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Abstract: One focus of data analysis in formal concept analysis is attribute-
significance measure, and another is attribute reduction. From the perspective
of information granules, we propose information entropy in formal contexts and
conditional information entropy in formal decision contexts, and they are further
used to measure attribute significance. Moreover, an approach is presented to
measure the consistency of a formal decision context in preparation for calculating
reducts. Finally, heuristic ideas are integrated with reduction technique to achieve
the task of calculating reducts of an inconsistent data set.
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1. Introduction

Formal concept analysis (FCA) [39] tries to mine knowledge from a formal context
(O, A, R). This kind of knowledge is a special structure called concept lattice that
is constituted by formal concepts [39]. Up till now, FCA has gained applications
which are knowledge discovery [3, 14,23, 29], information retrieval [5], machine
learning [11], cognitive learning [13,17], software engineering [26, 28], and so on
[31,35,41,45].

Granular computing is a good theory to deal with problems by using the idea
of granulation [42-44]. Recently, there have been some researches on granular
computing approach of FCA. For example, Ma et al. [20] discussed the relationship
between Galois connection and granular computing. Qiu et al. [24] established
a concept granular computing system so as to contain as many types of concept
lattices as possible in the same mathematical model. Wu et al. [40] examined
the granular structures of concept lattices and demonstrated their application in
attribute reduction. Considering that entropy theory can be used to solve problems
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of measuring attribute significance [19,22,36] and constructing concept lattices [12],
we propose in this paper the notions of information entropy in formal contexts
and conditional information entropy to solve the problem of measuring attribute
significance in FCA.

Attribute reduction in FCA is a classical topic and many researchers tried to
investigate it (see e.g. [2,7-9,15,18,21,25,27,30,37,38,47]) . For instance, Dias and
Vieira [6] concerned how to divide the existing reduction techniques into different
classes so as to make progress in this topic. Particularly, Wu et al. [40] proposed
a granular computing based technique to avoid the data redundancy, and pointed
out that their reduction methods are computationally expensive due to Boolean
reasoning. Furthermore, they claimed that heuristic ideas are required to be inte-
grated with reduction technique to enhance the efficiency of computing granular
reducts, and it is still necessary to calculate granular reducts of an inconsistent
data set.

For the purpose of solving these problems, heuristic ideas are combined with
reduction approach in our study so as to calculate reducts of an inconsistent for-
mal decision context. Note that our reduction technique depends on consistency
measure and it can be applicable to consistent formal decision contexts as well.

Our remainder work is described below. We briefly review the foundations of
FCA in next section. And then, we discuss the issue of information granulation
in formal contexts. Section 4 defines information entropy in formal contexts and
conditional information entropy in formal decision contexts. Moreover, we use
them to measure attribute significance. Section 5 investigates how to measure the
consistency of a formal decision context which is helpful to the study of obtaining
reducts from an inconsistent data set. In Section 6, heuristic ideas are combined
with reduction technique to calculate reducts of an inconsistent data set.

2. Foundations of FCA

Definition 1. (Formal context, [39]). A formal context is described as (O, A, R),
where R is an incidence relation between the object set O and the attribute set A.
Moreover, we read (0,b) € R as “o has b” and (0,b) ¢ R as the opposite.

Given M C O and N C A, we induce a pair of concept forming operators:

M' = {be AlVo € M, (0,b) € R},
N’ ={o€ O|Vbe N,(o,b) € R}.

Definition 2. (Formal concept, [39]). Let K = (O, 4, R) be a formal context. For
any M COand N C A, if M' = N and N’ = M, we say that (M, N) is a (formal)
concept of K. M and N are referred to as the extent and the intent of (M, N),
respectively.

If all concepts of K are equipped with the following subconcept-superconcept
relation (My, N1) < (Ma, N2) < My C Ma, they induce a concept lattice of K [39].
In the rest of this paper, we denote it by L(O, A, R). Moreover, the meet and join
operators in L(O, A, R) are defined as

(Mth) AN (MQ,NQ) = (Ml N MQ, (Nl U Ng)/’) and (Ml,Nl) \Y (MQ,NQ) =
((M1 @] Mz)”, Ni N Ng)
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Definition 3. (Subcontext, [10]). Let K = (O, A, R) be a formal context, Q C A
and write RN (O x Q) as Rg. Then the formal context (O,Q, Rg) is called a
subcontext of K.

Similar to the case in K, we can define a pair of concept forming operators in
(0,Q,Rg). For M C O and N C Q,

M'? = {beQ|Voe M, (0,b) € Rg},
N'Q® ={oeO|vbe N, (0,b) € Rg}.

In fact, the above concept forming operators '‘Q 20 5 2Q gnd Q29 — 20
are the restriction of the ones / : 29 — 24 and ’ : 24 — 29 on the subcontext
(0,Q, Rq), where 29, 2% and 24 are the power sets of O,  and A, respectively.
Moreover, we call (M, N) a concept of (O,Q, Rq) if M'?© = N and N'® = M, and
use L(O, Q, Rg) to represent the concept lattice of (O, Q, Rg).

For brevity, {o}b is represented as 0@, and {b}/Q as be for any (0,b) € O x Q.

Proposition 1. [/0]. Let (O,Q, Rg) be a subcontext of K = (0, A, R), M, My, Mo
C O and N, N1,Ny C Q. We obtain the following statements:

(1) My € My = M,® € My?, N, € Ny = N,% € N,9;

(2) M C M'?Q NCNQC,

(3) M'Q=M NQ,N°? =N,

(4) M" C M9

(5) (M'Q? M) € L(0,Q, Rq).

It should be pointed out that the statements (1), (2) and (5) are similar to those
in K= (0, A, R). Moreover, (3) is trivial if we notice that (O, Q, Rg) and K share
the same object set, but the latter has more attributes than the former. Besides, (4)
can be understood as “the minimal extent containing the granule M in (O,Q, Rg)
is greater than the one in K” since K has more extents than (O,Q, Rg). This is
helpful to the study of information granulation because the information granules
are known to become larger when attributes are removed from the original date set.

Definition 4. (Formal decision context, [46]). A formal decision context (FDC)
can be described as S = (O, A, R, D, J), where the contexts (O, A, R) and (O, D, J)
satisfy AND = (). A and D are called the conditional attribute set and the decision
attribute set of S, respectively.

3. Information granulation in formal contexts

Note that Wu et al. [40] examined the granular structures of concept lattices and
claimed that one can find information granules from a formal context such that
they can determine the concept lattice of the formal context.

In this section, how to measure the degree of fineness (or coarseness) of the
information granules is investigated in preparation for the subsequent study of
information entropy and conditional information entropy.

First of all, the information granules are recalled in formal contexts. The con-
cept forming operators’ : 20 — 24 and’ : 24 — 29 in K = (0O, A, R) are sometimes
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rewritten as 4 and ‘4. In FCA, (0'4'4,0'4) (0 € O) are called object concepts [18],
and they can be used to induce any concept (M, N):

(M7 N) = \/OEIW(O/A,A7 O/A)'

So, {(04'4,0'4)|o € O} can be a basis of L(O, A, R). Note that the extent o 44
and the intent o4 of (O/A/A70/A) are uniquely determined with each other [10].
Thus, {04"4|o € O} is sufficient in terms of generating all formal concepts. Here-
inafter, we call {o,A/A|o € O}, denoted by 6(0O, A, R), the object-oriented infor-
mation granules (simply information granules) of K. Obviously, the information
granules 0(0, A, R) are a cover of O.

Definition 5. (Coarser or finer relation). For two formal contexts K = (O, A, R)
and K = (0, D, J), let 6(O, A, R) and §(O, D, J) be their respective information
granules. If 044 C o'P'P for any o € O, then 0(0, A, R) is said to be finer
than §(0, D, J) (or equivalently, 6(O, D, J) is coarser than §(0, A, R)). We rep-
resent this relationship by §(O, A, R) < §(O, D, J). Furthermore, if §(O, A, R) <
0(0, D, J) and there exists 01 € O such that O;A/A C O;D/D, we say that §(O, A, R)
is strictly finer than 6(O, D, J) (or equivalently, 6(O, D, J) is strictly coarser than
0(0, A, R)). We denote this relationship by (0, A, R) < 6(0, D, J).

Combining Definition 5 with Proposition 1, we obtain the following property.

Proposition 2. Let (O,Q, Rg) be a subcontext of K = (0, A, R). Then, in-
formation granules of (O,Q, Rq) are coarser than those of K, i.e. §(0,A,R) <
5(0,Q,Rq).

Definition 6. (Information granulation). Let (O, @, Rg) be a subcontext of K =
(O, A, R). Then, we define the information granulation (IG) of (O, @, Rg) as

|0| 2 ol "o

Example 1. Tab.Iis a formal context K = (O, A, R), where O = {01, 02, 03, 04, 05},
A = {by,ba, b3, by, bs,bs, b7}, and the signs “+” and “—" are respectively used to
indicate “an object has an attribute” and “an object does not have an attribute”.

QQ|

O b1 bg b3 b4 b5 b6 b7

oo + - + - - - +
oo - + - - -+ -

o3 — + + - 4+ - -
4 - - - + + + =
o5 + - - - - - -

Tab. I A formal context K = (O, A, R).

Take Q@ = {b1,b2,b3,bs}. We can obtain the information granules of the sub-
context (O, Q, Rg):

079 ={o1}, 029 ={o2.03}, 0% ={0s}, 0% ={os}, 0°={o1,05}.
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Furthermore, the relative size of |O;QlQ| to |O| can be computed as follows:

O’IQ’Q’ O’QQ'Q’ O;Q'Q’ 0;@'@’ 00 Q‘
=0.2, = 0.4, =0.2, =0.2, =0.4.
0 lef 0] 0] 0]
Then, the average of the relative size of IO;Q/Q‘ to |O| is
Z 079 _ 1 = (0.240.4+02402+04) =
|O\ |O] 25°

Based on Definition 6 and Example 1, we know that IG(Q) provides a useful
approach to evaluate the degree of fineness (or coarseness) of information granules.
The larger IG(Q) of a formal context is, the coarser the information granules of
the formal context is. Moreover, it deserves to be mentioned that IG(Q) is in fact
an average measure of the relative size of information granules.

Note that the value range of IG(Q) is between 1/|O| and 1. Besides, according
to Definition 6 and the fourth item of Proposition 1, the following statement is
true.

Proposition 3. Let (O,Q, Rg) be a subcontext of K = (O, A, R). Then IG(A) <
1G(Q).

Thus, when some attributes are removed from K = (O, A, R), the information
granules 0(0, A, R) will become coarser, and the difference IG(Q) — IG(A) reflects
the change of the degree of coarseness of 6(0, A, R).

Example 2. Continued with Example 1. The information granules of K = (O, A, R)
are as follows:

’ ’ ! ’ ! ! ! / !
1 A= {01}7 02A A= {02}7 OSA A= {03}, 04A A= {04}7 A4 {01705}
By Definition 6, we obtain

Z'OIAA| 102+02+02+02+04)
\0| o]

25°

Hence, when the attributes b5, bg and by are removed from K, the information
granules of K will become coarser, and the difference IG(Q) —IG(A) = 5= indicates
the change of the degree of coarseness of (0O, A, R).

4. Information entropy and attribute significance

As is well known in rough set theory, entropy theory was used to deal with the
problem of measuring attribute significance [19,22,36]. In this section, we employ
entropy theory to solve the similar problem in FCA.

In what follows, we first propose the notions of information entropy in formal
contexts and conditional information entropy in formal decision contexts based on
information granules. Furthermore, we use them for the evaluation of the signifi-
cance of attributes.
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Definition 7. (Information entropy). Let (O,Q, Rg) be a subcontext of K =
(O, A, R). Then, we define the information entropy (IE) of (O, @, Rg) as

wo- 5457

0€O

In fact, the information entropy IE(Q) is a measure of the uncertainty of informa-
tion provided by (O, Q, Rg) which is defined based on information granules. More
explanations are as follows:

(a) 02?2 (0 € O) can be viewed as all the events of a sampling test and they
have the same probability ﬁ;

(b) the information entropy IE(Q) reflects the uncertainty of a sampling test, and
it can be used to measure the quantity of information provided by (O, Q, Rg);

(¢) when 0 QQ (0 € O) are all singleton sets, the information entropy IE(Q)
reaches the maximum value. In this case, all the events 0 ¥ @ (0 € O) are
the most unstable and the sampling test gets the biggest uncertainty.

(d) when 0@'e (o € O) are O, the information entropy IE(Q) reaches the mini-
mum value. In this case, 0 ¢ (o € O) are all certain events and the sampling
test has no uncertainty.

Proposition 4. Let (O,Q, Rg) be a subcontext of K = (O, A, R). Then IG(Q) +
IE(Q) =1.

Proof. Tt can be obtained directly by Definitions 6 and 7. O

Based on Proposition 4 and Definitions 5 and 7, the coarser the information
granules of a formal context are, the less the uncertainty of information provided
by the formal context is.

Proposition 5. Let (O,Q, Rg) be a subcontext of K = (O, A, R). Then IE(Q) <
IE(A).

Proof. It can be obtained directly by Definition 7 and (4) of Proposition 1. O

Proposition 5 says that the uncertainty of information provided by a formal
context will decrease when some attributes are removed, since the information
granules become coarser.

Definition 8. (Conditional information entropy). Let S = (0, A, R, D, J) be a
FDC. Then, we define the conditional information entropy (CIE) of (O, D, J) to
(O,A,R) as

1 |O’A’A‘ — |0’A’A N 0’D’D|

CIE(D|A) =) ol o]
0€0

In fact, the conditional information entropy of (O, D, J) to (O, A, R) indicates the
information entropy of (O, AU D, RU J) under the condition that the information
provided by (O, A, R) in the form of information granules has been known. In other
words, the following statement is true.
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Proposition 6. Let S=(0,A,R,D,J) be a FDC. We have CIE(D|A) =IE(AU
D) —1E(A), where IE(AU D) is the information entropy of (O,AUD,RUJ).

Proof. From Definitions 7 and 8, we have

1 |0/(AUD)'(AUD)‘ 1 ‘O’A’Al
IE(AUD) —TE(A) = Z@ (1_|0| _Z@ 1— ol
0€0 0€0
"A'A 'D’'D "A'A
_ Z(l)<1|0ﬂool> Zl<1 o |>
0€0 | | | ‘ 0€0 I | I |

1 ‘O/A/A‘_lolA/AﬁolD/D|

= 2o 0]

— CIE(DJA).

O
Proposition 7. Let S = (O, A, R, D, J) be a FDC. We have IE(D) > CIE(D|A).

Proof. From Definitions 7 and 8, we have

1 |O’D’D‘ 1 |O’A’A| _ ‘O’A’A N O’D’D‘
IE(D) — CIE(D|A) = — | 1-— — —
(D) - CIE(DIA) = ( o ) 2o 0]

|0’D’D| + |O/A’A‘ _ |0’A’A N O’D’D|>

- Zwﬁ(“ 0]

0€0
- Y (1 _ Joba Uo’D’D|>
2.70] 0]
> 0.
Therefore, IE(D) > CIE(D|A). O

In what follows, we use IE(Q) for the evaluation of the significance of attributes
of a formal context.

Definition 9. (Inner significance). Let K = (O, A, R) be a formal context. Then,
we define the significance of b in A as

SIG(A|b) = TE(A) — IE(A\{b}).

It can be observed that the significance of b in A is evaluated by the magnitude that
the information entropy of K = (O, A, R) changes when the attribute b is removed
from A. This kind of attribute significance provides a quantitative analysis of the
contribution that each attribute of A makes to K = (0, A, R).

Definition 10. (Outer significance). Let K = (O, A, R) be a formal context and
Q C A. We define the significance of b € A\Q with respect to Q as

SIG(b|Q) = TE(Q U {b}) — IE(Q).
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From Definition 10, we know that SIG(b|Q) is measured by the magnitude that
the information entropy of (O, @, Rg) changes when the attribute b is added into
Q. This new kind of attribute significance provides a quantitative analysis of the
contribution that each attribute in A\@ will make to (O, Q, Rg) if it is added into
Q.

Similarly, we can use conditional information entropy for the evaluation of the

significance of attributes of a FDC. We leave this issue to be discussed in Section
6.

Example 3. Tab. Il is a formal context K = (O, D, J), where O = {01, 02, 03, 04,05}
and D = {¢1, ¢a,c3,C4}.

0] C1 C2 C3 Cq

01
02
03
04
05 —

|+ + +
|+ 4
!

!

Tab. II A formal context K = (O, D, J).

The information granules of K are as follows:
’ ’ ’ ’
0”'? ={o1}, 0" ={0s,05}, 07" ={os,08}, 0P ={os}, 0" ={os}.

According to Definition 7, the information entropy of K is

=y — B Gl 1(08+06+06+08+08) 18
0€O|0| 0] 25

Furthermore, let us also concern K = (O, A, R) in Tab. I. Then, we can obtain
1 4
IE(A) = % and IE(AUD) = —.

By Definition 8, we know that the conditional information entropy of K = (O, D, J)
to K=(0,A,R) is
1 |o'a’a] —Jo'a’a No'P'D| 1
CIE(D|A) = =—.
~2 o 0 %
Thus, CIE(D|A) = IE(AU D) — IE(A) and IE(D) > CIE(D|A).
Besides, the significance of attributes of K = (O, D, J)is shown below one by
one:

SIG(D|e1) = IE(D) — IE(D\{e1}) = ;i ;2 _ %
SIG(Dlex) = TE(D) ~ TB(D\{e2}) = 57 — 50 = o,
SIG(D|es) = IB(D) — IE(D\{c3}) = ;g ;‘51 _ %)
SIG(Dles) = TE(D) ~ TB(D\{es}) = 5 — 22 = o
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5. Consistency measure of FDCs

Definition 11. (Consistency, [40]). Let S = (O, A, R, D, J) be a FDC. If 0’ 44 C
o P"P holds for any o € O, we say that S is consistent; otherwise, it is inconsistent.

Consistent FDCs are in fact a special type of FDCs since any consistent FDC
S = (0,A,R, D, J) satisfies that the information granules of (O, A, R) are finer
than those of (O, D, J), i.e. §(0, A, R) < §(O, D, J). The particularity of consistent
FDCs can guarantee that for every o € O, we can induce a granular rule oA 0P ,
which, in turn, makes the consistent FDCs quite important [40]. However, the
possibility of an inconsistent FDC appearing is more than that of a consistent one in
the real world. Then it is natural to ask how to evaluate the degree of consistency of
an inconsistent FDC? This problem is very important because different inconsistent
FDCs have difference in the degree of consistency and it is inappropriate to just
view them as the same. In what follows, we try to address this problem.

For a FDC S = (O, A,R, D, J) and Q C A, we denote

POSq(D) ={o € 0|0 ?Q C olDlD}.

That is, POSq (D) is constituted by the objects whose induced information granules
under the subcontext (O, Q, Rg) are finer than their corresponding information
granules under (O, D, J). Note that S is a consistent FDC if and only if POS 4 (D) =
O holds. So, we use the ratio of POSq (D) to |O| in order to evaluate the degree
of consistency of a FDC.

Definition 12. (Consistency degree). Let S = (0, A,R,D,J) be a FDC and
@ C A. The degree of consistency of the subcontext (O,Q, Rg,D,J) of S is
measured by
[POSq(D)|
To(D) = —————~—.
¢ O]

Based on Proposition 1 and Definitions 11 and 12, the following statements are
true.

Proposition 8. LetS = (0, A, R, D, J) be a FDC. Then S is consistent iff (D) =
1.

Proposition 9. Let S = (O,A,R,D,J) be a FDC and Q C A. Then 1q(D) <
7a(D).

Proposition 9 says that the degree of consistency of a FDC will decrease when
some of its conditional attributes are removed.

Finally, we use the degree of consistency to represent the reduction of consistent
FDCs, which will make the discussion of this issue in inconsistent FDCs more
natural.

Definition 13. (Granular consistent set, [40]). Let S = (O, A, R, D, J) be a con-
sistent FDC and Q C A. If 09?2 C 0’2’ holds for any o € O, then Q is called a
granular consistent set (GCS) of S. If @ is a GCS of S and any proper subset of Q)
is not a GCS of S, then @ is called a granular reduct of S.
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Proposition 10. Let S = (0, A, R, D, J) be a consistent FDC and Q C A. Q is a
GCS of S iff 7o(D) = T1a(D).

Proof. Tt can be obtained directly by Definitions 12 and 13. O

Proposition 11. Let S = (0, A, R, D, J) be a consistent FDC and Q C A. Q is a
granular reduct of S iff (D) = T74(D) and Vb € Q, T\ (3 (D) < 17@(D).

Proof. 1t is trivial. O

Proposition 11 gives a new version for simplification of a consistent FDC from
the perspective of the degree of consistency. Specifically, a granular reduct of a
consistent FDC is a minimal GCS preserving the degree of consistency.

6. Attribute reduction in inconsistent FDCs

In the previous section, we have shown that attribute reduction of a consistent
FDC can be represented by the degree of consistency. Now, we discuss the notion
of attribute reduction in inconsistent FDCs.

Definition 14. (Granular reduct). Let S = (O, A, R, D, J) be an inconsistent
FDC and @ C A. If 7¢(D) = 74(D), then Q is called a generalized GCS of S. If
Q is a generalized GCS of S and any proper subset of @) is not a generalized GCS
of S, then @ is called a granular reduct of S. We call NQ; the core of S and denote
it by Core(S).

A granular reduct of an inconsistent FDC is a minimal generalized GCS pre-
serving the degree of consistency, which is in accordance with the one in consistent
FDC. Moreover, by Proposition 11 and Definition 14, the simplification of incon-
sistent FDCs can be viewed as a natural generalization of the one in consistent
FDCs. So, any results obtained below on the simplification of inconsistent FDCs
are automatically suitable for that of consistent FDCs.

In Section 4, we have used information entropy for the evaluation of the signif-
icance of attributes of K = (O, A, R). In what follows, we propose the notion of
limitary (conditional) information entropy in inconsistent FDCs for the evaluation
of attribute significance.

Definition 15. (Limitary information entropy). Let S = (O, A, R, D, J) be an
inconsistent FDC and Q C A. Then, we define the limitary information entropy
(LIE) of (O, Q, Rq) as

1 |0’Q’Q|
w@ = ¥ g (-5
0cPOS 4 (D)

and the limitary conditional information entropy (LCIE) of (O, D, J) to (O, Q, Rg)

as el ’ ’
1 |oee|—|0@@noP P

0] 0]

LCIE(D|Q) = Y
0cPOS 4 (D)
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Proposition 12. Let S = (0, A, R, D, J) be an inconsistent FDC and P C Q) C A.
Then LCIE(D|Q) < LCIE(D|P).

Proof. The proof follows immediately from Definition 15. O

Definition 16. (Inner attribute significance). Let S = (O, A, R, D, J) be an in-
consistent FDC and b € @ C A. Then, the significance of b in @ is defined as

SIG(Q|b) = LCIE(D|Q\{b}) — LCIE(D|Q).

Based on Definition 16, the significance of b in @) is measured by the magnitude that
the limitary conditional information entropy of (O, D, J) to (O,Q, Rg) changes
when the attribute b is removed from . This kind of attribute significance provides
a quantitative analysis of the contribution that each attribute of ) makes to the
inconsistent FDC (O, Q, Rg, D, J).

Definition 17. (Outer attribute significance). Let S = (O, A, R,D,J) be an
inconsistent FDC and @ C A. The significance of b € A\Q with respect to @ is
defined as

SIG(b|Q) = LCIE(D|Q) — LCIE(D|Q U {b}).

It can be known from Definition 17 that the significance of b € A\Q with respect to
@ can be evaluated by the value that the limitary conditional information entropy
of (0,D,J) to (0, Q, Rg) changes when the attribute b is added into Q. This new
kind of attribute significance provides a quantitative analysis of the contribution
that each attribute in A\Q will make to (O, Q, Rg, D, J) if it is added into Q.

Furthermore, we use the above two kinds of attribute significance and limitary
conditional information entropy to discuss the equivalent conditions of generalized
GCS, granular reduct and core in inconsistent FDCs.

Proposition 13. Let S = (O, A,R,D,J) be an inconsistent FDC and @ C A.
Then Q is a generalized GCS of S iff LCIE(D|Q) = 0.

Proof. Necessity. If Q is a generalized GCS of S, we obtain 7¢(D) = 74(D) from
Definition 14, which implies POSg (D) = POS4(D). Thus, for any o € POS4(D),
it follows 0 € POSq(D), i.e., 09?2 C o'P'P. This leads to

1 |0/Q/Q‘_|OIQ/Q00/D/D| B
0] 0]

LCIEDD|Q) = Y 0.

0cPOS (D)

Sufficiency. If LCIE(D|Q) = 0, then we have 0 @2 C 0'P'P for all 0 € POS4(D
Thus, o € POSg(D) holds for all o € POSA(D), which yields POS4(D)
POSq(D). Furthermore, noting that POSq(D) € POS4(D) is satisfied due
Q C A, we conclude POSg(D) = POS4(D). Therefore, 7o(D) = 7a(D).
Definition 14, @ is a generalized GCS of S.

~—

g 1IN

o

0%

Theorem 14. Let S = (O, A, R, D, J) be an inconsistent FDC and Q@ C A. R is
a granular reduct of S iff LCIE(D|Q) = 0 and Vb € Q, LCIE(D|Q\{b}) > 0.
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Proof. Necessity. If @ is a granular reduct of S, then @ is a generalized GCS of
S and any proper subset of @ is not a generalized GCS of S. By Proposition 13,
it follows LCIE(D|Q) = 0. Furthermore, LCIE(D|Q\{b}) > 0 is also true for any
b € Q. Otherwise, there is by € @ satisfying LCIE(D|Q\{bo}) = 0, then it can
be known from Proposition 13 that Q\{bo} is a generalized GCS of S. This is in
contradiction with the assumption that any proper subset of () is not a generalized
GCS of S.

Sufficiency. Since LCIE(D|Q) = 0, we have that @ is a generalized GCS
of S. Note that for any P C @, there must exist by € Q\P such that P C
Q\{bo}. Based on Proposition 12 and the assumption, we obtain LCIE(D|P) >
LCIE(D|Q\{bo}) > 0. Based on Proposition 13, P is not a generalized GCS of S.
Consequently, @ is a granular reduct of S. O

Theorem 15. Let S = (O, A, R, D, J) be an inconsistent FDC. Then Core(S) =
{b € A|SIG(A|b) > 0}.

Proof. Suppose all granular reducts of S are {Q;|t € T'}. According to Definition 14,
it follows Core(S) = (,cp Q-

Firstly, we prove Core(S) C {b € A|SIG(A|b) > 0}. For any ¢ € Core(S),
we have ¢ € Q; for all ¢ € T due to Core(S) = Nier@:. If SIG(Alc) = 0, i.e.
LCIE(D|A\{c}) = LCIE(D|A), then LCIE(D|A\{c}) = 0 since LCIE(D|A) = 0.
By Proposition 13, A\{c} is a generalized GCS of S. Note that every generalized
GCS of S has at least one granular reduct of S. So, we can find @y, C A\{c} which
is a granular reduct of S. However, ¢ € Q;, C A\{c}, a contradiction. Therefore,
c € {b € A|SIG(A4]b) > 0}.

Secondly, we prove {b € A|SIG(A|b) > 0} C Core(S). For any ¢ € {b €
A|SIG(AJb) > 0}, we have SIG(A|c) > 0, i.e., LCIE(D|A\{c}) > 0. If ¢ ¢ Core(S),
then there exists a granular reduct @y, of S such that ¢ ¢ Qy,, yielding Q¢, € A\{c}.
From Proposition 12, we obtain LCIE(D|Qy,) > LCIE(D|A\{c}) > 0, which is in
contradiction with the known result that @, is a granular reduct of S. O

On the basis of the above discussion, we put forward a heuristic reduction
procedure for the acquisition of granular reducts from an inconsistent FDC. The
rationale of the forthcoming procedure is described below: For an inconsistent
FDC S = (O,A,R,D,J), it is known from Definition 14 that Core(S) of S is
included in every granular reduct of S. Therefore, in order to enhance the efficiency
of computing a granular reduct, we start with Core(S) to generate a granular
reduct. Furthermore, if LCTE(D|Core(A)) = 0, then by Proposition 13 Core(S) is a
generalized GCS of S; otherwise, we choose such an attribute ¢ from A\Core(S) that
can make the greatest contribution to (O, Core(S), RCore(S)’ D, J) with respect to

the remainder in A\Core(S), i.e.,
SIG(c|Core(S)) = maxbeA\Core(S){SIG(b\Core(S))},

and add the attribute ¢ into Core(S) since such an addition strategy is the quickest
way to drop LCIE(D|Core(S)) according to Definition 17. This process is repeated
until LCIE(D|Core(S)) = 0. That is, Core(S) is a generalized GCS of S. Further-
more, by Theorem 14, any attribute d with SIG(Core(S)|d) = 0 should be removed
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from Core(S) one by one and a granular reduct can be obtained. The above process
is represented by the following procedure.

Algorithm 1 Compute a reduct of an inconsistens FDC S = (0, A, R, D, J).

Ititialize Core(S) = ().
repeat

if SIG(A|b) > 0 then

Core(S) « Core(S) U {b}.

end if
until all elements of A have been checked
repeat

Choose such an attribute ¢ from A\Core(S) that satisfies

SIG(c|Core(S)) = mauxbeA\Core(s){SIG(b|Core(S))}7

and add c¢ into Core(S).
until LCIE(D|Core(S)) =0
repeat

if SIG(Core(S)|d) = 0 then

Core(S) « Core(S)\{d}

end if
until all elements of Core(S) have been checked
Output Core(S)

The time complexity of Algorithm 1 is O(|O|?(|A|® + |D|)).

Example 4. Let (O, A, R) and (O, D, J) be the formal contexts in Tabs. I and II,
respectively. Then S = (O, A, R, D, J) is a FDC. Since

’ 7 7 /
O5A A= {01705} a {05} = O5D Dv

it follows from Definitions 11 and 12 that S is an inconsistent FDC and the degree
of consistency is 0.8.

In what follows, we use Algorithm 1 to perform the simplification of S. The
significance of each attribute of A is as follows:

SIG(Alby) = % SIG(Alb;) = 0(i = 1,3,4,5,6,7).

Thus, according to Theorem 15, the core of S is Core(S) = {bg} and we can further
calculate

LCIE(D|Core(A)) = ;5 # 0.

Based on Theorem 14, more attributes need to be added into Core(S) to generate
a granular reduct of S. By Definition 17, the significance of each attribute in
{b1, b3, by, b5, bg, by} with respect to Core(S) is as follows:

3 SIG(by|Core(S)) = i,

SIG(b1|Core(S)) = %, SIG(bs|Core(S)) = R >
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3 3 4
% SIG(bg|Core(S)) = % SIG(b7|Core(S)) = %

We choose by and add it into Core(S), i.e., P = Core(S) U {bs} = {b2,b4}. Since

SIG(bs|Core(S)) =

LCIE(D|P) = LCIE(D|{bs, bs}) = % £0,

we still need to choose some attributes from {b1, b3, b5, bg, b7} and add them into
P for the computation of a granular reduct. According to Definition 17, we have

3 3
SIG(01|P) = o, SIG(|P) = o,

4
SIG(br|P) = 5z, SIG(bi|P) = 0(i = 5.6).

Therefore, we choose b; and add it into P, i.e., Q@ = P U {by} = {b2, by, b7}.
Then, we find that Q = {ba, by, b7} is a granular reduct of S since LCIE(D|Q) =0
and LCIE(D|Q\{b}) > 0 for any b € Q.

It should be pointed out that the degree of consistency of the reduced inconsis-
tent FDC (O, @, Rg, D, J) is still 0.8. In other words, although the attributes b1,
b3, bs and bg have been removed from A, the degree of consistency keeps invariant.

7. A brief summary

This paper has proposed the notions of information entropy in formal contexts and
conditional information entropy in FDCs with the help of information granules.
Also we have used them for the evaluation of the attribute significance. More-
over, an investigation has been made on the consistency measure of a FDC, and
a heuristic reduction technique has been developed for inconsistent FDCs. The
proposed reduction method has polynomial-time complexity and can be applicable
to consistent FDCs as well.

In fact, how can we evaluate the uncertainty of knowledge derived from a formal
context or a FDC is a key problem in FCA. However, many challenging problems
also appear: (1) Where is the uncertainty from? (2) Is the uncertainty from the data
itself [1,4,16,32-34] or the instability of concepts [48]7 (3) How can we measure the
uncertainty objectively? Information entropy and conditional information entropy
may provide some alternative ways to measure the uncertainty in formal concept
analysis.
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