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Abstract: A method for identification of mechanical parameters of an asyn-
chronous motor is presented in this paper. The identification method is based on
the use of our knowledge of the system. This paper clarifies the method by using
the example identifying of mechanical parameters of the three-phase squirrel-cage
asynchronous motor.A model of mechanical subsystem of the motor is presented as
well as results of simulation. The special neural network is used as an identification
model and its adaptation is based on the gradient descent method.The parameters
of mechanical subsystem are derived from the values of synaptic weights of the
neural identification model after its adaptation. Deviation of identified mechanical
parameters in the case of moment inertia was up to 0.03 % and in the case of load
torque was 1.45 % of real values.

Key words: neural network, identification, electric drive

Received: June 14, 2016 DOI: 10.14311/NNW.2017.27.013
Revised and accepted: June 11, 2017

1. Introduction

To ensure a high quality control of nonlinear dynamic systems, precise knowledge of
parameters is required. In the system identification many different approaches can
be used depending on the prior information available. The solution to the question
of identification of parameters of non-linear dynamic systems and of electrical drives
as well, the use of conventional identification methods necessitates complicated and
time consuming calculations and they can be expensive to perform special prepa-
ration of the system for the measurement [12, 14]. What more, the conventional
methods used for the identification of systems parameters are based on a number of
assumptions that are not valid under all operating conditions. In recent years, the
research in the field of electrical drives is has been also focused on the application of
different methods of artificial intelligence [1,3–7,13,15,17] as the theory of artificial
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neural networks (ANN) and the fuzzy sets theory or the genetic algorithms theory.
The theory of fuzzy sets is most often used for systems control [4, 7, 15] and the
genetic algorithms are often used for optimization tasks [5,7] in the field of electric
drives. The artificial neural networks (ANNs) are most commonly used for solving
tasks as: approximation, association, classification, control or prediction. ANNs
can work in parallel and thus shorter computation time can be achieved. Moreover,
they can be used to identify and control the non-linear dynamic systems because
they can approximate a wide range of nonlinear functions to any desired degree of
accuracy [9,10]. In the field of electric drives ANNs can be used for electric drives
control [4, 7, 13, 15], estimation quantities of electric drives [4, 13, 15], especially
angular speed, and also for identification of electric drives parameters [1, 13,17].

Used at designing the neural identification structure can be of two differing
approaches:

• When using neural network with a larger number of neurons approximated
is the estimated quantity or parameter, based on simply measurable system
quantities [13].

• The neural structure is determined by using the analogy of structure of a
known system mathematical model, and thus the neural network parametric
structure is created, while the network parameters containing information on
the system parameters are being looked for [1].

In this paper, a special neural network is presented as an identification model
and parameters of mechanical subsystem of a squirrel-cage asynchronous motor
are identified by using the single neuron with adaptation rule based on gradient
descent algorithm widely used in neural networks training [2]. The proposed iden-
tification model identifies the following parameters of mechanical subsystem of an
asynchronous motor: moment of inertia J , constant passive load torque mL and
steepness of linear friction characteristic b. Magnetic fluxes [1] of the asynchronous
motor were supposed to be derived from an observer and stator voltages, stator
currents and mechanical speed are supposed to be measured. The proposed iden-
tification neural model was tested by simulation, including the identified motor.

2. Model of an asynchronous motor

We considered was a two-pole representation of a squirrel-cage asynchronous mo-
tor model transformed into x, y reference frame rotating with synchronous speed
given by Eqs. (1)–(9). The transformation of the three-phases stator voltages into
stationary α, β reference frame (1) by [8] is shown in Fig. 1.

uα1 =
1

3
(2ua − ub − uc) and uβ1 =

1√
3

(ub − uc) . (1)

Fig. 2 shows transformation of two-phases stator voltages stationary reference
frame α, β into x, y reference frame rotating with synchronous speed by Eq. (2) [8]:

ux1 = cosϑS · uα + sinϑS · uβ , (2)

260



Balara D. et al.: Neural networks application for mechanical. . .

2 1/3

1/
u

u

ub

ua

uc
3

Fig. 1 Transformation of phase voltages into α, β frame of reference.
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Fig. 2 Transformation of stator voltages into x,y frame of reference.

uy1 = − sinϑS · uα + cosϑS · uβ and
dϑS
dt

= ωS .

The two phase electrical equations of a squirrel-cage asynchronous motor in α, β
reference frame transformed into x, y reference frame rotating with synchronous
speed shown in Eqs. (3)–(9) are given by [13]:

ux1 = RSix1 +
dψx1

dt
− ωsψy1, (3)

uy1 = RSiy1 +
dψy1

dt
+ ωsψx1,

ux2 = RRix2 +
dψx2

dt
− (ωs − ωmech) · ψy2,

uy2 = RRiy2 +
dψy2

dt
+ (ωs − ωmech) · ψx2,

ix1 =
1

Lsσ

(
ψx1 −

1

νR
ψx2

)
, iy1 =

1

Lsσ

(
ψy1 −

1

νR
ψy2

)
, (4)

ix2 =
1

Lsσ

(
ψx2 −

1

νS
ψx1

)
, iy2 =

1

Lsσ

(
ψy2 −

1

νS
ψy1

)
,

dψx1
dt

= ux1 −RSix1 + ωSψy1, (5)
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dψy1
dt

= uy1 −RSiy1 − ωSψx1,

dψx2
dt

= ux2 −RRix2 + (ωS − ωmech)ψy2,

dψy2
dt

= uy2 −RRiy2 − (ωS − ωmech)ψx2,

where for a squirrel-cage asynchronous motor is ux2 = uy2 = 0 and

ωS =
2πf

pp
, σ = 1− Lh

2

LSLR
, νS =

LS
Lh

, νR =
LR
Lh

. (6)

i1, i2 stator and rotor currents
u1, u2 stator and rotor voltages
ψ1, ψ2 stator and rotor magnetic fluxes
pp number of the pole pairs
ωs synchronous angular speed
ωmech mechanical angular speed
m,mL,mf motor, load and friction torque
LS , LR, Lh leakage inductances of stator and rotor, mutual inductance
RS , RR stator and rotor resistance
J moment of inertia

Tab. I Used symbols.

Discrete models of stator and rotor according to Eqs. (3)–(6) with use of rect-
angular method of numerical integration are presented by models in Fig. 3 and
Fig. 4.
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Fig. 3 Model of stator.
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Fig. 4 Model of rotor.

The mechanical equation for the motor can be expressed by [13]:

m =
3

2
pp (ψx1iy1 − ψy1ix1) , (7)

m−mL · sgn(ωmech)−mf = J
dωmech

dt
, (8)

where friction torque is given by:

mf = b · ωmech, (9)

where b denotes the slope of the linear component of viscous friction. Constant
passive load mL may include Coulomb friction. Fig. 5 shows model of the mechan-
ical subsystem by Eqs. (7)–(9), where the symbol denotes numerical integrator
and its discrete model is represented in Fig. 6.
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m
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Fig. 5 Model of mechanical subsystem.
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Fig. 6 Discrete model of the mechanical subsystem.

3. Design of neural identifier

The neural identification structure shown on Fig. 7 that is based on easily measur-
able quantities, i.e. stator current i1, angular speed ωmech, and stator voltage u1
for obtaining the values of stator flux, may be analogous to the discrete model of
the mechanical subsystem in Fig. 6.

w1

w2

w3
ωmech(k)

z-1

N
N (k)
o

Adaptation

ωmech(k)

e(k)

ωmech(k)

mLsgn( ωmech(k))

x1(k) i (k)y1
y1(k)ix1(k)-

Fig. 7 Neural identification model of mechanical subsystem of an asynchronous
motor.

The output of the neural identification model (Fig. 7):

No = o = ω∗
mech, (10)

where symbol ∗ denotes the output of the identification model, may be analogous
to expression Eq. (8):

o =
3

2

pp∆T

J
(ψx1iy1 − ψy1ix1) +

(
−b∆T

J
ωmech

)
+

(
−mL∆T

J
sgn (ωmech)

)
. (11)
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The network weights w1, w2 and w3 (Fig. 7) are elected so that they corre-
sponded with the asynchronous motor mechanical parameters Eq. (11) as below:

w1 ≈
3
2pp∆T

J
,w2 ≈ −

b∆T

J
,w3 ≈ −

mL∆T

J
. (12)

In the case of ideal adaptation of identification model weights we find the values
of mechanical parameters from Eq. (12).

4. Rules of adaption

When using stator currents and stator magnetic fluxes as inputs and mechanical
angular speed as a desired output, the identification model adapts its weights using
the well known gradient descent method [2]. The identification model with struc-
ture identical to mechanical subsystem is represented by linear neuron N on Fig. 7.
The neural model output o = No is compared with the desired measured angular
speed value and deviation e serves for adaptation of the neuron weights so that the
neural model output agreed with the measured value of angular speed.

Let E be the cost function:

E =
1

2
e2, (13)

where e is deviation between the desired and actual neuron output. According to
the gradient descent algorithm the change of every weight should be performed in
the direction opposite to the particular component of gradient of E:

∆wn = −ηcn
∂E

∂wn
,
∂E

∂wn
= −e · ∂o

∂wn
,
∂o

∂wn
= in, (14)

where in is n-th input of the neuron and ηcn is learning rate. From Eq. (14) follows:

∆wn(k) = ηn · e(k) · in(k), (15)

where ηn = ηcn ·∆T. The adaptation rule must be modified to take into account
the time delay member:

∆wn(k) = ηn · e(k) · in(k − 1). (16)

After the adaptation, when the behaviour of the model is almost identical to the
behaviour of the motor, the identified parameters can be derived from particular
weights of neuron N with use of Eq. (11). We obtain parameter J from weight w1,
b from w2 and mL from weight w3.

5. Identification of parameters

The parameters of a squirrel-cage asynchronous motor used in the simulation were:
mL = 5 Nm, b = 0.01 Nms, U = 190 V, f = 50 Hz, RS = 0.181 Ω, RR = 0.161 Ω,
J = 0.11 kgm2, pp = 2, LS = 0.06583 H, LR = 0.06583 H, Lh = 0.064 H.

Phase voltages of the stator ua, ub and uc had a form of periodical 6 step wave
with the amplitude of 190 V (Fig. 8).
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Fig. 8 Phase voltage ua and two-pole representation voltages transformed into xy
frame.

The speed of the motor was reversed every 75 periods (Fig. 9, Fig. 11) of stator
phase voltage in order to provide richer training signals for the identifier, which is
especially essential for identification of load torque mL. Initial values of all weights
of the neuron model were equal to zero. The values of learning rates were not chosen
the same in adaptation process: η1 = 0.000001, η2 = 0.00000001, η3 = 0.00001.

Fig. 9 Courses of torque and mechanical speed of the motor.
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Although the output No of the identification model converged very fast to
required signal (Fig. 10), the convergence of individual weight values that is shown
in Fig. 11, was much slower.

Fig. 10 Deviation between mechanical speed of the motor and output of the iden-
tification model.

Fig. 11 Adaptation of weights and course of reference mechanical speed of the
motor.
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The difference between the real value of particular weights and their identified
value during adaptation process is shown in Fig. 12.

Fig. 12 Deviation between target and actual values of weights.

Tab. II shows the comparison of parameters derived from weights values of iden-
tification model after 13 repetitions of training set (Fig. 11) according to Eq. (12)
and their real values.

Parameter Identified value Real Value Derivation

J 0.10997 kgm2 0.11 kgm2 0.0273 %
b 0.01080 Nms 0.01 Nms 8.0 %
mL 4.9277 Nm 5 Nm 1.446 %

Tab. II Identified mechanical parameters of the motor.

Neglecting the exponential component of friction may cause a significantly
higher deviation of identified steepness of the friction characteristic b. The de-
viation of identified and real load torque mL is caused by input signal for its
identification, which was a sign of rotary speed of the motor. This signal was in-
frequently changed in comparison with other input signals, therefore, it only had
a little information for identification of the parameter.
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6. Conclusion

In this paper the neural identification method of nonlinear dynamic systems is
suggested. The proposed identification method is based on the use of our knowledge
of the identified system. Very simple neural adaptive structure, analogous to the
model of system was used as the neural identifier. In the identification model
simple measured signals of the system are used as inputs to the model. Parameters
of the system were derived from the values of synaptic weights of the neural model
after its adaptation. The gradient descent algorithm was used for adaptation of
parameters of the neural network.

The identification method was used as an example of the neural networks appli-
cations for a squirrel-cage asynchronous motor. Our aim was to identify mechanical
parameters of an asynchronous motor like moment of inertia J , constant passive
load moment mL and steepness of linear friction characteristic b. The identification
method was completely computer simulated, including the identified motor. The
achieved identified values of parameters of the system are very close to their real
values.

The identification method should be successfully applied to identify the pa-
rameters of many other nonlinear dynamic systems, especially if we know their
structures.
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[3] BORBEĽ M., TIMKO J., ŽILKOVÁ J. Neural speed estimator for the induction motor
drive. Electrotechnica et Informatica. 2002, 2(4) pp. 27–30.

[4] BOSE B.K. Expert system, fuzzy logic, and neural network applications in power electronics
and motion control. Proceedings of the IEEE. 1994, 82(8) pp. 1303–1323, doi: 10.1109/5.
301690.
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