cos symmetric 9.953e-08 0
Elliot symmetric Sin symmetric 9.986e-08 0
Elliot symmetric Linear 9.994e-08 0
Elliot Sigmoid symmetric 9.998e-08 0
Elliot symmetric Linear piece symmetric 1.071e-07 0
Elliot Sigmoid symmetric stepwise 1.083e-07 0
Sigmoid symmetric Sigmoid symmetric 1.553e-07 0

Tab. IV Results of the best 10 combinations of activation functions.

– y = tanh(s · x) = 2/(1 + exp(−2 · s · x))− 1,

– d = s · (1− (y · y)),

where:

– x is the input to the activation function,

– y is the output,

– s is the steepness and

– d is the derivation.

Steepness of both of activation functions was chosen s = 0.5.

(5) The previously chosen parameters were applied on basic network and test of
ideal size of network was started. Networks from 1 neuron per each hidden
layer up to 15 neurons per each hidden layer were tested. Results are described
in Tab. V and in Fig. 6. For next steps an ANN with 4 neurons per hidden
layer was chosen.

Neurons per hidden layer
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Fig. 6 Results of testing various size of ANN.
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Neurons per hidden layer MSE after 3000 epochs

1 9.146× 10−8

2 5.312× 10−8

3 2.767× 10−8

4 1.990× 10−8

5 1.353× 10−7

6 7.280× 10−8

7 9.806× 10−8

8 3.144× 10−8

9 1.372× 10−7

10 1.518× 10−7

11 2.077× 10−7

12 1.073× 10−7

13 7.273× 10−8

14 6.910× 10−8

15 2.141× 10−7

Tab. V Results of testing various size of ANN.

(6) In the Activate model, an ANN with properties which were selected depending
on test results in previous steps were created. The ANN watched scaled
input and output parameters online from the Multi-body model and from
the PID regulator. The training process ran real-time in the simulation. The
training in this step is not comparable with training from previous steps. In
previous steps the training was based on limited count of samples which were
served to ANN again and again. The MSE in this repeating process can be
downsized to the served data faster, but it does not say about quality of
network so much. The MSE in real-time training with constantly new data is
more accurate. The training had been under way until the MSE reach our
required value MSE = 1× 10−6. This had taken 483 seconds of simulation
time. The prolonged training process (until MSE = 1× 10−7) can be seen in
Fig. 7.

(7) Outputs from Multi-Body model were accordingly scaled for input to ANN
controller. Outputs from ANN were scaled too, and the ANN replaced the
PID. The balancing of pendulum was successful. Its results are described in
following chapter.

6. Results comparison

To compare the results of the PID and ANN controller, an identical signal of desta-
bilizing impulses was used. In previous cases it was usually randomly generated, but
this time, during one simulation, destabilizing impulses were recorded, exported to a
file, and imported into further simulations. A signal of the used destabilizing pulses
is shown in Fig. 8. As can be seen from the Fig. 9, stabilization of the pendulum by
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Fig. 7 Process of training ANN.

Fig. 8 Shape of the destabilizing impulses.

Fig. 9 Comparison of PID and ANN controller – oscillation in XZ plane.
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the both of controllers is almost identical with only very little differences. These are
noticeable in Fig. 10, that shows integral of absolute value of angular deviations.

Fig. 11 relates to an energy consumption of balancing the pendulum. The
curves in the pictures represent value of integral of absolute value of control force at
specific time. That corresponds with energy consumption. Final integration values
(25.0 · F · s for the PID controller and 16.4 · F · s for the ANN controller) imply

Fig. 10 Comparison of PID and ANN controller – integral of absolute values of
deviations.

Fig. 11 Comparison of PID and ANN controller – integral of absolute values of
control forces.
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that PID controller was approximately 50 % more energy-intensive than the ANN
controller in our case.

The Fig. 12 shows longitudinal deviation of cart. It is obvious, that the false
angular deviation approach is suitable for both of controllers and the results are
almost same – similarly as the angular deviation results.

Fig. 12 Comparison of PID and ANN controller – longitudinal deviation of cart.

7. Conclusions

By trying different parameters of ANN step by step, an ideal ANN was found. This
ANN was trained real-time side by PID controller and the resulting sufficiently
accurate ANN was used as a substitution of the balancing PID controller.

Abilities of these two controllers were then compared and no significant differences
were observed except energy consumption. The PID controller was approximately
50 % more energy-intensive than the ANN controller in our case.

Balancing the pendulum is a nonlinear problem by nature, but other nonlinearity
has been added by the friction model. Despite this, however, both of the controllers
were successful and made their task effectively. It is not possible to clearly determine
which controller is better. It depends on the area of application and defined
requirements..

The research confirmed that the false angular deviation approach for returning
cart to its initial position is applicable for both of used balancing controllers. Both
controllersalso have a very similar results in returning the cart.

The combination of Activate plus external opensource C-language library can be
advantageously used. The Internet is full of many free libraries of various disciplines.
It is not necessary to develop new and new scripts for every problem. Also, there is
no need to program in not user-friendly text code, but use of a user-friendly option
to build flowchart. Also the co-simulation between signal processing software and
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multi-body solver was beneficial. It highly saves time and errors during a controlled
model describing.
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