USING THE LISP-MINER SYSTEM FOR
CREDIT RISK ASSESSMENT

P. Berka*

Abstract: Credit risk assessment, credit scoring and loan applications approval
are one of the typical tasks that can be performed using machine learning or data
mining techniques. From this viewpoint, loan applications evaluation is a clas-
sification task, in which the final decision can be either a crisp yes/no decision
about the loan or a numeric score expressing the financial standing of the appli-
cant. The knowledge to be used is inferred from data about past decisions. These
data usually consist of both socio-demographic and economic characteristics of the
applicant (e.g., age, income, and deposit), the characteristics of the loan, and the
loan approval decision. A number of machine learning algorithms can be used for
this purpose. In this paper we show how this task can be performed using the LISp-
Miner system, a tool that is under development at the University of Economics,
Prague. LISp-Miner is primarily focused on mining for various types of association
rules, but unlike “classical” association rules proposed by Agrawal, LISp-Miner in-
troduces a greater variety of different types of relations between the left-hand and
right-hand sides of a rule. Two other procedures that can be used for classification
task are implemented in LISp-Miner as well. We describe the 4ft-Miner and KEX
procedures and show how they can be used to analyze data related to loan appli-
cations. We also compare the results obtained using the presented algorithms with
results from standard rule-learning methods.

Key words: data mining, decision rules, association rules, credit scoring

Received: May 4, 2015 DOI: 10.14311/NNW.2016.26.029
Revised and accepted: October 26, 2016

1. Introduction

Credit risk refers to the risk that a borrower will default on any type of debt by
failing to make required payments. To reduce the lender’s credit risk, the lender
may perform a credit check on the prospective borrower. The granting of credit
then depends on the confidence the lender has in the borrower’s credit worthi-
ness. Most banks or lenders use some credit-scoring models (credit scorecards)
to rank potential and existing customers according to their risk. One example
is the FICO (Fair, Isaac and Company) score, the most popular credit score in
the US. The FICO score is derived from positive and negative information in the

*Petr Berka, Dept. of Information and Knowledge Engineering, University of Economics,
W. Churchill Sq. 4, CZ-130 67 Prague, Czech Republic, E-mail: berka@vse.cz

©CTU FTS 2016 497

Neural Network World 5/2016, 497-518

credit record of a prospective borrower. This score considers the payment his-
tory (e.g., bankruptcy, late payments, or foreclosures), amounts owed (various info
about debt), length of credit history (e.g., age of accounts), new credit (e.g., type
of new credit) and types of credit used (e.g., consumer finance or mortgage). Each
particular characteristic within every category is evaluated and added (in the form
of a mathematical equation) to contribute to the final score. The five categories’
proportions in the final score are: 35% takes the payment history, 30 % takes the
amounts owed, 15 % takes the length of credit history, 10% takes the new credit and
10 % takes the types of credit used. The FICO score ranges from 300 to 850. The
higher the score, the lower the risk. Another example is the Vantage score, which
evaluates the loan applicant according to six categories: payment history (this cat-
egory makes up 32 % of the final score), usage of the available credit (23 %), total
debt (15%), past credits and credit history (13 %), number of past loan applica-
tions (10 %) and amount of credits on credit cards (7 %), The Vintage score ranges
from 501 to 990. Again, the higher the score, the better the rating. There are also
some other scores that are used to evaluate the credit worthiness of a prospective
loan applicant (see Tab. 1).

The main drawback of using these scores is the necessity to have available
values for all input variables. Without this information, the weighted sum, that
corresponds to a score cannot be computed. It is also reported, that the FICO
score is not a good predictor in classifying between good loan applicants (who
repay their loan) and bad applicants (who do not), as the average difference of
FICO score between these two groups is very small.

Grade FICO Vantage PLUS TransUnion CreditXpert

A 750-850 901-990 740-830 845-925 800-900
B 700-749 801-900 695-739 765-844 740-799
C 650-699 701-800 655—694 685-764 670-739
D 600-649 601-700 590-654 605684 610-669
F 300-599 501-600 300-589 150-604 300-609

Tab. I Different credit scores (credit.com).

A credit score can be used as-is, can be turned into a grade (A-F) or fuzzy
concepts (e.g., very poor, poor, fair, good, and excellent). Regardless of this rep-
resentation, the final decision the bank makes is whether or not to approve a loan,
i.e., to distinguish between “good” or “bad” applications. From this viewpoint,
loan applications evaluation can be understood as a binary classification task. The
knowledge to be used can be inferred from data about past decisions. These data
usually consist off both socio-demographic and economic characteristics of the ap-
plicant (e.g., sex, income, and deposit), the characteristics of the loan, and the loan
approval decision.

A number of machine learning algorithms can be used for this purpose. In this
paper we show how this task can be solved using the LISp-Miner system, a tool
that is under development at the University of Economics, Prague. The rest of the
paper is organized as follows: Section 2 reviews related work on applying machine

498

Berka P.: Using the LISp-Miner system for credit risk assessment

learning algorithms to credit risk assessment; Section 3 presents the LISp-Miner
system; Section 4 describes the experiments carried out on data from the loan
applications domain, and Section 5 concludes the paper.

2. Related work

Credit risk assessment, credit scoring and loan applications approvals are typical
tasks that can be performed using machine learning or data mining techniques.
Hence a lot of research has been carried out in this area. Chen et al. [7] use a
two-stage approach composed of k-means clustering and support vector machines
(SVM) classification together with computation of feature importance. K-means
clustering is used to obtain homogeneous clusters of representative examples (iso-
lated examples are eliminated, and inconsistent examples are re-labeled). The SVM
classifier is then applied to these homogeneous clusters. Vinciotti and Hand [30]
compare the use of the “classical” linear approach with the k-nearest-neighbor
methods. They also discuss the issue of highly imbalanced classes (usually a large
majority of applications are “good” ones) and describe four different scenarios how
to handle this problem: the use of different weights for examples of different classes
when classifying, the use of different weights for examples of different classes when
building the model, the use of oversampling to balance the training data, and the
use of separability criteria based on within class score distributions. Zhou and
Wang [32] propose to use random forests to distinguish between good and bad
loans if the classes are imbalanced. They use weighted random forests (here dif-
ferent weights of examples belonging to different classes are used during learning),
and balanced random forests (here the data are oversampled). Lee, Chiu, Chou
and Lu [20] propose to use the Classification and Regression Tree (CART) and
Multivariate Adaptive Regression Splines (MARS) algorithms to classify clients of
a local bank at Taiwan. Kim and Hwang [18] integrated multi-layer perceptron,
discriminant analysis and decision tree models using genetic algorithms to create
a system for credit risk evaluation. Galindo and Tamayo [13] presented a com-
parative analysis of different statistical and machine learning modeling methods
of classification on mortgage loan data. Kotsiantis [19] proposed a selective vot-
ing method of representative machine learning algorithms (decision tree, neural
network, Bayesian classifier, and k-NN classifier) to classify loan applications.

3. The LISp-Miner system

The LISp-Miner system is an academic data mining software tool developed at
the University of Economics, Prague!, which is focused on mining various rule-like
patterns from categorical data [27,29]. The system is a successor of the GUHA
method, an original Czech approach to association rule mining from mid-1960s
[15]. Contrary to “classical” association rules, GUHA (and LISp-Miner as well)
introduce a greater variety of different types of relations between the left-hand
(called antecedent) and right-hand (called succedent) sides of a rule and offers
more expressive syntax for the rules.

IThe system is freely available at http://lispminer.vse.cz.

499

http://lispminer.vse.cz

Neural Network World 5/2016, 497-518

By now, LISp-Miner implements ten data mining procedures: 4ft-Miner (de-
rived from the original GUHA procedure ASSOC), SD4ft-Miner, AC4ft-Miner, KL-
Miner, CF-Miner, SDKL-Miner, SDCF-Miner, KEX, ETree-Miner and MCluster-
Miner. Most of the procedures mine for various types of rule-like patterns — this
makes LISp-Miner more focused on particular type of models than standard data
mining tools. The procedures 4ft-Miner, SD4ft-Miner, ACA4ft-Miner, KL-Miner,
CF-Miner, SDKL-Miner, and SDCF-Miner mine for patterns which are to be in-
terpreted by users and domain experts. They can then be used for data description,
concept description or dependency analysis tasks?, KEX and ETree-Miner can be
used for classification and the procedure MC-Miner that mines for clusters of ex-
amples can be used for segmentation. We will only describe in more detail the
4ft-Miner and KEX procedures, as they are used in our experiments. For descrip-
tion of the other procedures, see e.g., [27-29].

Most of the procedures implemented in LISp-Miner look for patterns (rules)
that relate together so-called Boolean attributes. A Boolean attribute (also called
a cedent) is a conjunction of partial cedents, a partial cedent is a conjunction or
disjunction of literals and a literal is defined as A(coef) or = A(coef). Here A is
an attribute (variable) and coef (coefficient) defines a subset of possible values of
A. So e.g., income(high), age(30-40,40-50) or —city(Prague, Brno, Ostrava) are
examples of literals. In these examples income(high) refers to a single value of the
attribute income, age(30-40,40-50) refers to an interval created for two subsequent
values of the discretized attribute age (numeric attributes must be discretized in
advance, prior to using LISp-Miner data mining procedures — this can be done using
the LISp-Miner module DataSource), and —city(Prague, Brno, Ostrava) refers to
a subset of values of the attribute city.

3.1 Association rules and the 4ft-Miner procedure

Association rules were proposed by R. Agrawal in the early 1990s as a tool for
the so-called market basket analysis [1]. An association rule has the form of an
implication

X =, (1)

where X and Y are sets of items (itemsets) and X NY = (. An association rule
expresses that transactions containing items of set X tend to contain items of set
Y, so e.g. arule

{4, B} = {C} (2)

says that customers who buy products A and B also often buy product C. The two
basic characteristics of an association rule are support and confidence. Support of
an itemset X is defined as the proportion of transactions in the data set which
contain the itemset X. Confidence of an association rule X = Y is defined as
support(X UY')/support(X). This idea of association rules can be applied to any
data in tabular, attribute-value form. So data describing values of attributes can
be analyzed in order to find associations between conjunctions of attribute-value

2Refer to the typology of data mining tasks related to the CRISP-DM methodology [6].

500

Berka P.: Using the LISp-Miner system for credit risk assessment

Cond Suc —Suc Y

Ant a b r
—-Ant c d s

> k l n

Tab. ITI Four-fold contingency table created for examples satisfying condition .

pairs (categories). Let us denote these conjunctions as Ant (antecedent) and Suc
(succedent) and the association rule as

Ant = Suc. (3)

When using association rules for concept description, Suc will be a category of the
target attribute.

The 4ft-Miner procedure® offers a more general form of the above-described
association rules. 4ft-Miner mines for patterns (4ft-rules) of the form

Ant = Suc/Cond, (4)

where Ant, Suc and Cond (condition) are cedents, and ~ (called quantifier) denotes
a relationship between Ant and Suc for the examples from the analyzed data table
that fulfill Cond. If the condition is empty then the procedure analyzes the whole
data table. The relationships between Ant and Suc are defined (and evaluated)
using frequencies from the four-fold contingency table as shown in Tab. 3.1; here a
denotes the number of examples that fulfill both Ant and Suc, b denotes the number
of examples that fulfill Ant but not Suc, ¢ denotes the number of examples that
fulfill Suc but not Ant, and d denotes the number of examples that fulfill neither
Ant nor Suc. We sometimes use r = a+b, k=a+c¢, s=c+d,l =b+d and
n=a+b+c+d.

Examples of relationships between Ant and Suc as defined for the frequencies
for the four-fold table, are a founded implication = defined as

a
5
= (5)
a founded equivalence = defined as
a+b
__~°T7 6
a+b+c+d’ (©)

or an x? chi-squared quantifier defined as

(adr;liC) (™)

The 4ft-Miner procedure contains almost 20 different types of those relationships.
Their description can be found e.g. in [27].

3This procedure extends the original GUHA procedure ASSOC from the mid. 1960s. The
authors of 4ft-Miner as well as of most of the other procedures are Jan Rauch and Milan Simunek.

501

Neural Network World 5/2016, 497-518

Let us assume a toy loan application domain consisting of attributes income
(having values low and high), balance (having values low, medium, and high), sex
(having values male and female), unemployed (having values yes and no), and loan
(having values yes and no). An example of a 4ft-rule can be

balance(high, medium) A —unemployed(yes) = loan(yes)/sex(male) (8)

which says that in the group of men, if a person has a high or medium balance on
his account and is not unemployed, then he will get the loan. 4ft-rules are thus
much more expressive than “standard” association rules, where the only possible
example is of the following type:

income(high) A balance(high) = loan(yes). (9)

When running an 4ft task, the user should specify the literals that can be used
to compose Ant, Suc, and Cond, and the type and parameters that define the
relation between Ant and Suc (e.g., formulas (5), (6), (7) with lower bounds on
their values), and the lower bound for frequency a from the four-fold contingency
table.

Unlike the well-known apriori algorithm, where single itemsets (i.e., conjunc-
tions of categories) are generated in the first step and then each itemset (con-
junction) is divided into antecedent and succedent [1], in 4ft-Miner each part of a
rule (i.e., antecedent, succedent, and eventually condition) is generated separately,
so we can easily set the target attribute as the only one that can occur in the
succedents. Moreover, we can control the complexity of the searched rule space by
determining (using parameters mazxlenA, maxlenS and mazxlenC) the maximum
number of literals that can occur in cedents of each respective part of a rule.

The result of the analysis using 4ft-Miner is usually a huge set of rules that
should be inspected and evaluated by the domain experts and users (see Fig. 2).
Let us stress here that the quantitative characteristics of the found rules do not
guarantee usefulness of the rules. We can find a lot of rules with high confidence
(especially those with low support), that do not represent any reasonable knowl-
edge.

3.2 Decision rules and the KEX procedure

Decision rule in the form

Ant = C, (10)

where Ant (antecedent, condition) is a conjunction of values of input attributes
(called categories or selectors) and C is a category of class attribute C, are one of
the most popular formalisms of how to express classification models learned from
data. The commonly used approach to learning decision rules is the set covering
approach also called “separate and conquer”. The basic idea of this approach is
to create a rule that covers some examples of a given class, and remove these
examples from the training set (see Algorithm 1). This is repeated for all examples
not covered so far. The other way to create decision rules is the compositional
approach. In this approach the covered examples are not removed during learning,

502

Berka P.: Using the LISp-Miner system for credit risk assessment

so an example can be covered with more rules. Thus more rules can be used during
classification. In the compositional approach, all applicable rules are used and their
particular contributions to classification are combined into the final decision. To
do this, a certain numerical value is usually added to the rule. The KEX algorithm
reported in this paper fits into the second-described type of methods [3].

Algorithm 1 Simplified sketch of set-covering rule-learning algorithm.

set covering algorithm

1. create a rule that covers some examples of one class and does not cover any
examples of other classes,

2. remove the covered examples from the training data,

3. if there are some examples not covered by any rule, go to step 1, else terminate

The KEX algorithm [3] learns weighted decision rules in the form

Ant = C(w), (11)

where Ant (antecedent, condition) is a conjunction of values of input attributes
(called categories), C' is the class attribute, and weight w € [0,1] expresses the
uncertainty of the rule. Algorithm 2 shows a simplified version of the algorithm.
KEX works in an iterative way, testing and expanding an implication Ant = C in
each iteration. This process starts with “empty rule” with the weight equal to the
relative frequency of C' in data and stops after evaluating all implications which
were created according to the user-defined criteria with a maximum length of Ant.
(Imaz), minimum frequency of Ant, (fmin) and minimum validity of Ant = C
(Pmin). The implications are evaluated according to decreasing frequency of Ant.
When evaluating an implication, its validity (conditional probability P(C/Ant))
is computed. If this validity statistically differs from the composed weight (value
obtained when composing weights of all sub-rules of the implication Ant = C)
significantly, then this implication is added to the knowledge base. To test the
difference between the validity and the composed weight, we use the chi-square
goodness-of-fit test. The weight of the newly added rule is computed from the
validity and from the composed weight using the inverse composing function [14].
For composing weights w; and we we use a pseudo-Bayesian (Prospector-like) com-
bination function [9]

w1 - W2
wl-w2+(1—w1)~(1—w2)'

w1, P wy = (12)

During expansion, new implications are created by adding single categories to
Ant. These categories are added in descending order of their frequencies. New
implications are stored (according to frequencies of Ant) in an ordered list of im-
plications. So KEX generates every implication only once and for any implication
in question all its sub-implications have already been tested.

When using the set of rules created by KEX for classification of an example,
all applicable rules are found and their weights are combined using Eq. (12) to

503

Neural Network World 5/2016, 497-518

Algorithm 2 Simplified sketch of the KEX rule-learning algorithm.

KEX learning algorithm

Initialization
1. for all category (attribute-value pair) A(v) add A(v) = C to OPEN,
2. add empty rule to the rule set K B.

Main loop
while OPEN is not empty
1. select the first implication Ant = C from OPEN,
2. test if this implication significantly improves the set of rules K B built so far
(using the x? test, we test the difference between the rule validity and the result
of classification of an example covered by Ant) then add it as a new rule to KB,
3. for all possible categories A(v),

(a) expand the implication Ant = C by adding A(v) to Ant,

(b) add Ant A A(v) = C to OPEN so that OPEN remains ordered

according to decreasing frequency of the condition of rules

4. remove Ant = C from OPEN.

compute composed weights for each class. The classified example is then assigned
to the class with the highest composed weight. For binary classification problems,
we usually create rules towards only one of the classes. Thus the composed weight
close to 1 is interpreted as classification of the given example into this class while
the composed weight close to 0 is interpreted as classification of the given example
into the opposite class. We can use these weights in the following decision strategy:

e if the composed weight > «, then the example belongs to the class,
e if the composed weight < (1 — «), then the example belongs to the opposite,
e if the composed weight is in the interval [1 — a, o], then we do not classify.

Here « is a threshold that can be set by the user. We will show in Section 4 the
impact of the value o on the classification results in our case study. Generally
speaking, when increasing the value of «, the percentage of correctly classified
examples usually increases (the ratio behind this observation is that the higher
the weight of a class, the more likely the classification result will be correct), but
the number of examples for which the model makes a decision always decreases.
This strategy allows us to build a decision support system that will decide only for
“easy-to-decide” situations and leaves the more complicated cases to the human
expert.

As stated earlier in Section 3, LISp-Miner can work only with categorical at-
tributes, so numeric attributes must be discretized in advance. In addition to two
standard discretization methods, equidistant and equifrequent discretization, nu-
meric attributes can be also discretized in a “class-sensitive” way. Here the intervals
are created in such a way that the discretized attribute can be used for classifi-
cation. This means the resulting intervals should contain a majority of examples

504

Berka P.: Using the LISp-Miner system for credit risk assessment

belonging to one class. There is a number of such class-sensitive discretization algo-
rithms [10,17,21]. In our experiments reported in Section 4 we used a discretization
algorithm closely related to KEX [4]. Algorithm 3 shows a simplified sketch of this
algorithm. The algorithm starts by creating initial intervals for each value of the
numeric attribute that occurs in the data and then merges the neighboring inter-
vals if they share the same qualitative distribution of examples into classes (i.e.,
they share the same majority class).

Algorithm 3 Discretization for KEX.

KEX discretization algorithm

Initialization
1. For each value of the attribute create an initial interval Int and assign it to
a majority class if such a class exists, otherwise label it as “UNKNOWN?”.

Main loop

1. Merge intervals with the same class label.

2. Resolve ambiguities (if an interval Int; is labeled as “UNKNOWN?”, merge it
with the previous interval Int;_; or the following interval Int;).

4. Experiments with the loan application data

We used the 4ft-Miner and KEX procedures to analyze several data sets from the
credit risk assessment domain. The first three data sets are taken from the UCI
Machine Learning Repository that contains a number of reference data sets used
by the machine learning community to evaluate various machine learning and data
mining algorithms (www.ics.uci.edu/~mlearn/MLRepository.html). Australian
credit data is used for credit card applications. The dataset contains a mixture
of continuous, nominal with small numbers of values, and nominal with larger
numbers of values attributes. All attribute names and values have been changed
to meaningless symbols to protect confidentiality of the data. This data set was
first used by Quinlan in 1987 [23]. German credit data were provided by prof.
Hofmann from the University of Hamburg; this data consists of 7 numerical and
13 categorical input attributes. Japan Credit Data set represents consumer loans
for a specific purpose (e.g., car, or a PC); this data set was prepared by Chiharu
Sano in 1992. The Discovery Challenge data set was prepared for the Discovery
Challenge workshop held at the European Conference of Principles and Practice on
Knowledge Discovery PKDD1999 [2], the analyzed table (6181 examples, 7 input
attributes) is an excerpt from the whole database used in the workshop.

Tab. IIT shows the basic characteristics of the used data (number of examples,
number of attributes, number of classes, and the default accuracy computed as the
percentage of the majority class). The last column, maximal accuracy, reflects the

505

www.ics.uci.edu/~mlearn/ MLRepository.html

Neural Network World 5/2016, 497-518

Data examples attributes classes default acc. maximal acc.

ACred 690 15 2 0.56 0.99
GCred 1000 20 2 0.70 1.00
JCred 125 10 2 0.68 1.00
DChall 6181 7 2 0.88 1.00

Tab. III Basic characteristics of the used data sets.

amount of noise in the data*. Some data sets contain only categorical attributes;
these data sets can be used directly without pre-processing. Other data sets contain
numeric attributes. In this case, the data must be discretized prior to the use of
the learning algorithms.

In our experiments we compared the results obtained with the two procedures
described in the previous subsections (4ft-Miner and KEX) with the results ob-
tained when using standard rule-learning algorithms as implemented in Weka, a
well-known free data mining suite from University Waikato, New Zealand [16].

(Task |

Basic parameters
Name: ICred 1-0-0

Comment: -
Group of tasks: Default aroup of tasks Edit
| Data JAP_CREDIT kat —
Owner: PowerUser D: 40 alicaeAtheUil
ANTECEDENT QUANTIFIERS SUCCEDEMNT]
1, BASE p=0 Abs. » |Buccedent Com,1-1 =
= Age (1) (subset), 1- 1 B, pos FUI p=0.000 # Class (1){ +) B, pos
» Deposit (subset), 1-1 B, pos
[# Item (subset), 1-1 B, pos I
» Jobless (subset), 1-1 B, pos
» Month_payment (subset), 1 B, pos
» Mo_months (subset), 1-1 B, pos
»Prob_region (subset), 1-1 B, pos
» Sex (subset), 1-1 B, pos
= Unmarried (subset), 1- 1 B, pos
»Years_at_comp (subset), 1 B, pos
Totallength: 1-1 T Totallength: 1-99
—Task parameters CONDITION
Handling of missing values: Delete =
| Indude antecedent extensions of all implications: Yes Condition Con, 0-99 «
| Indude succedent extensions of 100% implications: Yes
| Indude extensions of coeffidents with no change in the four-fold table: Yes
| Indude extensions of cedents with no change in the four-fold table: Yes
| Indude both symetric Yes
Prime rule test for implication enabled: No
| Induding minimal length check: Yes Maximal number of hypotheses: 1000
Params Switch

Close] Generate] Grid Gen I 1 Bkarnd Gen] Total length: 0 -99

Fig. 1 Screenshot with input setting for 4ft-Miner for Japan Credit Data.

4We refer by noise to situations when examples with the same values of input attributes belong
to different classes. Such examples are undistinguishable and thus increase the classification error.
If the maximal accuracy equals 1, then the data are noise free.

506

Berka P.: Using the LISp-Miner system for credit risk assessment

In the first experiment, we applied 4ft-Miner to find strong interesting relation-
ships between input attributes and class; we can view such relationships as concept
descriptions of the respective classes. While strong relations can be found auto-
matically (in our experiment by setting the founded implication p = 0.9), what is
interesting should be determined by the domain expert. The screenshot in Fig. 1
shows the input settings of this experiment for Japan Credit Data and the screen-
shot in Fig. 2 shows the corresponding results. Tab. 4 shows some of the strong
rules found in the Japan Credit Data. Here high confidence and high support iden-
tifies a (relatively) large group of good loan applicants, in our case men and/or
older persons working for the same company for several years (rules 7 and 10).

8 0712 Unmar a
19 23 0700 Month paymert(s
20 26 0700 Month_paymenti)

44U | GowD Fter | FiterBK | Soring | Quiput

LM UCI MetaDataNEW.mdb MB - LISp-Miner dtResult module = | B ||
Datagource Task description Hypotheses Help
CBI 7 ®
Task: JCred 100 Showal r
Comment: - " Sh
Group of tasks: Defautt group of tasks
Data matrc: JAP_CREDIT kat
Task un
Stat: 2252014 20:27:14 Total time: Oh Om Os
Number of verffications: 39
Number of hypotheses: 33 Add group.
Actual group of hypotheses: Allhypcthesis
Hypotheses in group: 39 Shonn hypotheses: 33 Highighted: 0
Conf

Delete hypotheses

Fig. 2 Screenshot with example results of 4ft-Miner for Japan Credit Data.

no. Hypothesis Conf Supp
01: Age(c) & Month_payment(c) = Class(+) 1.00 0.09
02: Ttem(j) & Years_at_comp(b) = Class(+) 1.00 0.14
03: Jobless(n) & Month_payment(c) = Class(+) 1.00 0.13
04: Month_payment(c) & No_months(b) = Class(+) 1.00 0.10
05: Month_payment(c) & Unmarried(n) = Class(+) 1.00 0.09
06: Month_payment(c) & Years_at_comp(b) = Class(+) 1.00 0.09
07: Sex(m) & Years_at_comp(b) = Class(+) 097 0.27
08: Unmarried(y) & Years_at_comp(b) = Class(+) 0.96 0.18
09: Deposit(f) & Years_at_comp(b) = Class(+) 0.95 0.16
10: Age(c) & Years_at_comp(b) = Class(+) 0.95 0.30

Tab. IV Strong association rules found by 4ft-Miner for Japan Credit Data.

We also compared between 4ft-Miner and KEX. The idea of this comparison
was to have a look at the “reduction rate” that KEX applies to the implications
(association rules) when deciding if an implication should be added to the KB or

507

Neural Network World 5/2016, 497-518

not. So the parameter settings were the same for both 4ft-Miner and KEX. We used
two different settings (scenarios) which were derived from recommended strategies
for KEX and that will also be applied in the second experiment. In the first setting
KEX1 or 4FT1 (in KEX called “minimal analysis” strategy) we give no restriction
on the values of frequency and validity (Imax = 1, fmin = 0% and Pmin = 0), in
the second setting KEX2 or 4FT2 (in KEX called “strong analysis” strategy) we
are interested only in the implications with high validity (lmax = 2, fmin = 1%
and Pmin = 0.9). The screenshot in Fig. 3 shows the input settings for KEX1 for
Japan Credit Data and the screenshot in Fig. 4 shows the corresponding results.
Tab. 7?7 shows (for both settings) the numbers of rules created by 4ft-Miner and
KEX (columns “4FT1”, “KEX1” for the first setting and columns “4FT2” “KEX2”
for the second setting) and the reduction ratio computed as the number of KEX
rules divided by the number of 4FT rules (column “reduction”).

Task

— Basic parameters
Name: JCredt 1-0-0
Comment: -

]
Group of tasks: Default group of tasks Edit
Data matrix: JAP_CREDIT kat =
Owner: Powerllser rshif

Antecedent - Parameters 1 Class (succedent)
Funded implication

Deposit {subset), 1-1

ftem (subset), 1- 1 Validty: 0.00000 % Class (1)(+)
Jobless (subset}, 1-1 Frequency: D%
Month_payment (subset). 1-1 i
| No_months (subset), 1-1 Perform Chi-square test: Yes = I
Prob_region (subset). 1-1 Significance level: 50% Test options
Sex {subset), 1-1
Unmarmied {subset), 1-1 Uncertainty bandwidth: 50 % +0.0
Years_at_comp {subset), 1-1 i
o A Nl Yes Cross-validation nfolds (Folds: 10)
Length: Min: 1 M Include extensions of 100%. No
Artecedent | Class | Data matrix I { Parameters I Test
Close Generate
€

Fig. 3 Screenshot with input setting for KEX for Japan Credit Data.

Setting 1 Setting 2
Data KEX1 4FT1 reduction KEX2 4FT2 reduction
ACred 36 57 0.63 60 174 0.34
JCred 11 39 0.28 25 118 0.21
GCred 27 79 0.34 95 279 0.34
DChall 17 36 0.47 104 230 0.45

Tab. V Quantitative comparison of results from 4ft-Miner and KEX.

In the second experiment, we compared KEX with the rule-learning algorithms
PRISM, Jrip, PART and Ridor implemented in Weka.

PRISM is a set-covering algorithm that produces rules by rule specializations
starting from a rule with an empty antecedent and stops adding conditions when
the rule reaches the accuracy equal to 1 [5]. The algorithm thus assumes that the

508

Berka P.: Using the LISp-Miner system for credit risk assessment

_ USo- = N
@M UCT MetaDataNEW.mdb ME - LISp-Miner KEX Result module = e

IDatagDurcE Task description Rules Consultation Help

i i 4

Tasl: JCredt 1-0-0 Task un

Comment: - Start 2252014 09:46:08

Group of tasks: Default group of tasks Totaltime: Oh Om O=

Data matroe: JAP_CREDIT kat Mumber of verfications: 39 i
Mumber of rules: 11 |

Total number of ules: 11 Number of actually shown rules: 11 Delete all rules
Nr. Id —

(l
1 Ault le I
2 630817 Years_at_compib) [l
3 610272 Years_at_compia) Class (1)(+) |
4 560684 Age (1hc) >=< Class (1)(+)
5 370332 Month_paymert(h) >+< Class (1)) W
& 170.883 Month_payment(c) >+< Class (1)(+) N
8 140073 Joblessiy) =< Class (1)i+) L]
7 140207 Prob_regionfy) ==< Class (1)+) fl
9 100.168 kem{b) >=<Class {1)=}
0 50050 Age (1M) >=<Class (1)} W
1 20136 Age (1Hd) >=< Class (1)+) W
U

S0 0o~ e Ln e g b B

Dietail | Goto IDI Fitter | Sorting] Qutput ‘

|| Ready [[NuM | ol

Fig. 4 Screenshot with example results of KEX for Japan Credit Data.

data are noise-free. PRISM was inspired by the decision tree learning algorithm
ID3 [22]. But unlike ID3, where the best splitting attribute is found, the best
attribute-value pair (category) is identified in PRISM. To do this, the information
gain is computed using

[(A(v),C) = log, (P<C|A<v>>>

P(C) (13)

and the category A(v) with the highest information gain is selected®.

As P(C) is constant for different A(v) and binary logarithm is an increasing
function, it is sufficient to select the best category by maximizing P(C|A(v)). The
“create a single rule” part of the generic set-covering algorithm shown in Algo-
rithm 1 thus has the form shown in Algorithm 4.

Jrip is an implementation of the RIPPER (Repeated Incremental Pruning to
Produce Error Reduction) algorithm. This algorithm is again a variant of the set-
covering approach. It performs rule induction (top-down specialization of rules)
followed by a post-processing step that prunes the rules to improve the classification
accuracy [8]. The algorithm was intended to learn rules from large noisy data. Jrip
repeatedly creates a rule on a growing set and prunes it on a pruning set. A rule
is created in a top-down manner, adding a category A(v) or a condition A < 6
or A > 6 (Jrip can thus directly work with numeric attributes). The best rule
specialization is selected by maximizing the information gain adopted from the ILP
rule-learning system FOIL [24]. The “create a single rule” part of the algorithm is
shown in Algorithm 5.

5We use the same notation as in our description of KEX in Section 3.2.

509

Neural Network World 5/2016, 497-518

Algorithm 4 Prism one rule generating algorithm.

Generate one rule

1. for a given (sub)set of examples, find a category with the highest information
gain and add this category A(v) to the antecedent of the rule,

2. select for further rule specialization a subset of examples that corresponds to
category A(v),

3. if the rule does not cover only examples of the class C' go to step 1, else
terminate.

Algorithm 5 Simplified sketch of Jrip rule-generating part.

Generate one rule
split uncovered examples into a growing set and a pruning set on growing set do

1. add A(v) or A <6 or A > 0 that maximizes the information gain to the Ant
of the rule,
2. if rule covers some negative examples, go to step 1, else terminate,

on pruning set do

3. remove a final sequence of conditions from Ant to maximize the ratio (p —
n)/(p + n), where p denotes the number positive examples of the class covered
by the rule and n is the number of negative examples of the class covered by the
rule.

PART is a set-covering algorithm based on partial decision trees. To make a
single rule, a pruned decision tree is built for the current (sub)set of examples and
the path to the leaf with the largest coverage is turned into a rule [11]. To reduce
the computational time of the algorithm (a naive implementation will create and
prune a full tree for every rule), partial decision trees are created during the rule
creation process instead. A partial decision tree is a tree that contains branches
to undefined subtrees, i.e. contain nodes that were not expanded. Algorithm 6
shows the algorithm for creating partial trees. The way how a splitting attribute is
selected and how the tree is pruned is the same as used in the C4.5 algorithm [25].

Algorithm 6 Simplified sketch of partial tree-generating algorithm.

partial tree algorithm

choose splitting attribute of given set of examples into subsets
while there are subsets that have not been expanded and all the subsets ex-
panded so far are leaves
choose next subset to be expanded and expand it
if all subsets expanded are leaves try to replace node by leaf

510

Berka P.: Using the LISp-Miner system for credit risk assessment

The Ridor (RIpple DOwn Rules) algorithm learns rules in noisy domains, i.e.,
rules that need not to have 100% classification accuracy. This algorithm recursively
generates (by rule specialization) if-true and if-false rules [12]. The ripple down
rules form a binary tree, where each node corresponds to an antecedent and the
branches correspond to true/false values. If a parent rule is activated (i.e., its
antecedent is true) then its child if-true rule is checked. If the child if-true rule
is activated, then the class assigned to the example will correspond to the class
of this rule; otherwise the class assigned to the example will correspond to the
class of the parent rule. If the parent rule is not activated, its if-false child rule
is checked. If the child if-false rule is activated, then the class assigned to the
example will correspond to the class of this rule. The algorithm for generating a
single rule is inspired by the PRISM algorithm [5], but the stopping condition for
rule specialization is different. Algorithm 7 shows its steps, a formula

=3 (3)ra-pr- (14)

i=c

is used to assess the quality of a category or of a rule (r should be maximized).
Here p stands for the relative frequency of the class, s stands for the number of
examples covered by the category or rule, and ¢ stands for the number of examples
that are covered and belong to the class. To create the ripple-down structure, this
algorithm is recursively called twice. The if-true child rule is created for the next
most frequent class of the examples covered by the parent rule. The if-false child
rule is created for the same class as the parent rule but the computation is carried
out for the examples not covered by the parent rule.

Algorithm 7 Ridor one rule-generating algorithm.

Generate one rule

1. select the most frequent class as the current class,

2. for given (sub)set of examples find the best category A(v),

3. if adding the best category A(v) will improve the quality of the rule, then add
this category to the rule and go to step 2, else terminate,

Tab. VI summarizes the achieved results. The table shows for each of the used
learning algorithms the number of rules and the classification accuracy reached
using a 10-fold cross-validation test. We used standard settings for PRISM, Jrip,
PART and Ridor and two different settings for KEX. Here, KEX1 and KEX2 are
defined in the same way as when comparing KEX and 4ft-Miner. Numbers in bold
print denote for each data set the best results in terms of classification accuracy
and size of the rule set. We compute an overall rank as a weighted sum

2 x acc.rank + rul.rank. (15)

The “winning” algorithm is the algorithm that minimizes this sum. So, e.g., for
Japan Credit Data, KEX2 was the best in accuracy and fifth in rule-set size (which
gives the overall rank of 2 x 1 +5 = 7), and PRISM was third in accuracy and

511

Neural Network World 5/2016, 497-518

first in rule set size (which gives the overall rank 2 x 3+ 1 = 7); 7 was the smallest
value of the overall rank achieved for this data. The table suggests that PART
was outperformed by the other algorithms (PART never became a winner), and
that the other algorithms are comparable. But no general conclusions about the
superiority of an algorithm can be drawn from the experiments. Actually, the
well-known no-free-lunch theorem gives an evidence that there is no single “best”
machine learning algorithm regardless on the analyzed data [31].

Data KEX1 KEX2 PART PRISM Jrip Ridor
rul./acc. rul./acc. rul./ace. rul./acc. rul./acc. rul./acc.

ACred 36/0.86 60/0.83 29/0.85 197/0.76 5/0.85 6/0.85
JCred 11/0.76 25/0.79 7/0.72 4/0.74 5/0.71 4/0.70
GCred 27/0.73 95/0.71 68/0.70 362/0.66 8/0.69 2/0.71
DChall 17/0.88 104/0.88 134/0.98 203/0.99 41/0.96 73/0.92

Tab. VI Classification results of KEX and other rule learning algorithms.

The results shown in Tab. VI present the classification accuracy of KEX for
the value of the threshold « set to 0.5. For this setting, all examples for which the
composed weight of the class differs from 0.5 will be classified. Figs. 5 - 8 show
the effect of different values of o on the classification accuracy and the ratio of
classified examples (out of all examples). In all graphs the x-axis gives the values
of a, and the y-axis gives the classification accuracy or the number of classified
examples respectively. The graphs in Figs. 5 and 6 show the results for the “minimal
analysis” strategy and graphs in Figs. 7 and 8 show the results for the “strong
analysis” strategy. We can conclude from these graphs that

e as we expected, when increasing the value of «, the classification accuracy
(i.e., the relative number of correctly classified examples out of all classified
examples) increases and the relative number of classified examples (out of all
examples) decreases;

e when increasing the value of «, the improvement of classification accuracy
was slightly better for the minimal analysis strategy, but at the same time
the decrease of the number of classified examples for the minimal analysis
strategy was significantly higher. This seems to indicate that the results for
strong analysis are more robust.

We present the source of the difference between the results of KEX1 and KEX2
settings for Japan Credit Data in Figs. 9 and 10. Both graphs have the class
indicator values on the x-axis (to be able to better display the graph we jitter the
values of class 1 in the range 0.8 to 1.2 and the values of class —1 in a range from
—1.2 to —0.8) and the composed weight on the y-axis.

A perfect rule base created by KEX would assign weights greater than 0.5 to
examples of class 1 and weights smaller than 0.5 to examples of class —1. So
correctly classified examples are (in both Figures) indicated by the rectangles.
Since the composed weights are closer to the extreme values 0 and 1 for the KEX2

512

Berka P.: Using the LISp-Miner system for credit risk assessment

KEX1 - classification accuracy

1.00
0.90 =
D.20 .0---8:!"'}4:::3:."@"”'
‘_.,p- - b
S e ST
0.70
0.60
ncn
e
A
020
0.10
0500 0525 0550 0600 0650 0700 0750 0800 0850 0900 0.950

—p— AUSTTEIEN eewies GErMEN =—epe= |gpan =—a=- Challenge

Fig. 5 The impact of a on the classification accuracy, KEX1 setting.

KEX1 - classified examples

0500 0525 0550 0600 0650 0700 0750 0800 0.850 0.900 0.950

—— A USTTEIEN ssspes GErman e eges |gpan oe=ges Challenge

Fig. 6 The impact of a on the number of classified examples, KEX1 setting.

setting, when increasing the value of a we will be able to classify more examples
than for the KEX1 setting. We can also see that when using the KEX2 setting, no
example of class 1 was misclassified as an example of class —1.

513

Neural Network World 5/2016, 497-518

KEX2 - classification accuracy

-l

0.90 -
. [y e p— - - oo
- - -

080 FEE e geewn e

sl
sesewer®
0.70 ﬁ-----@-----&.u..@...-.r@----'ﬁ""“‘@"“"g""'@

0500 0525 0550 0600 0650 0700 0750 0800 0.850 0.900 0.950

—p— AUSTTEIEN eewies GErMEN =—epe= |gpan =—a=- Challenge

Fig. 7 The impact of a on the classification accuracy, KEX2 setting.

KEX2 - classified examples

ﬂﬂ:ﬂa&.:_.ﬁ —_— e — e —f,
~ R

"'ng.u..g,_‘

0500 0525 0550 0600 0650 0700 0750 0800 0.850 0.900 0950

—— 0 TrEIEN sesEes CErman == jgpan == ge= Challenze

Fig. 8 The impact of o on the number of classified examples, KEX2 setting.

514

Berka P.: Using the LISp-Miner system for credit risk assessment

Composed weight vs. true class

1.2
1 -
® ?&ul’:o
] 5 ® e ¢
® 08 * nl*®
L]
® ™ °
L] D6 L]
'Y ~ % wiv e
o o o' es @
- 0.2
[.C -2 ,’ ;
Pt ¥ o' 0
-15 -1 -05 0 05 1 1.5

Fig. 9 Composed weights assigned to examples, KEX1 setting.

Composed weight vs. true class

1.2
™ 1
. o2 oe Somm'iss
b-2
omk &0 W oE S B
0.6
04
L]
* @ L]
0.2
foo0e =
[X X1} g
-1.5 A 0.5 0 0.5 i 1.5

Fig. 10 Composed weights assigned to examples, KEX2 setting.

5. Conclusions

Credit risk assessment, credit scoring or loan applications approval are typical tasks
that can be performed using machine learning or data mining techniques. From
this viewpoint, loan applications evaluation is a classification or concept-description
task, in which the learned knowledge is inferred from data about past decisions.

515

Neural Network World 5/2016, 497-518

Rule-learning algorithms are easier for humans to understand, when compared,
e.g., with regression models, neural networks or SVM-created models.

This paper presents two data mining procedures implemented in the LISp-Miner
system (4ft-Miner and KEX) and shows how these procedures can be used for the
credit risk assessment task. 4ft-Miner is primary intended for association rules
mining. Because each part of the rule is generated separately, 4ft-Miner can easily
be used for concept description; here the succedent remains unchanged and must
be set to the category defining the concept. KEX creates a set of rules that can be
used directly for classification.

Our aim was to check the feasibility of both procedures for the given task
by comparing them with the state-of-the-art rule-learning algorithms. We choose
the PRISM, Jrip, PART and Ridor algorithms implemented in the Weka data
mining system for this comparison. The empirical comparison is based on four
data sets from the loan application domain. The results of experiments reported
in Section 4 show that there is no single best algorithm that would outperform
the other algorithms. KEX, PRISM, Jrip and Ridor each became the winning
algorithm at least once when using the criterion based on the weighted sum of
ranks achieved for accuracy and size of the rule set. 4ft-Miner cannot be used in
this comparison as the resulting rules are not directly used for classification. We
can thus compare the result of 4ft-Miner with the other algorithms only in terms of
the size of the rule set. Here we can see from Tab. V and Tab. VI that 4ft-Miner
usually creates more rules than the other algorithms. 4ft-Miner thus describes the
concept in more ways and helps to gain broader insight into the knowledge hidden
in the data.

We can also compare the algorithms themselves on the basis of their analysis.
Here we can see that PART, PRISM, Jrip and Ridor all follow the set covering
principle. That is, examples covered by a rule are removed from the training
data. The consequence of this principle is that just one rule is applicable when
classifying an example. This makes the classification process very simple (scan the
rule set to find an applicable rule), but narrows the way the class is described.
On the contrary, 4ft-Miner and KEX, repeatedly go through the whole training
set when creating the rules. This results in the fact, that more rules can cover an
example. For 4ft-Miner it means that partially overlapping rules can be obtained
(as illustrated on the rules 07 and 10 in Tab. 4). The consequence for KEX is in the
necessity to consider a higher number of applicable rules during classification. The
solution for this problem is described in Section 3.2; KEX uses a compositional
approach inspired by uncertainty processing in early expert systems. Another
difference between KEX and the other rule-learning algorithms is that KEX does
not perform crisp yes/no classification but assigns weights to the classes. This,
together with the possibility to tune resulting decision strategy (in our case the
final loan approval decision based on the classification result by setting the value
of parameter «) brings an extra advantage over a simple yes/no decision.

To summarize the results of the evaluation and comparison, 4ft-Miner is well
suited for the concept description task offering alternative viewpoints on identical
examples belonging to the target concept and KEX is well suited for creating
decision support systems that do not take over too much responsibility from the
human users (which can be a crucial requirement in the loan application domain).

516

Berka P.: Using the LISp-Miner system for credit risk assessment

Acknowledgement

This paper was prepared with the contribution of long-term institutional support
of research activities by the Faculty of Informatics and Statistics, University of
Economics, Prague.

References

(1]

(4]

(5]
[6]

[7]

(8]

(10]

(11]
(12]

(13]

14]
(15]

[16]

(17]

(18]

AGRAWAL R., IMIELINSKI T., SAWAMI A. Mining associations between sets of items
in massive databases. In: Proc. of the ACM-SIGMOD Int. Conference on Management of
Data, Washington D.C. 1993, pp. 207-216, doi: 10.1145/170036.170072.

BERKA P. Workshop Notes on Discovery Challenge, Prague, Univ. of Economics, 1999.

BERKA P. Learning compositional decision rules using the KEX algorithm. Intelligent Data
Analysis. 2012, 16(4), pp. 665-681, doi: 10.3233/IDA-2012-0543.

BRUHA I., BERKA P. Empirical Comparison of Various Discretization Procedures. Int.J.
of Pattern recognition and Artificial Intelligence. 1998, 12(7), pp. 1017-1032, doi: 10.1142/
S0218001498000567.

CENDROWSKA J. PRISM: An algorithm for inducing modular rules. Int. J. of Man-
Machine Studies. 1987, 27(4), pp. 349-370, doi: 10.1016/s0020-7373(87)80003-2.

CHAPMAN P., CLINTON J., KERBER R., KHABAZA T., REINARTZ T. SHEARER C.,
WIRTH R. CRISP-DM 1.0 Step-by-step data mining guide. 2000, SPSS Inc.

CHEN W., XIANG G., LIU Y., WANG K. Credit risk Evaluation by hybrid data mining
technique. Systems Engineering Procedia. 2012, 3, pp. 194-200, doi: 10.1016/j.sepro.2011.
10.029.

COHEN W. Fast Effective Rule Induction. In: 12th International Conference on Machine
Learning, Tahoe City, California. 1995, pp. 115-123, doi: 10.1016/b978-1-55860-377-6.
50023-2.

DUDA R.O., GASCHING J.E., HART P. Model Design in the Prospector Consultant System
for Mineral Exploration. In: WEBER, NILSSON ed., Readings in Artificial Intelligence.
Elsevier, 1981, doi: 10.1016/B978-0-934613-03-3.50028-3.

FAYYAD U., IRANI K. Multi-interval discretization of continuous-valued attributes for clas-
sification learning, In: Proc. 13th Joint Conf. of Artificial Intelligence (IJCAI’93), 1993, pp.
1022-1027.

FRANK E., WITTEN L.H. Generating Accurate Rule Sets Without Global Optimization,
In: Fifteenth International Conference on Machine Learning. 1998, pp. 144-151.

GAINES B.R., COMPTON P. Induction of Ripple-Down Rules Applied to Modeling Large
Databases. J. Intell. Inf. Syst. 1995, 5(3), pp. 211-228, doi: 10.1007/BF00962234.
GALINDO J., TAMAYO P. Credit Risk Assessment using Statistical and Machine Learning:
Basic Methodology and Risk Modeling Applications. Computational Economics. 2000, 15(1-
2), pp. 107-143.

HAJEK P. Combining Functions for Certainty Factors in Consulting Systems. Int. J. Man-
Machine Studies. 1985, 22, pp. 59-76, doi: 10.1016/S0020-7373(85)80077-8.

HAJEK P, HAVRANEK T. Mechanising Hypothesis Formation - Mathematical Foundations
for a General Theory. Springer, 1978, doi: 10.1007/978-3-642-66943-9.

HALL M., FRANK E., HOLMES H., PFAHRINGER B., REUTWMANN P., WITTEN
I. The WEKA Data Mining Software: An Update. SIGKDD Ezxplorations. 2009, 11(1),
doi: 10.1145/1656274.1656278.

KERBER R. ChiMerge: Discretization of Numeric Attributes. In: Proc. AAAI-92 confer-
ence. AAAT Press, 1992, pp. 123-128.

KIM K.S., HWANG H.J. An Integrated Data Mining Model for Customer Credit Evalua-
tion. In: Proc. Int. Conf. Computational Science and Its Applications ICCSA, Singapore.
Springer, 2005, s.vol. 3482, pp. 798-805, doi: 10.1007/11424857_87.

517

http://dx.doi.org/10.1145/170036.170072
http://dx.doi.org/10.3233/IDA-2012-0543
http://dx.doi.org/10.1142/S0218001498000567
http://dx.doi.org/10.1142/S0218001498000567
http://dx.doi.org/10.1016/s0020-7373(87)80003-2
http://dx.doi.org/10.1016/j.sepro.2011.10.029
http://dx.doi.org/10.1016/j.sepro.2011.10.029
http://dx.doi.org/10.1016/b978-1-55860-377-6.50023-2
http://dx.doi.org/10.1016/b978-1-55860-377-6.50023-2
http://dx.doi.org/10.1016/B978-0-934613-03-3.50028-3
http://dx.doi.org/10.1007/BF00962234
http://dx.doi.org/10.1016/S0020-7373(85)80077-8
http://dx.doi.org/10.1007/978-3-642-66943-9
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/11424857_87

(19]

20]

(21]

(22]
23]
24]
25]
[26]
27]
(28]

[29]

(30]
(31]

(32]

518

Neural Network World 5/2016, 497-518

KOTSIANTIS S. Credit risk analysis using a hybrid data mining model. Int. J. Intelligent
Systems Technologies and Applications. 2007, 2(4), pp. 345-356, doi: 10.1504/ijista.2007.
014030.

LEE T.S., CHIU CH., CHOU Y.CH., LU CH. Mining the customer credit using classification
and regression tree and multivariate adaptive regression splines. Computational Statistics €
Data Analysis. 2006, 50(4), pp. 1113-1130, doi: 10.1016/j.csda.2004.11.006.

LEE C., SHIN D. A context-sensitive discretization of numeric attributes for classification
learning. In: COHN ed., 11th European Conf. on Artificial Intelligence (ECAI’94). John
Wiley, 1994, pp. 428-432.

QUINLAN J.R. Induction of decision trees. Machine Learning. 1986, 1(1), pp. 81-106,
doi: 10.1007/BF00116251.

QUINLAN J.R. Simplifying decision trees. Int J Man-Machine Studies. 1987, 27, pp. 221—
234, doi: 10.1016/50020-7373(87)80053-6.

QUINLAN J.R. Learning logical definitions from relations. Machine Learning. 1990, 5, pp.
239-266, doi: 10.1007/BF00117105.

QUINLAN J.R. C4.5: Programs for machine learning. Morgan Kaufman, 1993.

RAS Z., WIECZORKOWSKA A. Action-Rules: How to Increase Profit of a Company.
In: ZIGHED, KOMOROWSKI, ZYTKOW, eds. Principles of Data Mining and Knowledge
Discovery. Springer, 2000, pp. 587-592, doi: 10.1007/3-540-45372-5_70.

RAUCH J. Observational Calculi and Association Rules. Springer, 2013, doi: 10.1007/
978-3-642-11737-4.

RAUCH J., SIMUNEK M. Dobyvdnd znalosti z databazi, LISp-Miner a GUHA. Oeconomia
Praha, 2014. In Czech.

SIMUNEK M. Academic KDD Project LISp-Miner. In: ABRAHAM, FRANKE, KOPPEN,
eds. Advances in Soft Computing Intelligent Systems Design and Applications. Springer-
Verlag, 2003, pp. 263-272, doi: 10.1007/978-3-540-44999-7_25.

VINCIOTTI V., HAND D.J. Scorecard construction with unbalanced class sizes. Journal of
the Iranian Statistical Society. 2003, 2(2), pp. 189-205.

WOLPERT D.H. The lack of a priori distinctions between learning algorithms. Neural com-
putation. 1996, 8(7), pp. 1341-1390, doi: 10.1162/neco.1996.8.7.1341.

ZHOU L., WANG W. Loan Default Prediction on Large Imbalanced Data Using Random
Forests. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012, 10(6), pp.
1519-1525, doi: 10.11591/telkomnika.v10i6.1323.

http://dx.doi.org/10.1504/ijista.2007.014030
http://dx.doi.org/10.1504/ijista.2007.014030
http://dx.doi.org/10.1016/j.csda.2004.11.006
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.1007/BF00117105
http://dx.doi.org/10.1007/3-540-45372-5_70
http://dx.doi.org/10.1007/978-3-642-11737-4
http://dx.doi.org/10.1007/978-3-642-11737-4
http://dx.doi.org/10.1007/978-3-540-44999-7_25
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.11591/telkomnika.v10i6.1323

	nagy
	Introduction
	Problem formulation
	Preliminaries
	Models
	Recursive estimation of individual models

	Multinomial mixture-based logistic regression
	On-line/Off-line mixture-based logistic regression
	The learning phase
	The testing phase

	On-line multinomial mixture-based logistic regression

	Results
	Example with simulated data
	Experiments with real data
	Data
	Results

	Discussion

	Conclusions

	kwon
	Introduction
	Methods
	Subjects
	Data acquisition
	Probabilistic fiber tracking
	Determination of connections between the ICP and target brain regions
	Statistical analysis

	Results
	Discussion

	bo
	Introduction
	Reviews of LLE and SLLE
	Locally Linear Embedding
	Supervised Locally Linear Embedding

	Supervised Locally Linear Embedding based on Distance Metric Learning
	Experiments and results
	Conclusions

	erzin
	Introduction
	Self Organization Feature Map (SOFM)
	The data sets used in the development of the SOFM models
	Developed Self-Organizing Feature Map models
	Results and discussion
	Conclusions

	berka
	Introduction
	Related work
	The LISp-Miner system
	Association rules and the 4ft-Miner procedure
	Decision rules and the KEX procedure

	Experiments with the loan application data
	Conclusions

	shao
	Introduction
	Evolutionary algorithm with quantum computing
	Quantum bit
	Quantum gates
	Quantum-inspired evolutionary algorithm

	The QPSO improvement based on local attracting
	Quantum angle
	Local attractor
	Procedure of LAQPSO

	Optimization experiments
	Test functions
	The comparison by different a
	The comparison by different algorithms

	Conclusions

	shao.pdf
	Introduction
	Evolutionary algorithm with quantum computing
	Quantum bit
	Quantum gates
	Quantum-inspired evolutionary algorithm

	The QPSO improvement based on local attracting
	Quantum angle
	Local attractor
	Procedure of LAQPSO

	Optimization experiments
	Test functions
	The comparison by different a
	The comparison by different algorithms

	Conclusions

	shao.pdf
	Introduction
	Evolutionary algorithm with quantum computing
	Quantum bit
	Quantum gates
	Quantum-inspired evolutionary algorithm

	The QPSO improvement based on local attracting
	Quantum angle
	Local attractor
	Procedure of LAQPSO

	Optimization experiments
	Test functions
	The comparison by different a
	The comparison by different algorithms

	Conclusions

	berka.pdf
	Introduction
	Related work
	The LISp-Miner system
	Association rules and the 4ft-Miner procedure
	Decision rules and the KEX procedure

	Experiments with the loan application data
	Conclusions

