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Abstract: Trust-aware recommender system (TARS) recommends ratings based
on user trust. It greatly improves the conventional collaborative filtering by pro-
viding reliable recommendations when dealing with the data sparseness problem.
One basic research issue of TARS is to improve the recommending efficiency, in
which the key point is to find sufficient number of recommenders efficiently for
active users. Existing works searched recommenders via a skeleton, which consists
of a number of hub nodes. The hub nodes are those who have superior degrees
based on the scale-freeness of the trust network. However, existing works did not
consider the skeleton maintenance cost and the coverage overlap between nodes
of the skeleton. They also failed to suggest the proper size of the skeleton. This
paper proposes an optimized TARS model to solve the problems of existing works.
By using the genetic algorithm, our model chooses the most suitable nodes for
the skeleton of recommender searching. It can achieve the maximum prediction
coverage with the minimum skeleton maintenance cost. Simulation results show
that compared with existing works, our model can reduce more than 90% of the
skeleton maintenance cost with reasonable prediction coverage.
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1. Introduction

The trust-aware recommender system (TARS) [1, 7, 8, 11–16]] has recently been
proposed to solve the data sparseness -problem of the conventional collaborative
filtering (CF) method. The data sparseness problem is one of the main bottlenecks
of CF. TARS predicts ratings based on user trust instead of user similarity. Trust
is the measure of willingness to believe in a user based on the user’s competence
and behavior within a specific time [10]. By utilizing the transitivity of user trust,
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TARS can provide reliable recommendations when dealing with the data sparseness
problem [1,7, 8, 10–16].

Two main research issues of TARS are improving the prediction accuracy and
improving the recommending efficiency [14, 15]. The prediction accuracy of most
TARS models is similar to that of the conventional CF, while the recommending
efficiency is quite different in various TARS models. This paper mainly focuses
on the problem of improving recommending efficiency. The key factor influences
the recommending efficiency is how to find sufficient number of recommenders
efficiently for active users. Recommenders are searched via trust propagations in
the trust network from active users. The recommender searching should be efficient
and sufficient. The complexity of the recommender searching should be minimized
to reduce the system response time, and recommenders should be found as many
as possible for the active users to predict the ratings.

Existing TARS models [7, 14–16] searched recommenders based on the scale-
freeness of the trust network. A scale-free network is a network whose degree
distribution follows the power law [2, 3]. The most notable characteristic of the
scale-free network is that there exist some nodes (also known as the hub nodes)
whose degrees greatly exceed the average, dominating the connectivity of the net-
work [2,3]. Existing TARS models built a skeleton that consists of a number of the
hub nodes. They first propagate the user trust from the active user to the skele-
ton, and then utilizes the superior degrees of the hub nodes to find recommenders
efficiently and sufficiently.

However, the recommending efficiency of existing TARS models needs further
improvement. Existing TARS models select nodes with the highest degrees in
the trust network to construct the skeleton, while they did not mention what is
the proper size of the skeleton. The size of the skeleton is closely related to the
recommending efficiency of TARS. By increasing the size of the skeleton, it is easier
for TARS to find recommenders since more hub nodes with superior connections
are involved in the skeleton. However, this also increases the cost to maintain the
skeleton. The larger the skeleton size is, the higher the skeleton maintenance cost
is. Furthermore, it is not always necessary to involve all the top k nodes with the
highest degrees in the skeleton: there may exist some overlap between the coverage
of these nodes, i.e., the nodes in the skeleton have some co-trusted nodes in the
trust network. This unnecessary redundancy increases the skeleton maintenance
cost.

To solve the problems of existing TARS model, this work proposes an opti-
mized TARS model by using the classical optimization algorithm, the genetic al-
gorithm (GA). We use GA to optimize the skeleton selection strategy of existing
TARS model, selecting the proper hub nodes for the skeleton construction. This
is achieved by considering both the influence of skeleton maintenance cost to the
recommending efficiency and the influence of coverage redundancy of nodes in the
skeleton to the recommending efficiency. By achieving the maximum prediction
coverage with the minimum skeleton maintenance cost, our proposed TARS model
can greatly improve the recommending efficiency. Simulation results show that it is
possible to reduce more than 90% of the skeleton maintenance cost while achieving
90% of the original prediction coverage (with three hops of trust propagations from
the skeleton).
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The following of this paper is organized as follows: Section 2 introduces related
works. Section 3 presents our proposed our GA based TARS model in detail.
Section 4 gives simulation results using real application data. Finally, the last
section concludes this paper and discusses future work.

2. Related works

It is a fundamental requirement of TARS to efficiently search as many recom-
menders for the active users as possible. However, most studies [1,8,11–13] did not
provide any information on how they find recommenders. A few other works [7,16]
briefly mentioned that they search the entire trust network to find the recom-
menders. Since it does not miss any node reachable by trust propagations, TARS
can achieve high prediction coverage. However, its computational complexity is
high: o(kd), where k is the average degree of the trust network and d is the max-
imum allowable trust propagation distance, especially when TARS has large-scale
trust networks. It has been verified that the proper maximum allowable trust prop-
agation distance [15] can be set as d ≈ lnn/ ln k, where n is the number of nodes
in the trust network, and k is the average degree of each node. In this work, we
set all maximum allowable trust propagation distances as d ≈ lnn/ ln k.

Some TARS models [14,15] improve the recommending efficiency by setting the
recommender searching mechanism based on the scale-freeness of the trust network.
It has been verified that these models have reasonable prediction coverage and is
computationally much less expensive, which provide a much better recommending
efficiency. These models choose the hub nodes of the trust network to construct
a skeleton for trust propagation. The skeleton is regarded as one super node: the
node trusted by any node of the skeleton is regarded as the node trusted by the
skeleton, and if a node trusts any node of the skeleton, it is regarded as trusting the
skeleton. The details of recommender searching mechanism of these TARS models
are given in Algorithm 1. The skeleton acts as the trust propagation bridge for
recommender searching of each active user: the active user is first connected to
the skeleton by the shortest path of trust propagation, and the recommenders are
searched by the trust propagated from the skeleton.

The skeleton selection mechanism of existing TARS models is given in Algo-
rithm 2. They first set a threshold value of the degree, and then selects all the
nodes whose degrees exceed this threshold.

The nodes of the skeleton fulfill:

kS � k (1)

where k is the average degree of the trust network, and kS is the average degree of
the skeleton.

The computational complexity of existing TARS models is

O(kdAS + kdSR) = O(kmax(dAS,dSR)), (2)

where dAS is the trust propagation distance from the active user to the skeleton,
and dSR is the trust propagation distance from the skeleton to the recommenders.
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Algorithm 1 Recommender searching mechanism of existing TARS models.

Input: G = (V,E): the trust network of TARS; a: the active user; r: the target
recommender.
Output: recommenderFlag: the flag describing whether r is found.
Parameters: VS: the skeleton; skeletonFlag: the flag describing whether VS is
found; V1 and Vtemp: temporary vertex set.
Recommender Searching Mechanism:
skeletonFlag = false;
recommenderFlag = false;
V1 = {a};
while (skeletonFlag = false)

for ∃vi ∈ V1

for j = 1, 2, . . . , |V |
if vj ∈ V and vj /∈ V1 and eij ∈ E

if vj ∈ VS

skeletonFlag = true;
break;

if (skeletonFlag = true)
break;

Vtemp = {vj : vj ∈ V, vj /∈ V1, eij ∈ E};
V1 = Vtemp;

V1 = VS;
while (recommenderFlag = false)

for ∃vi ∈ V1

for j = 1, 2, . . . , |V |
if vj ∈ V and vj /∈ V1 and eij ∈ E

if vj = r
recommenderFlag = true;

break;
if (recommenderFlag = true)

break;
Vtemp = {vj : vj ∈ V, vj /∈ V1, eij ∈ E};
V1 = Vtemp;

Algorithm 2 The skeleton selection strategy of existing TARS models.

Input: G = (V,E): the trust network of TARS.
Output: VS: the skeleton.
Parameters: degreeThres: the threshold of the degree for skeleton selection;
degree(∗): the degree of the selected node.
Skeleton selection strategy of existing TARS model:
VS = ∅;
for i = 1, 2, . . . , |V |

if degree(vi) > degreeThres
VS = VS + vi;
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3. Optimized GA based TARS model

3.1 Problem representation

Let G = (V,E) represents the trust network in TARS, where V = {vi, i =
1, 2, . . . , n} represents the nodes and E = {eij , i ∈ [1, n], j ∈ [1, n], i 6= j} rep-
resents the edges in the trust network:

eij =

{
1, i trusts j
0, otherwise

(3)

Let a be the target active user that TARS gives the recommendation, a ∈ V . Let
t be the target item that TARS predicts a’s rating on. Let R = {ri, i = 1, 2, . . . ,m}
be all the users rated R ⊆ V . Searching the recommenders for the active user means
finding the trust propagation paths PaR′ , where a is the source of trust propagation
and R′ = {ri, i = 1, 2, . . . ,m′,m′ ≤ m} refers to all the recommenders that can be
found by TARS, R′ ⊆ R.

PaR′ = {eav1ev1v2ev2v3
. . . evk−1vkevkri , e∗∗ ∈ E, v∗ ∈ V, ri ∈ R′ ⊆ R} (4)

To achieve high recommending efficiency, TARS model should maximize m′

while minimizing PaR′ .
Existing TARS models, as introduced in Section 2, search the recommenders via

the skeleton, i.e., a is first connected to the skeleton by the shortest length of the
trust propagation, and the recommenders are searched via trust propagation from
the skeleton. Let GS = (VS, ES) be the skeleton of existing TARS model GS ⊂ G,
VS ⊂ V , ES ⊂ E, VS = {vSi , i = 1, 2, . . . , nS}, ES = {eSij , i ∈ [1, nS ], j ∈ [1, nS ], i 6=
j}. For any vSi ∈ VS, Degree(vSi ) � Degree(vi) and |ES | / |VS| � |E| / |V |. In
this work, we consider the undirected trust network, i.e., eij = eji. Where i 6=
j Degree(vi) = num(ei∗) = num(e∗i). The value num(ei∗) means the number of
edges with vi as one node. By using existing TARS models:

PaR′ = PaVS + PVS + PVSR′ (5)

where PaVS
refers to the trust propagation path from a to any vSi ∈ VS, PVS

refers
to the trust propagation path between nodes of the skeleton, and PVSR′ refers to
the trust propagation path from any vSi ∈ VS to R′. Since the skeleton fulfills
|ES | / |VS| � |E| / |V |, (5) can be approximately written as

PaR′ ≈ PaVS
+ PVSR′ (6)

Let Cost(VS) be the cost to maintain VS. It is reasonable to assume that
Cost(VS) is positively related to |VS|, i.e., it requires more system effort to maintain
the skeleton at a larger scale. In this work, we set:

Cost(VS) = C · |VS| (7)

where C is a constant.
The coverage of the skeleton with l hops of trust propagations is represented as
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Coveragel(VS) = Coveragel−1(VS) + num(evl−1
i ∗) (8)

where num(evl−1
i ∗) refers to the number of edges with vl−1i as one node, and vl−1i

refers to any node that is l − 1 hops away from the skeleton.

3.2 Our proposed model

Existing TARS models only focus on Coveragel(VS), not considering Cost(VS).
Though increasing |VS| increases Coveragel(VS), Cost(VS) also increases. Further-
more, there will probably be some overlap between the coverage of the nodes in
the skeleton. This unnecessary redundancy increases |VS|, which further increases
Cost(VS).

Our proposed TARS model improves existing TARS models by optimizing the
skeleton selection strategy to maximize Coveragel(VS) while minimizing Cost(VS).
The basic searching mechanism of our proposed TARS model is similar to that
of existing TARS models, as shown in Algorithm 1. The difference is that our
new proposed model improves the skeleton selection strategy, which is the key
part of the searching mechanism of existing TARS model (the skeleton selection
strategy of existing TARS models is given in Algorithm 2). This is achieved by
utilizing the genetic algorithm (GA), which is a classical optimization algorithm.
GA is inspired by natural evolution, where populations of individuals compete to
survive and reproduce themselves. A population of solutions is maintained and a
reproductive process allows parent solutions to be selected from the population.
Offspring solutions are produced and they exhibit some of the characteristics of
each parent. The fitness of each solution can be related to the objective function
values. Analogous to biological processes, offspring with relatively good fitness
levels are more likely to survive and reproduce, with the expectation that fitness
levels throughout the population will improve as it evolves. The flow diagram of
genetic algorithm is shown in Fig. 1. The starting point of GA is the initialization
of populations, typically in the form of a string or chromosome. The fitness of
each individual in the population is then calculated, in which the fitness function
interprets the chromosome and a higher fitness value of the chromosome means it
is better than others. Using some satisfying constraints, the survivors are selected
based on their fitness. The selection intends to improve the average quality of the
population by giving the high-quality chromosomes a better chance to get copied
into the next generation. The selected individuals act as the parents to reproduce
the offspring, using the crossover and mutation operators. This process continues
until the constraints are satisfied.

Based on GA, our new proposed TARS model has an optimized skeleton se-
lection strategy, as listed in Algorithm 3. In our model, the chromosomes of the
population are represented as follows: let P be the set of all populations, for
any p ∈ P , len(p) = |VS|, where len(p) represents the length of p, and VS is
the skeleton candidate, which fulfills |ES | / |VS| � |E| / |V | for each chromosome
p = g1, g2, g3, . . . , gnS

, in which gi is the gene of the chromosome:

gi =

{
1, if vSi is selected for the final skeleton
0, otherwise

(9)
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Fig. 1 The flow diagram of the genetic algorithm.

We assign a unique number to each node in the skeleton candidate, which
corresponds to one gene of the chromosome. If the node in the skeleton candidate
is selected, the corresponding gene is set to be 1; otherwise, the corresponding
gene is set to be 0. An example is shown in Fig. 2 to describe how we set the
chromosome: VS = {vi, i = 1, 2, . . . , 8}, so len(p) = |VS| = 8, if v1, v4, v5 and v8
are selected as the skeleton nodes, the chromosome is represented as 10011001.

Fig. 2 An example of the chromosome 10011001.
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Algorithm 3 The skeleton selection strategy of our proposed TARS model.

Input: G = (V,E): the trust network of TARS; VS: the skeleton candidate
Output: V ′S : the optimized skeleton
Parameters: k: the size of the population; P : population; p∗: individual in the
population; o∗: generated offspring; fit(∗): fitness of *; Coverage1(∗): coverage
of TARS with one hop of trust propagation from the skeleton; ThresCoverage:
threshold of coverage; |VS|: size of VS; pi(gj): the gj-th gene of pi’s chromosome;
generationStep: GA generation steps; maxGenerationStep: maximum GA gen-
eration steps.
Optimized Skeleton Selection Strategy:
for i = 1, 2, . . . , k

randomly generate pi from VS ;
while generationStep ≤ maxGenerationStep

randomly select 2 individual pi, pj ∈ P ;
pi, pj crossover, generate two offspring o1 and o2;
o1, o2 mutation;
delete pi and pj from P ;
calculate fit(pi), fit(pj), fit(o1) and fit(o2);
select two individual with the highest fitness;
insert into P ;

for i = 1, 2, . . . , k
calculate fit(pi);

select pi with the highest fitness;
if Coverage1(pi) ≤ ThresCoverage

Break;
generationStep++;
for i = 1, 2, . . . , k

calculate fit(pi);
select pi with the highest fitness;
for j = 1, 2, . . . , |VS|

if pi(gj) = 1
Select gj in VS to construct V ′S ;

The fitness function of our proposed model is set as

fit(V ′S) =
Coveragel(V

′
S)/Coveragel(VS)

Cost(V ′S)/Cost(VS)
(10)

where V ′S is optimized skeleton, VS is the original skeleton candidate, and l is the
number of hops that are propagated from the skeleton.

For each generation, we randomly select two individuals from the population to
act as the parents. This randomness helps to overcome the local optimum in each
generation. Physically, the random initialization chooses genes (nodes) from the
nodes with the highest degree in the trust network in a random manner during the
encoding process. The generated offspring compete with their parents, and the two
with the highest fitness survive to update the population. We set two constraints
for our proposed method: the generation is terminated if its coverage (coverage
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with one hop of trust propagation from the skeleton) is too low or if it reaches the
maximum number of generation steps.

4. Experimental results

4.1 Experiments setup

The experiments were held on the publicly released TARS dataset Epinions which
is available at (http://www.trustlet.org/wiki/Datasets). Epinions consists of 40163
users’ 664824 ratings on 139738 items. In this work, we consider the undirected
trust network, i.e., if user A trusts users B, user B also trusts user A. The user
trust is extracted using the method given in [14-15], where Thress = 0.75 and
ThresI = 5. We get 37616 undirected trust statements between 6182 users. Seting
d ≈ lnn/ ln k [15], we further let the maximum trust propagation distance in this
experiment be 3 hops. The degree distribution of our selected trust network is
given in Fig. 3, and clearly shows that the trust network is a scale-free network,
which means that the hub nodes exist and are capable of constructing the skeletons
for our proposed TARS model and existing TARS models.

Fig. 3 The degree distribution of our experimental data.

To initiate our new proposed TARS model, we first need to set a proper size for
skeleton candidate VS. If |VS| is too large, the length of the chromosome in our new
proposed TARS model is too long. This increases the computational complexity.
If |VS| is too small, the coverage of our new proposed TARS model is limited.
Fig. 4 shows the simulation results of the relationship between the recommender
coverage and the size of the skeleton candidate, in which the recommender coverage
refers to the ratio of recommenders that could be covered by TARS. This work
mainly focuses on the recommender coverage, and the prediction coverage is used
alternately with the recommender coverage in this paper. The simulation results
show that the recommender coverage increases with (1) increasing skeleton size and
(2) increasing trust propagation distance from the skeleton to the recommender.
Based on the analysis in Fig. 4, we set the 100 as |VS|, i.e., choose 100 users (1.62%
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of the total users) with the highest degrees in the trust network as the skeleton
candidate. For our selected 100 skeleton candidate nodes, we randomly select one
node and examine its coverage with other nodes in the skeleton candidate. The
simulation result is shown in Fig. 5. It shows that for some nodes, the ratio of their
recommender coverage overlap is high, around 20%. So it is necessary to select
proper nodes for the skeleton to reduce the redundancy.

Fig. 4 The recommender coverage with difference sizes of the skeleton.

Fig. 5 The recommender coverage overlap between a randomly selected node and
all other nodes in the skeleton candidates.
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4.2 Experimental results and analysis

Fig. 6 gives the simulation results of the fitness values by using different population
sizes. The fitness value is calculated by (10). Fig. 7 gives the simulation results of
the final skeleton size chosen by our new proposed TARS model. The population
sizes in both simulations are set to be 10, 20, 30, 40 and 50. By increasing the
population size, the proposed skeleton selection strategy can select solutions over
a wider range. We use uniform crossover, which evaluates each gene in the parent

(a) (b) 

(c) (d)

(e)

Fig. 6 The fitness value given (a) population = 10, (b) population = 20, (c) pop-
ulation = 30, (d) population = 40 and (e) population = 50.
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(a) (b) 

(c) (d)

(e)

Fig. 7 The skeleton size given (a) population = 10, (b) population = 20, (c) pop-
ulation = 30, (d) population = 40 and (e) population = 50.

chromosomes for exchange with a probability of 0.5, as the crossover operator in
the proposed our new proposed TARS model. The mutation ratios for the muta-
tion operator are set to be 0.01, 0.05 and 0.1. We set the maxGenerationStep in
our new proposed TARS model as 50,000, and ThresCoverage equals 0.3. Fig. 6
and Fig. 7 show that: (1) before our new proposed TARS model converges, the
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fitness value increases as the number of generation steps increases, while the se-
lected skeleton size decreases as the number of generation steps increases. This
means the skeleton selected by our new proposed TARS model can achieve higher
recommender coverage with lower skeleton maintenance cost as the number of gen-
eration steps increases, and our new proposed TARS model continuously reduces
the skeleton size to minimize the skeleton maintenance cost. (2) Our new proposed
TARS model converges with a small skeleton size.

For all the simulations, the final selected skeleton size is between 5 nodes and
10 nodes, which is only 5% to 10% of the original skeleton candidate size. (1)
When the population size equals 10, 20, 30 and 40, it takes our new proposed
TARS model more generation steps to converge as the population size increases.
When the population size equals 50, it takes more generation steps to converge than
when the population size equals 40. (2) When the population size equals 10, 20 and
30, our new proposed TARS model converges with fewer generation steps and a
higher mutation ratio. When the population size equals 40 or 50, our new proposed
TARS model converges with similar generation steps for different mutation ratios.
(3) With the decreasing mutation ratio, the convergence procedure for our new
proposed TARS model is more sensitive to the population size. Comparing the
convergence procedures for mutation ratios of 0.01 and 0.1 shows that our new
proposed TARS model converges faster with a larger population size (when the
population size is no larger than 40) for the former case.

Fig. 8, Fig. 9 and Fig. 10 show the relationship between the prediction coverage
and the number of generation steps using our new proposed TARS model when the
population size is equal to 10, 20, 30, 40 and 50. Specifically, Fig. 8, Fig. 9 and
Fig. 10 give the simulation results for mutation ratios of 0.01, 0.05 and 0.1. For
the simulation results shown in Fig. 8, Fig. 9 and Fig. 10, we verify the prediction
coverage with one hop, two hops and three hops for trust propagation from the
skeleton. Fig. 8, Fig. 9 and Fig. 10 show that: (1) the recommender coverage
decreases as the number of generation steps increases in our new proposed TARS
model. This is because the selected skeleton size is decreasing, as shown in Fig. 7.
However, since the fitness value of our new proposed TARS model is increasing, the
overall performance of our new proposed TARS model is still increasing, i.e., though
the prediction coverage is decreasing, the skeleton maintenance cost decreases more.
(2) When our new proposed TARS model converges, the recommender coverage is
more than 60% with two hops of trust propagation from the skeleton, and the
recommender coverage is around 90% with three hops of trust propagation from
the skeleton. This performance is reasonable since the skeleton maintenance cost
is only around 5% to 10% of the original cost when our new proposed TARS model
converges. (3) When the mutation ratio equals 0.01, our new proposed TARS
model converges fastest when the population size equals 40. When the mutation
ratio equals 0.05 or 0.1, our new proposed TARS model converges fastest when the
population size equals 30. For example, when the mutation ratio equals 0.05, if
the population size is smaller than 30, our new proposed TARS model needs more
steps to converge if the population size decreases; if the population size is larger
than 30, our new proposed TARS model also needs more steps to converge if the
population size increases. (4) When the population size equals 10, 20 or 30, our
new proposed TARS model converges faster if the mutation ratio increases. When
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(a) (b) 

(c) (d)

(e)

Fig. 8 The prediction coverage given mutation ratio = 0.01 and (a) population
= 10, (b) population = 20, (c) population = 30, (d) population = 40 and (e)
population = 50.

the population size equals 40 or 50, there is no significant difference between the
coverage generation steps due to changing the mutation ratio.

By considering the overall performance of the recommender coverage and the
skeleton maintenance cost, it is proper to set the population size to 30 and the
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(a) (b) 

(c) (d)

(e)

Fig. 9 The prediction coverage given mutation ratio = 0.05 and (a) population
= 10, (b) population = 20, (c) population = 30, (d) population = 40 and (e)
population=50.

mutation ratio equals 0.05 or 0.1 in our experiments. This will result in the fastest
convergence of our new proposed TARS model. Compared with existing TARS
model, our new proposed model can greatly reduce the skeleton maintenance cost
while achieving reasonable recommender coverage. With two hops of trust propa-
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(a) (b) 

(c) (d)

(e)

Fig. 10 The prediction coverage given mutation ratio = 0.1 and (a) population
= 10, (b) population = 20, (c) population = 30, (d) population = 40 and (e)
population = 50.

gation from the skeleton, the skeleton maintenance cost can be reduced more than
90% while the recommender coverage is more than 60% by our proposed model.
With three hops of trust propagation from the skeleton, our new proposed TARS
model can even reach around 90% of the original recommender coverage. This can
greatly improve the recommending efficiency of existing TARS models.
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5. Conclusions and future work

This paper proposes a TARS model which greatly improves the recommending
efficiency of existing TARS models. The recommender searching mechanism of
our new proposed TARS model utilizes an optimized skeleton selection strategy.
Considering the skeleton maintenance cost and the prediction coverage, our new
proposed TARS models uses the classical optimizing algorithm GA to choose the
most optimized skeleton. The chosen skeleton can achieve the maximum prediction
coverage with the minimum skeleton maintenance cost for TARS. Simulations were
held on the real application data to verify the effectiveness of our proposed TARS
model. It shows that compared with existing TARS model, our new proposed
TARS model can reduce the skeleton maintenance costs by more than 90% with
reasonable prediction coverage. This greatly improves the recommending efficiency
of existing TARS models. We will focus on further research details of TARS in our
future work. We will improve the rating prediction mechanism of TARS to achieve
better prediction accuracy. In the present work, the trust propagation distance is
regarded as the main attribute influencing the prediction accuracy, but we plan to
incorporate other possible attributes, such as the betweenness and the closeness of
the nodes. Secondly, most of the works mainly focus on using the trust propagation
in TARS, while the research on using distrust is still in its beginning stages. It
has been shown that though the number of distrust statements is very limited in
real applications, they give very valuable information. We will try to use TARS in
more related applications to achieve better performances [13–16].
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