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Abstract: Central pattern generators (CPGs) play an important role in control-
ling rhythmic movements in vivo. Increased insight into mechanisms of CPGs can
be obtained by perturbing neuron activities so as to study a range of behaviors. By
applying this method, a series of simulations were performed to research different
transition modes between firing patterns in a pacemaker neuron model of stomato-
gastric ganglion (STG). Firstly, with the perturbation of parameters in model, such
as external stimulus, parameters in compartments and connection between com-
partments, different firing patterns and bifurcation of inter-spike intervals (ISIs)
were obtained to exhibit the impact of single parameter on the transions between
spiking and bursting. Moreover, perturbing two parameters gCa and Iext simulta-
neously induced the continuous variation of the bifurcation mode, which implied
the crucial role of calcium channel in regulating the rhythm generation. Finally,
a two-dimensional parameter space (gCa, Iext) was constructed by spike-counting
method to capture the distribution of the firing patterns and different transition
mode between them in a comprehensive aspect. In this parameter space, three ba-
sic transition modes were concluded: bifurcation ring, period-doubling mode and
period-adding mode.
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1. Introduction

The stomatogastric ganglion (STG) that lies at the dorsal surface of the foregut
in crustaceans is comprised of two central pattern generators (CPGs): pyloric and
gastric mill CPGs. These CPGs are believed to play a part in controlling some
rhythmic and repetitive movements, such as locomotion and feeding [15, 19]. In
general, endogenous oscillator CPGs are driven by pacemaker neurons that fire
rhythmic spike bursts [21]. Therefore, it is crucial to acquaint the firing patterns of
pacemaker neurons and transition patterns between them, for understanding how
CPGs regulate different motor patterns.
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The mechanisms behind how firing patterns vary are of interest because the fir-
ing pattern is likely to encode information which is transmitted to target neurons
and these kinds of variation maybe induce different behaviors or different states
of movement. Nevertheless, due to the difficulty of experimental research in neu-
roscience, these mechanisms are far away clear. As a result, much attention is
focused on computational method. Plenty of models, which contributed to under-
standing the effect of pacemaker neurons, have been constructed and researched,
such as the R15 neuron in Aplysia [1, 23] and inspiratory pacemaker neuron in
pre-Botzinger [6]. Canavier and her colleagues [7] even demonstrated a period-
doubling transition mode between spiking and bursting in R15 neuron. Besides
single neuron model, a great many complicated simulations were achieved by con-
structing network models for understanding the contribution of pacemaker neurons
in network [2, 5, 11, 18, 19, 22]. Network models constructed by Weaver et al. [22]
and Soto-Trevino et al. [18] provided a comprehensive way in studying the effect of
firing patterns of pacemaker kernels on other neurons. Recently, the research about
pacemaker neurons went deep into the impact of external environmental conditions
such as temperature [17]. Moreover, some researchers like Bedrov et al. [4] and Fal-
cke et al. [8] focused their attention on dynamical properties such as limit cycle,
attractor, providing mathematical insight into the firing modes. Although lots of
experiments and models have been completed, the mechanisms behind variation of
firing patterns remain less obvious.

In this work, we simulated a compartmental pacemaker neuron model intro-
duced by Maran et al. [13], and studied the transition modes between different firing
patterns. The index of inter-spike intervals (ISIs) was utilized to describe the varia-
tion of firing patterns [9,14,16]. In addition, we used the spike-counting method to
construct a two-dimensional parameter plane which can provide a comprehensive
way of understanding the distribution of firing patterns and the transition modes
between them [3,20].

2. Model descriptions

The pyloric pacemaker neuron model simulated here is the same as the model intro-
duced by Maran et al. [13]. It includes four compartments: soma, primary neurite,
dendrite and axon, and its morphology is shown in Fig. 1. Each compartment has
its corresponding ion channels. The soma only has a leakage channel (Leak), while
the primary neurite has leakage channel and a very slow potassium channel. There
are five kinds of channel in the dendrite: calcium channel (Ca), leakage channel
(Leak), calcium-dependent potassium channel (KCa), fast potassium channel (Kf)
and transient outward potassium channel (A). The axon includes the traditional
Hodgkin-Huxley sodium and delayed-rectifier potassium channels (Na and Kdr) as
well as leakage channel (Leak). The equations and parameters of model are given
in Appendix.

All simulations were implemented in Python 2.7 using a fourth order Runge-
Kutta method with integration time steps of 0.01 ms. For the sake of accuracy, the
first 20000 ms of each firing was discarded.

248



Ye W., Liu S., Liu X.: Transition modes between spiking and bursting. . .

Fig. 1 The structure and ion channels of the four compartments neuron model in
stomatogastric ganglion

3. Results

3.1 Influence of external stimulus on compartmental model

Different current injection could vary the activity of neurons from resting to burst-
ing [18]. For understanding the effect of external stimulus, we performed some
simulations by injecing different external stimulus. Insets in Fig. 2a show several

Fig. 2 The effect of external stimulus on the transition between different firing
patterns. (a) Bifurcation diagrams of ISIs influenced by Iext. Insets illustrate
firing patterns in different Iext: 0.32, 0.3307, 0.34, 0.347, 0.355 and 0.385 nA,
respectively. (b) 3D phase portrait of chaotic motion when Iext = 0.32 nA. (c)–(e)
3D phase portraits of periodic motion with different periods when Iext = 0.347 nA
(c), 0.355 nA (d) and 0.385 nA (e).
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firing patterns of neuron model after applying distinct strengths of external stimu-
lus. When Iext is 0.32 nA, the model exhibits chaotic bursting pattern. All bursts
in this series seem different, and the number of spikes in a burst could be 2, 3 or 4.
At a higher strength of Iext input, i.e. Iext = 0.33 nA, a regular bursting pattern is
observed, while the firing pattern turns into tonic-spiking as Iext exceeds 0.385 nA.
These firing patterns all correspond to different regions of bifurcation diagram that
plot ISIs versus Iext (Fig. 2a). With Iext increasing, an inverse period-doubling
cascade is observed with the chaotic regions and periodic motions alternately ap-
pearing. In the parameter range 0.316 < Iext < 0.347, the chaotic firing patterns
are the main pattern (Fig. 2b). When Iext > 0.347 nA, the model exhibits periodic
motions (Fig. 2c-e).

3.2 Contribution of parameters in neuron to transition mode
of firing patterns

3.2.1 The impact of parameters in compartments

Having established the effects of varying Iext on the firing patterns, we proceeded
to examine the effects of some parameters in compartments. We found that many
parameters in compartments have influence on the firing patterns of neuron. Fig. 3
shows six bifurcation diagrams which plot ISIs as the function of some parameters.
It is clear that the variation of some conductance and equilibrium potentials make

Fig. 3 Bifurcation diagrams of ISIs obtained by perturbing various parameters in
compartments: (a) EK Kdr, (b) EK A, (c) ENa, (d) EL,d, (e) gKdr, (f) gKs.
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pacemaker neuron exhibit rich dynamic behavior. Fig. 3a shows a typical bifur-
cation diagram that performs continuous period-doubling bifurcation as EK Kdr

increases. In contrast, some interesting “ring-shaped bifurcations”, which firstly
exhibit period-doubling bifurcation and then induce inverse period-doubling mo-
tion, have occurred in other diagrams, such as the ranges −68.2 < EK A < −57.5,
−27.5 < EL,d < −20 and 6.8 < gKdr < 11.6 (Fig. 3b–Fig. 3f). We refer to
it as a “bifurcation ring”. In bifurcation rings, there also exists some dynamic
behaviors. For instance, the nested bifurcation rings in the parameter range
−65 < EK A < −62, and chaotic motion and periodic motion in the ranges
7.5 < gKdr < 9.6, 0.25 < gKs < 0.43. These dynamic behaviors reveal abundant
transition modes of firing patterns when parameters are perturbed.

3.2.2 The effect of connections between compartments

The coupling strength is an important parameter in transferring excitement be-
tween compartments. For understanding how coupling strength affects the firing
patterns, three numerical simulations were done. As we can see in Fig. 4, three
bifurcation diagrams are produced as a result of perturbing coupling conductances

Fig. 4 The ISIs bifurcation diagrams with the change of the coupling conductances:
(a) Gs,pn, (b) Gd,pn and (c) Ga,pn.
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Gs,pn, Gd,pn and Ga,pn. No matter which connection it is, it can be observed
that weak coupling just induces tonic-spiking firing. As coupling conductance in-
creased, the model exhibits period-doubling motions. In the parameter ranges
0.012 < Gs,pn < 0.11, 0.026 < Gd,pn < 0.031 and 0.305 < Ga,pn < 0.5, bifurcation
rings can be observed. The transition mode of firing patterns induced by Ga,pn

is different from the others, for both relatively weak coupling and strong coupling
could generate rich dynamic behavior (Fig. 4c). In relative weak coupling of Ga,pn,
there are two nested chaotic rings in the bifurcation ring. When Ga,pn > 0.5, the
model ends the bifurcation ring and generates period-one motion. The most inter-
esting thing is, strong coupling makes the model produce period-doubling cascade
again. Finally, it turns into chaotic motion.

3.3 The calcium conductance gCa induced continuous change
of the bifurcation

A set of bifurcation diagrams were constructed by plotting ISIs versus Iext with
different gCa for detecting impact of gCa on bifurcation. The results of simulation
are shown in Fig. 5, from which we can see that bifurcation diagrams have a
continuous change by increasing gCa. When gCa is 0.0198 µS, the model possesses
two firing patterns: single spike firing and burst firing that have ISIs of two periods
(Fig. 5a). In this chart, ISIs bifurcate into two periods, then gathered together and
forms a bifurcation ring. While gCa increases, the bifurcation ring enlarges and
produced new nested bifurcation rings, indicating that new firing patterns occur
(Fig. 5b–Fig. 5d). As gCa = 0.0240 µS, bifurcation rings in diagram break up and
shape a new bifurcation mode (Fig. 5e). Three new bifurcation rings come up in
the parameter ranges 0.305 < Iext < 0.36 and 0.545 < Iext < 0.604, when gCa =
0.02525 µS (Fig. 5g). As gCa increases from 0.02550 µS to 0.02715 µS (Fig. 5h–
Fig. 5o), the bifurcation rings gradually enlarge again and finally crash. Whenever
bifurcation rings break up in this procedure, a chaotic motion would always be
evoked at the position that bifurcation rings crash (Fig. 5e, Fig. 5k, Fig. 5m).

3.4 Two-dimensional parameter space analysis

From the aforementioned results, we found that the STG pacemaker neuron can
exhibited rich dynamic behaviors by changing different parameters. However, it
is not easy to obtain a comprehensive understanding of the transition between
distinct firing patterns if we only focus on the bifurcation modes produced by
single parameter. In this section, we present a two-dimensional parameter space
diagram which is plotted on a 500 × 500 grid of parameter (gCa, Iext) by spike-
counting method (Fig. 6). This means that 25×104 simulations have been done for
constructing it. This plane can also explain the continued change of the bifurcation
diagrams in Fig. 5.

It is obvious that the parameter plane is partitioned into different regions,
corresponding to different behaviors. In general, the diagram illustrates four kinds
of firing patterns: quiescence (0), tonic-spiking (1), bursting (2–34) and chaotic
firing (35). We conclude the transition modes of these activities into three basic
patterns.
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Fig. 5 ISIs bifurcation diagrams that plotted ISIs versus Iext at different value of
calcium channel conductance gCa. The value of gCa from up to down and from left
to right are 0.0198 (a), 0.02260 (b), 0.02320 (c), 0.02380 (d), 0.02400 (e), 0.02460
(f), 0.02525 (g), 0.02550 (h), 0.02565 (i), 0.02585 (j), 0.02605 (k), 0.02630 (l),
0.02655 (m), 0.02670 (n), 0.02715 (o).

i) Bifurcation ring. In subregion A of Fig. 6, periods in vertical direction are
organized as 1 → 2 → 1. Similarly, in the middle of the parameter-plane,
periods change by a sequence 1 → 2 → 4 → 2 → 1. This transition mode
combine a period-doubling bifurcation and an inverse period-doubling mo-
tion, forming a ring-shaped structure.

ii) Period-doubling model. As we can see in subregion B, a more complicated
structure can be observed. Now we move from left to right, the variation of
firing patterns are organized by the sequence: 2 → 4 → chaos → 3 → 6 →
chaos → 4. We can conclude this transition mode into a universal version:
· · · → n→ 2n→ chaos→ n+ 1→ 2(n+ 1)→ chaos→ n+ 2→ · · · .
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iii) Period-adding mode. The feature of this transition mode is that periods
increase by a factor of i, and organize as · · · → n → n + i → n + 2i →
n+3i→ · · · . Taking the subregion C as a example, two period-adding modes
are observed. The period of the top are change by a sequence 4 → 4 + 2 →
4+4→ 4+6, while the bottom one are organized as 2→ 2+1→ 2+2→ 2+3.

Fig. 6 (gCa, Iext) parameter-space. The color bar on the right presents the spike-
number. 0 represents quiescence, 1 stands for tonic-spiking patterns, and 2–34 is
the bursting pattern, while 35 represents chaotic firing.

4. Discussion

Based on the STG pacemaker neuron model, a plethora of firing patterns and the
transition modes of the model were investigated in this study. The results provide
insight into how CPGs control rhythmic movements by varying firing behaviors.The
factors affecting the firing patterns include external stimulus and parameters in the
neuron model. Both external stimulus and parameters in neuron could induce the
bifurcation phenomenon of ISIs, in spite of none of these phenomena is the same.
It seems that bifurcation ring is a typical transition mode of firing patterns in pace-
maker neuron. The bifurcation ring implies a mechanism that the excitability of
neuron suddenly increase and then return to oringinal state with some parameters
varying. This mechanism may be related to some movements in STG.

By use of spike-counting method, a two-dimensional parameter space diagram
was constructed to illustrate the variation of firing patterns when two parameters
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were varied. This diagram also explains the continuous change of the bifurcation
diagram in Fig. 5. As a result, three basic transition modes were concluded: bi-
furcation ring, period-doubling mode and period-adding mode. We can find that
the bifurcation phenomena in Fig. 2–Fig. 5 all are the combination of these three
modes. However, it is far away clear that how the parameters vary in vivo. In
recent, some researches have reported that animals can homeostatically control the
parameters so as to maintain a balance state [10,12]. Thus, the transition patterns
found in this study may just disclose a corner of the total impacts of parameters.
When covarying more parameters, there may be some other new transitions pat-
terns can be found. Further research should consider this limitation and find new
transition modes in higher dimensional parameter space.
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A. Neuron model in detail
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dVs
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(1)
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where Vs, Vpn, Vd and Va represent the membrane potential of soma, pri-
mary neurite, dendrite and axon, respectively. Iext is external stimulus. Cm

is the membrane capacitance and equals to 1 nF. The coupling current Ii,j be-
tween compartment i and compartment j is described by Ii,j = Gi,j(Vi − Vj), Gi,j

is the coupling strength, Gs,pn = Gpn,s = 0.05µS, Ga,pn = Gpn,a = 0.5µS,
Gd,pn = Gpn,d = 0.04µS. The current of each ion channel follows the equations
below.

INa = gNam
3h(V − ENa),

m =
am

am + bm
,

dh

dt
= ah(1− h)− bhh,

am =
0.121V + 2.871

1− exp(−0.121V − 2.871)
, bm = 4exp(−0.0672V − 2.984),

ah = 0.07exp(−0.0605V − 2.686), bh =
1

1 + exp(−0.121V − 2.371)
.

(2)

IKdr = gKdrn
4(V − EK),

dn

dt
= an(1− n)− bnn,

an =
0.121V + 2.237

1− exp(−0.121V − 2.429)
, bn = 0.125exp(−0.0151V − 0.421).

(3)

IKCa = gKCa
c

0.5 + c
(V − EK),

dc

dt
= ρ(

0.0078z(ECa − V )

1 + 2c
− c). (4)

ICa = gCa
z

0.43 + z
(V − ECa),

dz

dt
=
zV − z

23
, zV =

1

1 + exp(−0.15V − 7.5)
.

(5)

IA = gAm
3
AhA(V − EK),mA =

1

1 + exp(−V+12
26 )

,

dhA
dt

= hAi − hA, hAi =
1

1 + exp(V+62
6 )

.

(6)

IKs = gKsp(V − EK),
dp

dt
=
pV − p
τp

,

pV =
1

1 + exp(−2V − 90)
, τp = 100 +

3000

1 + exp(−V+50
0.05 )

.
(7)

IKf = gKfb(V − EK),

db

dt
= bV − b, bV =

1

1 + exp(−2V − 84)
.

(8)
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IL,i = gL,i(V − EL). (9)

The value of conductances in the equations above are gNa = 15µS, gKdr =
8µS, gKCa = 0.273µS, gCa = 0.04µS, gA = 100µS, gL,s = gL,a = gL,pn =
0.001µS, gL,d = 0.0354µS, gKs = 0.065µS, gKf = 0.07µS. And the corresponding
equilibrium potentials are ENa = 30 mV, EK = −75 mV, ECa = 140 mV, EL =
−40 mV.
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