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Abstract: The fuzzy morphological associative memories (FMAM) have many
attractive advantages, but their recall effects for hetero associative memories are
poor. This shortcoming impedes the application of hetero-FMAM. Aiming at the
problem, and inspired by the unified framework of morphological associative mem-
ories, a new method called no rounding reverse fuzzy morphological associative
memories (NR2FMAM) is presented by the paper. The value of the new method
lies in hetero associative memories. Analyses and experiments show that, it has
significantly affected hetero associative morphological memories and with a cer-
tain noise robustness. In some cases, it can work more effectively with greater
correct recall rate than FMAM. The paper analyzes the reason that NR2FMAM
is sometimes better than FMAM, and thinks that no rounding neural computing
is one of passable reasons. At the same time, the condition that the recall rate
of NR2FMAM is greater than FMAM is given by the corresponding theorem in
this paper. The NR2FMAM not only enriched the theory of the morphological
associative mnemonic framework, but also helps contribute to the solution of the
hetero associative mnemonic problem which is incomplete. At the same time, it
can serve as a new identification technology in social networks.
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1. Introduction

Associative memories (AM) are one of the functions of the human brain, also the
source of thinking and innovation. Using computers to realize the simulations for
associative memories is one of our pursuits of goals. In 1982, Hopfield proposed the
famous Hopfield neural network [9], and opened a new era of simulating associa-
tive memories. However, the Hopfield network requires orthogonal input patterns.
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Meanwhile, the convergence problem with the network exists. Besides,its storage
capacity is limited, no more than 15% of the total network neurons [8]. This means
that a large number of neurons in the network are wasted!

Hopfield network, radial basis function network, probabilistic neural network
[10, 12], and so on are all belonged to traditional artificial neural networks. Al-
though they have many applications in pattern recognition and picture process-
ing [11,13,25], classification [14], prediction, etc., their limitations are also obvious,
for example, the “black box”, longer training time, and poorer generalization abil-
ity.

Morphological neural networks (MNN) turned over a new leaf for the develop-
ment of artificial associative memories. In 1998, Ritter et al. realized morphological
associative memories (MAM) by using morphological neural networks [17]. After
that, people presented some of the other theories and methods of morphological
associative memories, for example, morphological bidirectional associative memo-
ries (MBAM) [16], complex morphological associative memories (CMAM) [1], and
so on. Wang et al. treated input vectors and output vectors as fuzzy sets, there-
fore they presented the fuzzy morphological associative memories (FMAM) [24],
enhanced FMAM (EFMAM) based on empirical kernel map [22] and economized
EFMAM (E2FMAM) [23]. Feng et al. proposed the unified framework of morpho-
logical associative memories in complex domain (UFMAMCD) [3], and the MAM
based on four-dimensional storage (MAM-FDS) [7], and the Logarithmic and ex-
ponential MAM (LEMAM) [6].

Morphological associative memories have many advantages. In contrast to tra-
ditional associative memories, morphological associative memories converge in one
step. Thus, convergence problems do not exist. Morphological analogues to the
Hopfield network not only proved to be far more robust in the presence of noise but
have also unlimited storage capacity for perfect inputs. Wang et al. also pointed
out that morphological auto-associative memories (auto-MAM) and fuzzy morpho-
logical auto-associative memories (auto-FMAM) have many attractive advantages
such as unlimited storage capacity, one-shot recall speed and good noise-tolerance
to single erosive or dilative noise. Morphological associative memories have many
applications in pattern recognition [19, 21], image processing [2, 5], classification
and prediction [20], psychology research [4], and so on.

However, the researches and applications of morphological associative memories
mainly concentrated on the auto-associative memories, but the studies and appli-
cations for hetero-associative memories were relatively less. The main reason is
that hetero-associative morphological memories (HAMM) are incomplete, namely,
they do not guarantee perfect recall memories, even if their inputs are complete.
We call this problem“imperfectness of HAMM”. This problem does not exist for
auto-associative morphological memories (AAMM). In the case of complete inputs,
auto-associative morphological memories will ensure complete recall memories. Al-
though the HAMM based on four-dimensional storage can guarantee perfect recall
memories for hetero-associative morphological memories in the case of complete in-
puts, this method obviously increases some overhead of time and space. Under the
circumstances, it is not suitable for real-time processing and large-scale problems.
Therefore, it is necessary to develop some different methods of MAM in order to
improve the performance of HAMM.
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In this paper, aiming at the shortcoming of HAMM, we put forward a new
method of MAM, called no rounding reverse FMAM (NR2FMAM). It is formed
on the basis of UFMAMCD. Firstly, it was inspired by UFMAMCD and secondly
described by the symbol system of UFMAMCD. It should be pointed out that
NR2FMAM and FMAM is different. FMAM is a kind of morphological associative
memories “from division to multiplication”, while NR2FMAM a kind of morpho-
logical associative memories “from multiplication to division”. This method of
NR2FMAM looks simple, but sometimes will bring amazing changes. Experiments
show that NR2FMAM is a very useful morphological associative mnemonic method.
In many cases, it can get better effects of HAMM than FMAM. At the same time,
our analysis shows that it can serve as a new identification technology in social
networks.

The rest of this paper is organized as follows. A brief introduction to UFMAMCD

is given in Section 2. Our NR2FMAM is detailed in Section 3. Section 4 is the
performance of NR2FMAM and its comparison with FMAM. This part presents
the experimental results of our method. Experiments show that, in some cases, the
NR2FMAM achieved better effects on hetero-associative memories. Sometimes, its
correct recall rate even approached 100%! Why is this? Why can a simple change
bring us the good results? And under what conditions, NR2FMAM can obtain
better results of hetero-associative memories than FMAM? These problems are
discussed and analyzed in Section 5. The conclusions are given in Section 6.

2. UFMAMCD

It can bring us some inspirations to know UFMAMCD from the following five
aspects.

2.1 Computational basis of UFMAMCD

The basic computation occurring in UFMAMCD is based on the algebraic lattice
structure (U,∧,∨,#), where the symbol U denotes a set or domain, such as U =
R(R = (−∞,+∞)),U = R+(R+ = (0,+∞)), or U = C(C = {c |c = a ± bi, a and
b ∈ R, i =

√
−1}); the symbols ∧ and ∨ denote the binary operations of minimum

and maximum, respectively. The symbol # represents the closed operation on U.
For example, # can be arithmetical operator + or −, which is closed operation on
R. Also, it can be · (multiplication) or / (division), which is closed operation on R+.
# can even be beyond operator, such as the logarithmic operator or exponential
operator, which is closed operation on R+ if we constrain that logarithmic base
and logarithmic antilogarithm are all greater than 1. We also use the symbol 	 to
denote the inverse operation of #. Of course, # is also the inverse operation of 	.

2.2 Conditions accepted by UFMAMCD

An object in UFMAMCD satisfies the following conditions:

(1) Ordered: if a, b ∈ U, then a 6 b or b 6 a;

(2) Closed: if a, b ∈ U and a# b = r, then r∈ U;
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(3) Morphological: adopting morphological paradigm and operators in UFMAMCD;

(4) Valid: following the right algorithms.

2.3 Reciprocal inverse operations in UFMAMCD

UFMAMCD pointed out that in morphological associative memories, there are two
kinds of reciprocal inverse operations, namely,

(1) Reciprocal inverse operations ∧ and ∨. They are the minimum operator
and the maximum operator, respectively, and also the basic erosion and dilation
operations in mathematical morphology, respectively.

(2) Reciprocal inverse operators # and 	. They are two abstract reciprocal
inverse operators. To be specific, they can be + and −, also can be · and /.
Of course, if the conditions accepted by UFMAMCD are satisfied, we do not rule
out the possibility that other reciprocal inverse operators are used. UFMAMCD

pointed out that among various kinds of morphological associative memories, an
obvious common characteristic is that if an operator and an operation are used
in the process of memories, then the corresponding inverse operator and inverse
operation are must be used in the process of associative recall. In the memory phase
of FMAM, for example, the memory matrix AXY for the input pattern matrix X
and the output pattern matrix Y is computed by using operator / and operation
∧; or the memory matrix BXY for X and Y is computed by using operator /
and operation ∨. But in the recall phase of FMAM, the Y is computed by using
operator · and operation ∨ for AXY and X; or the Y is computed by using operator
· and operation ∧ for BXY and X.

2.4 Symbols in UFMAMCD

In UFMAMCD, the abstract operator # or	, and the operation ∧ or ∨ fuse together
and transform into an organic whole, thus form the abstract morphological memory

operator
#
∧ or

#
∨, and the corresponding abstract morphological recall operator

	
∨

or
	
∧. For arithmetic operations, we can construct eight specific morphological

operators. They are
+
∧,
−
∧,
·
∧,

/
∧,

+
∨,
−
∨,
·
∨ and

/
∨, respectively.

2.5 Memory and recall in UFMAMCD

Let (x1,y1), . . . , (xk,yk) be k vector pairs with(xξ1, . . . , x
ξ
n) ∈ Rn and (yξ1, . . . , y

ξ
n) ∈

Rm for ξ = 1, . . . , k. For a given set of pattern associations (xξ,yξ) : ξ = 1, . . . , k
we define a pair of associated pattern matrices (X,Y), where X=(x1, . . . ,xk) and
Y=(y1, . . . ,yk). Thus, X is of dimension n×k and Y is of dimension m×k. With
each pair of matrices (X,Y) we define two natural morphological m× n memories
WXY and MXY as follows.

Definition 1. Morphological
#
∧-memory WXY is defined by

WXY = Y
#
∧X′ =

k∧
ξ=1

[
yξ

#
∧(xξ)′

]
=

k∧
ξ=1

 yξ1 # xξ1 . . . yξ1 # xξn
...

. . .
...

yξm # xξ1 . . . yξm # xξn

 . (1)
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Its arbitrary element wij is given by

wij =

k∧
ξ=1

(yξi # xξj). (2)

Definition 2. Morphological
#
∨-memory MXY is defined by

MXY = Y
#
∨X′ =

k∨
ξ=1

[
yξ

#
∨(xξ)′

]
=

k∨
ξ=1

 yξ1 # xξ1 . . . yξ1 # xξn
...

. . .
...

yξm # xξ1 . . . yξm # xξn

 . (3)

Its arbitrary element mij is given by

mij =

k∨
ξ=1

(yξi # xξj). (4)

Obviously, when k = 1 and (X,Y) = (xξ,yξ), we have

WXY = MXY = Y
#
∧X′ = Y

#
∨X′ =

 yξ1 # xξ1 . . . yξ1 # xξn
...

. . .
...

yξm # xξ1 . . . yξm # xξn

 . (5)

Under the stimulus of input pattern xγ , the morphological associative memory
network generates association and recall. UFMAMCD also defines two abstract
morphology recall paradigms with the recall pattern y.

Definition 3. Morphological
	
∨-recall paradigm is defined by

y = WXY
	
∨xγ =


∨n
i=1(w1i 	 xγi )

...∨n
i=1(wmi 	 xγi )

 . (6)

Definition 4. Morphological
	
∧-recall paradigm is defined by

y = MXY
	
∧xγ =


∧n
i=1(m1i 	 xγi )

...∧n
i=1(mmi 	 xγi )

 . (7)

Distinctly, if (X,Y) = (xξ,yξ), namely (X,Y) has only a pair of vectors,then

y =WXY
	
∨xξ = yξ

#
∧(xξ)′

	
∨xξ =


∨n
i=1(yξ1 # xξi 	 xξi )

...∨n
i=1(yξm # xξi 	 xξi )

 = yξ (8)

or

y = MXY
	
∧xξ = yξ

#
∨(xξ)′

	
∧xξ =


∧n
i=1(yξ1 # xξi 	 xξi )

...∧n
i=1(yξm # xξi 	 xξi )

 = yξ. (9)
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3. No rounding reverse FMAM

We now introduce our no rounding reverse FMAM (NR2FMAM).

3.1 Computational basis of NR2FMAM

In the unified framework of morphological associative memories, for the abstract
algebraic lattice structure (U,∧,∨,#), if we take U = R+,# = · (accordingly,
	 = /), then the computational basis of NR2FMAM is just established.

3.2 Memory of NR2FMAM

Definition 5. In NR2FMAM, the
·
∧ Memory denoted by CXY is defined by

CXY = Y
·
∧ X′ =

k∧
ξ=1

[yξ
·
∧ (xξ)′]. (10)

Its arbitrary element cij is given by

cij =

k∧
ξ=1

(yξi · x
ξ
j). (11)

Definition 6. In NR2FMAM, the
·
∨ Memory denoted by DXY is defined by

DXY = Y
·
∨ X′ =

k∨
ξ=1

[yξ
·
∨(xξ)′]. (12)

Its arbitrary element dij is given by

dij =

k∨
ξ=1

(yξi · x
ξ
j ). (13)

3.3 Recall of NR2FMAM

NR2FMAM takes into the association and recall process with the stimulation of
input pattern xγ . The recall or output pattern can be obtained by replacing WXY

with CXY and replacing 	 with / in the formula (6), or by replacing MXY with
DXY and replacing 	 with / in the formula (7). The two types of recall are called
/

∨-recall and
/

∧-recall by us, respectively. Their definitions are as follows.

Definition 7. In NR2FMAM, the
/
∨-recall is defined by

CXY
/
∨xγ =


∨n
i=1(c1i/xγi )

...∨n
i=1(cmi/xγi )

 (14)
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Definition 8. In NR2FMAM, the
/
∧-recall is defined by

DXY
/
∧xγ =


∧n
i=1(d1i/xγi )

...∧n
i=1(dmi/xγi )

 (15)

4. Performance of NR2FMAM and its comparison
with FMAM

Theorem 1. CXY is a
·
∧-perfect memory for (X,Y), if and only if for each ξ =

1, . . . , k, each row of the matrix [yξ
·
∧ (xξ)′]−CXY contains a zero entry.

Proof. CXY is a
·
∧-perfect memory for (X,Y),∀ξ = 1, . . . , k and ∀i = 1, . . . ,m

⇔ (CXY
/
∨xξ)i = yξi ⇔ yξi − (CXY

/
∨xξ)i = 0

⇔ yξi −
n∨
j=1

(cij/x
ξ
j) = 0⇔

n∧
j=1

[
yξi − (cij/x

ξ
j)
]

= 0

⇔
n∧
j=1

(yξi · x
ξ
j − cij) = 0⇔

n∧
j=1

[(
yξ
·
∧(xξ)′

)
−CXY

]
ij

= 0. (16)

This last set of equations is true if and only if for each ξ = 1, . . . , k, and each integer

i = 1, . . . ,m, each column entry of the ith row of the matrix [yξ
·
∧ (xξ)′] − CXY

contains at least one zero entry.

Theorem 2. DXY is a
∨̇

-perfect memory for (X,Y), if and only if for each

ξ = 1, . . . , k,each row of the matrix DXY − [yξ
∨̇

(xξ)′] contains a zero entry.

Proof. DXY is a
∨̇

-perfect memory for (X,Y),∀ξ = 1, . . . , k and ∀i = 1, . . . ,m

⇔ (DXY
/
∧xξ)i = yξi ⇔ (DXY

/
∧xξ)i − yξi = 0

⇔
n∧
j=1

(dij/x
ξ
j)− y

ξ
i = 0⇔

n∧
j=1

(dij/x
ξ
j − y

ξ
i ) = 0

⇔
n∧
j=1

(dij − yξi · x
ξ
j) = 0⇔

n∧
j=1

[
DXY −

(
yξ
·
∨ (xξ)′

)]
ij

= 0. (17)

This last set of equations is true if and only if for each ξ = 1, . . . , k, and each integer

i = 1, . . . , m, each column entry of the ith row of the matrix DXY − [yξ
·
∨ (xξ)′]

contains at least one zero entry.

The two theorems show that sometimes CXY or DXY of NR2FMAM can realize
perfect associative memories for (X,Y) when the condition in Theorem 1 or in
Theorem 2 is satisfied. Therefore, we can utilize them in order to obtain much
better effectiveness for hetero associative memories.
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Example 1. Assume that U = R+,# = ·,	 = /, and

X =

 1 2 2
4 2 2
4 2 4

 , Y =

 1 2 1
2 2 2
1 1 1

 . (18)

According to the method of FMAM,the memories AXY and BXY are given by

AXY = Y
/
∧X′ =

 0.5 0.25 0.25
1 0.5 0.5
0.5 0.25 0.25

 , BXY = Y
/
∨X′ =

 1 1 1
2 1 1
1 0.5 0.5

 . (19)

Accordingly, their recall memories are

AXY
·
∨X =

 1 1 1
2 2 2
1 1 1

 6= Y, BXY
/
∧X =

 1 2 2
2 2 2
1 1 1

 6= Y. (20)

Both AXY and BXY can not do the perfect recall memories for (X,Y).
According to the method of MAM,the memories WXY and MXY of MAM are

given by

WXY = Y
−
∧X′ =

 −1 −3 −3
0 −2 −2
−1 −3 −3

 , MXY = Y
−
∨X′ =

 0 0 0
1 0 0
0 −1 −1

 . (21)

Accordingly, their recall memories are

WXY
+
∨X =

 1 1 1
2 2 2
1 1 1

 6= Y, MXY
+
∧X =

 1 2 2
2 2 2
1 1 1

 6= Y. (22)

Both WXY and MXY can’t do the perfect recall memories for (X,Y).
But according to NR2FMAM method, the memories CXY and DXY, as well

as the according recall outputs are respectively given by

CXY = Y
·
∧X′ =

 1 2 4
2 4 4
1 2 2

 ,CXY
/
∨X =

 1 2 1
2 2 2
1 1 1

 = Y. (23)

DXY = Y
·
∨X′ =

 4 4 4
4 8 8
2 4 4

 ,DXY
/
∧X =

 1 2 1
2 2 2
1 1 1

 = Y. (24)

The result shows that both CXY and DXY are perfect recall memories for
(X,Y).

Our NR2FMAM also has a certain ability to resist noise. CXY resists dila-
tive noise, and DXY erosive noise. The following theorem shows this ability of
NR2FMAM, and simultaneously gives the boundary conditions of noise.
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Theorem 3. Let x̃γ denote the distorted version of the pattern xγ , γ ∈ {1, . . . , k}.
Then CXY

/
∨ x̃γ = yγ , if and only if

x̃γj ≥ x
γ
j ∧

m∨
i=1

∧
ξ 6=γ

(yξi /y
γ
i · x

ξ
j)

 ∀j = 1, . . . , n (25)

and for each row index i ∈ {1, . . . ,m} there exists a column index ji ∈ {1, . . . , n}
such that

x̃γji = xγji ∧

∧
ξ 6=γ

(yξi /y
γ
i · x

ξ
ji

)

∀j = 1, . . . , n. (26)

Proof. 1) Suppose that x̃γ denotes a distorted version of xγ and that for γ =

1, . . . , k,CXY
/
∨ x̃γ= yγ . Then

yγi =
(
CXY

/
∨ x̃γ

)
i

=

n∨
l=1

(cil/x̃
γ
l ) ≥ cij/x̃γj ∀i = 1, . . . ,m and ∀j = 1, . . . , n. (27)

Therefore

x̃γj ≥ cij/y
γ
i ∀i = 1, . . . ,m and ∀j = 1, . . . , n

⇔ x̃γj ≥
m∨
i=1

(cij/y
γ
i ) ∀j = 1, . . . , n

⇔ x̃γj ≥
m∨
i=1

 k∧
ξ=1

(yξi · x
ξ
j)/y

γ
i

 ∀j = 1, . . . , n

⇔ x̃γj ≥
m∨
i=1

∧
ξ 6=γ

(yξi · x
ξ
j/y

γ
i ) ∧ xγj

 ∀j = 1, . . . , n

⇔ x̃γj ≥ x
γ
j ∧

m∨
i=1

∧
ξ 6=γ

(yξi /y
γ
i · x

ξ
j)

 ∀j = 1, . . . , n.

(28)

This shows that the inequalities given by (25) are satisfied. It also follows that

x̃γj ≥ x
γ
j ∧

∧
ξ 6=γ

(yξi /y
γ
i · x

ξ
j)

∀j = 1, . . . , n and ∀i = 1, . . . ,m. (29)

Suppose that the set of inequalities given by (29) does not contain an equality for
i = 1, . . . ,m, namely, assume that there exists a row index i ∈ {1, . . . ,m}, such that

x̃γj > xγj ∧

∧
ξ 6=γ

(yξi /y
γ
i · x

ξ
j)

∀j = 1, . . . , n. (30)
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Then

(
CXY

/
∨ x̃γ

)
i

=

n∨
j=1

(
cij/x̃

γ
j

)
<

n∨
j=1

cij/
xγj ∧ ∧

ξ 6=γ

(
yξi · x

ξ
j/y

γ
i

) =

=

n∨
j=1

cij/
 k∧
ξ=1

(
yξi · x

ξ
j/y

γ
i

) =

n∨
j=1

cij · yγi / k∧
ξ=1

(
yξi · x

ξ
j

) =

=

n∨
j=1

[cij · yγi /cij ] = yγi . (31)

Therefore, CXY
/
∨ x̃γ < yγ which contradicts the hypothesis that CXY

/
∨ x̃γ = yγ .

It follows that for each row index i there must exist a column index ji satisfying
(26).

2) Suppose that

x̃γj ≥ x
γ
j ∧

m∨
i=1

∧
ξ 6=γ

(yξi /y
γ
i · x

ξ
j)

 ∀j = 1, . . . , n (32)

By the first part of our proof, this inequality is true if and only if

x̃γj ≥ cij/y
γ
i ∀i = 1, . . . ,m and ∀j = 1, . . . , n (33)

or, equivalently, if and only if

cij/x̃
γ
j ≤ y

γ
i ∀i = 1, . . . ,m and ∀j = 1, . . . , n

⇔
n∨
j=1

(
cij/x̃

γ
j

)
≤ yγi ∀i = 1, . . . ,m

⇔ (CXY
/
∨ x̃γ)i ≤ yγi ∀i = 1, . . . ,m

(34)

which implies that CXY
/
∨ x̃γ ≤ yγ , ∀γ = 1, . . . , k. Thus, if we can show that

CXY
/
∨ x̃γ ≥ yγ , ∀γ = 1, . . . , k, then we must improve that CXY

/

∨ x̃γ = yγ , ∀γ =
1, . . . , k. Let γ ∈ {1, . . . , k} and i ∈ {1, . . . ,m} be arbitrarily chosen. Then

(
CXY

/
∨ x̃γ

)
i

=

n∨
j=1

(cij/x̃
γ
j ) ≥ ciji/x̃

γ
ji

= ciji/

xγji ∧ ∧
ξ 6=γ

(
yξi /y

γ
i · x

ξ
ji

)
= ciji/

 k∧
ξ=1

(
yξi /y

γ
i · x

ξ
ji

) = ciji · y
γ
i /

 k∧
ξ=1

(
yξi · x

ξ
ji

)
= ciji · y

γ
i /ciji = yγi . (35)

This shows that CXY
/
∨ x̃γ ≥ yγ .
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Theorem 4. Let x̃ γ denote the distorted version of the pattern xγ . Then DXY
/
∧

x̃γ = yγ ,if and only if

x̃γj ≤ x
γ
j ∨

m∧
i=1

∨
ξ 6=γ

(yξi /y
γ
i · x

ξ
j)

 ∀j = 1, . . . , n (36)

and for each row index i ∈ {1, . . . ,m} there exists a column index ji ∈ {1, . . . , n}
such that

x̃γji = xγji ∨

∨
ξ 6=γ

(yξi /y
γ
i · x

ξ
ji

)

 . (37)

Proof. Because the proof of Theorem 4 is similar to the proof of Theorem 3, so it
is omitted here.

Example 2. Let

X =

 1 2 2
4 2 2
4 2 4

 , Y =

 2 4 2
4 4 4
2 2 2

 , X̄ =

 1 2 1
2 2 2
4 2 4

 , (38)

X̃ =

 0.1 2 1
0.001 0.001 0.002
4 0.002 4

, X̂ =

 100 200 100
2 2000 2
4000 2 40

 , (39)

where X̄, X̃ and X̂ denote a distorted version of X, respectively. The recall results
of WXY and MXY of MAM, AXY and BXY of FMAM, and CXY and DXY of
NR2FMAM in the Example 2 are given in the Tab. I. From the table we can see
that the recall result of MAM is the worst. Its correct recall rate in the Example 2
is zero. The best recall result belongs to NR2FMAM. At the same time, the CXY

of NR2FMAM has a good ability to deal with dilative noise when the dilative input
is presented to NR2FMAM; and the DXY has a good ability to deal with erosive
noise when the erosive input is presented to NR2FMAM.

Input X X̄ X̃ X̂

Recall of WXY 6= Y 6= Y 6= Y 6= Y
Recall of MXY 6= Y 6= Y 6= Y 6= Y
Recall of AXY 6= Y 6= Y 6= Y 6= Y
Recall of BXY 6= Y = Y 6= Y 6= Y
Recall of CXY = Y = Y 6= Y = Y
Recall of DXY = Y = Y = Y 6= Y

Tab. I The recall results of MAM, FMAM and NR2FMAM in the Example 2.
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Example 3. In the experiment, X = {B, C, F, H, S, W}, Y = {AI, Child, Dog,
Flower, Illusion, Sheep}. Each character in X is a 35×35 Boolean image, and each
image in Y is a 50 × 50 gray image (as shown in Fig. 1, where the top row is the
input patterns and the bottom row the target patterns). Because of the domain
U > 0 for FMAM and NR2FMAM, in order to avoid zero value elements, we can
make an appropriate processing, such as each zero element is set to a small positive
number.

Fig. 1 Original associative memory patterns.

Experiment shows that for FMAM, both AXY and BXY cannot perfectly recall
memories with the worst outcome, i.e. zero recall rate (see Fig. 2,where the top
row shows the recall patterns of the AXY and the bottom row the recall patterns
of the BXY). The result comes from strict procedure analysis, rather than only
by visual inspection. The analysis standard is that a recall image is incomplete as
long as a pixel is different from the pixel of original image.

Fig. 2 Experimental result of FMAM

The experimental result of MAM (or RMAM) is shown in Fig. 3, where the top
row shows the recall patterns of the WXY and the bottom row the recall patterns
of the MXY. It shows that the correct recall rate of WXY was 17% (only Child
can be completely recalled), and the correct recall rate of MXY was 83% (only the
AI cannot be completely recalled).

Fig. 3 Experimental result of MAM.

The experimental result of NR2FMAM is shown in Fig. 4: the top row is the recall
patterns of the CXY and the bottom row the recall patterns of the DXY. It shows
that the correct recall rate of DXY was 17% (only Child can be completely recalled).
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But amazingly, CXY can achieve perfect recall memories with correct rate of 100%!
Experimental result is encouraging! Our experiments demonstrate that in quite a
number of cases NR2FMAM has better effect than FMAM and MAM on hetero
associative memories. Therefore, the method is a good complement to FMAM and
MAM.

Fig. 4 Experimental result of NR2FMAM.

5. Discussions

Why can NR2FMAM in many cases get better results than FMAM? What is its
application in the social network? We discussed these questions from the following
three aspects.

5.1 No rounding

We think that the different operation order and no rounding in memory and recall
may be one of possible reasons. In theory, a×b/b = a, and a/b×b = a, i.e. a×b/b =
a/b × b, but in practice and for computers, it may not necessarily turn out that
way. In the case of no overflow and operating from left to right, a× b/b = a, which
operation result is no problem. This operation is from multiplication to division
(FMTD) like in NR2FMAM. But that computing result of a/b × b is uncertain.
We know that computing accuracy of a computer is limited by its word length. In
the case of indivisible, the operation of the computer may bring us the error, such
that a/b × b 6= a or a/b × b ≈ a because of the round off. This operation is from
division to multiplication (FDTM) with round off. The operation in FMAM just
is of FDTM. Therefore, for hetero associative morphological memories, we more
inclined to adopt NR2FMAM method. Of course, this method does not preclude
FMAM method. In general, they should be complementary.

5.2 The conditions which NR2FMAM is better than FMAM

Let (x1,y1), . . . , (xk,yk) be k pairs of vector patterns for associative memories,
X = (x1, . . . ,xk) the input pattern matrix, and Y = (y1, . . . ,yk) the output
pattern matrix. Assume that RR is the correct recall rate of NR2FMAM, and RF

the correct recall rate of FMAM. Then, what are the conditions of that RR > RF ?
The next theorem answers this question.
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Theorem 5. RR > RF if and only if the following conditions are satisfied:

1) In k pairs of vector patterns, there exist m pairs of vector patterns which sat-
isfy that for each ξi ∈ {1, . . . , k} and i = 1, . . . ,m, each row of the matrix [yξi
·
∧ (xξi)′]−CXY contains a zero entry, or each row of the matrix DXY − [yξi
·
∨ (xξi)′] contains a zero entry.

2) In k pairs of vector patterns, there exist n pairs of vector patterns which sat-
isfy that for each ξj ∈ {1, . . . , k} and j = 1, . . . , n, each row of the matrix [yξj
/
∧(xξj )′]−AXY contains a zero entry, or each row of the matrix BXY − [yξj
/
∨ (xξj )′] contains a zero entry.

3) m > n.

Proof. 1) Assume that m > n. According to Theorem 1, we know that m
pairs of vectors in k pairs of vectors satisfy that for each ξi ∈ {1, . . . , k} and

i = 1, . . . ,m, each row of the matrix DXY − [yξi
·
∨ (xξi)′] contains a zero

entry or each row of the matrix [yξi
·
∧ (xξi)′] − CXY contains a zero entry

means that m pairs of vectors can be correctly associated and recalled, and
the recall rate RR = m/k; in addition, according to FMAM, we know that
n pairs of vectors in k pairs of vectors satisfy that for each ξj ∈ {1, . . . , k}
and j = 1, . . . , n, each row of the matrix [yξj

/
∧ (xξj )′] − AXY contains a

zero entry or each row of the matrix BXY− [yξj
/
∨(xξj )′] contains a zero entry

means that n pairs of vectors can be correctly associated and recalled, and
the recall rate RF = n/k. Since m > n, we have that RR > RF .

2) Assume that RR > RF , might as well set RR = m/k,RF = n/k, and m >
n. It means that m pairs of vectors in k pairs of vectors can be correctly
associated and recalled by NR2FMAM and n pairs of vectors in k pairs of
vectors can be correctly associated and recalled by FMAM. According to
the Theorem 1 we know that m pairs of vectors satisfy that for each ξi ∈
{1, . . . , k} and i = 1, . . . ,m, each row of the matrix [yξi

·
∧ (xξi)′] − CXY

contains a zero entry or each row of the matrix DXY− [yξi
·
∨ (xξi)′] contains

a zero entry. In addition, according to FMAM, it is certain that n pairs of
vectors satisfy that for each ξj ∈ {1, . . . , k} and j = 1, . . . , n, each row of the

matrix [yξj
/
∧ (xξj )′]−AXY contains a zero entry or each row of the matrix

BXY − [yξj
/
∨ (xξj )′] contains a zero entry.

5.3 Its application in the social network

We should point out that NR2FMAM has these functions of pattern recognition,
clustering, classification and prediction. If Y = X, NR2FMAM is the auto as-
sociation from X to X. Then take advantage of its anti-noise function, we can
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realize pattern recognition and clustering analysis. Next, we can realize the clas-
sification and prediction by using the hetero associative from X to Y. In a social
network [15, 18, 26], the identification of a social group and the group leader’s
recognition are an important research content, and this recognition depends on the
clustering and classification techniques. In the present, improving the identification
effect of community organizations and community leaders is still needed [27, 28].
Obviously, NR2FMAM can serve as a new identification technology in social net-
works, and we should study and use it deeply.

6. Conclusion

In this paper, aiming at the shortcomings of hetero associative morphological
memories, we propose the NR2FMAM method. Theoretical analysis shows that
NR2FMAM under certain conditions can realize perfect recall memories, at the
same time with a certain noise robustness. Experiments have demonstrated that,
in many cases, NR2FMAM has better effects of hetero associative morphological
memories than FMAM. Why is this? The paper has some discussions for this prob-
lem. No rounding is one of those possible reasons that result in higher recall rate
than FMAM. The conditions of RR > RF , namely the conditions of NR2FMAM is
better than FMAM are given by Theorem 5. For hetero associative morphological
memories, we tend to use NR2FMAM. Of course, it should be pointed out that
NR2FMAM and FMAM are complementary, not exclusive. Anyway, NR2FMAM is
a beneficial way for HAMM. We believe that combining NR2FMAM with FMAM
can significantly improve the effectiveness of HAMM, and solve more problems
in practical applications. In the social network, we can find the application of
NR2FMAM. Of course, this problem needs to be further studied in the future.
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