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Abstract: The cellular processes underlying individual differences in the Work-
ing Memory Capacity (WMC) of humans are essentially unknown. Psychological
experiments suggest that subjects with lower working memory capacity (LWMC),
with respect to subjects with higher capacity (HWMC), take more time to recall
items from a list because they search through a larger set of items and are much
more susceptible to interference during retrieval. However, a more precise link be-
tween psychological experiments and cellular properties is lacking and very difficult
to investigate experimentally. In this paper, we investigate the possible underlying
mechanisms at the single neuron level by using a computational model of hippocam-
pal CA1l pyramidal neurons, which have been suggested to be deeply involved in
the recognition of specific items. The model makes a few experimentally testable
predictions on the cellular processes underlying the cumulative latency in delayed
free recall experimentally observed in humans under different testing conditions.
The results suggest, for the first time, a physiologically plausible explanation for
individual performances, and establish a proof of principle for the hypothesis that
HWMC individuals use a larger portion of the apical tree with a correlated higher
level of synaptic background noise.
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1. Introduction

Several experimental studies have convincingly demonstrated that individual differ-
ences in the Working Memory Capacity (WMC) of humans is related to differences
in many abilities [7, 11,32, 34], especially those related to the processes underly-
ing the retrieval of information under conditions of interference [19,38], and it has
been related to a number of higher brain functions [12]. Individual who score in
the upper or lower quartile on a variety of working memory capacity tasks such as
the reading span and operation span tasks are usually classified as high (HWMC)
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or low (LWMC) working memory capacity subjects, respectively. It has been sug-
gested that HWMC subjects are better at suppressing thoughts about a designated
event, whereas LWMC individuals are less capable to effectively suppress irrelevant
thoughts [4].

Working memory capacity is often measured by analyzing the temporal dynam-
ics of (immediate or delayed) free recall of items from a list. Here we will consider
the cumulative latency in delayed free recall. Experimental findings suggested that
low-WMC individuals are much more susceptible to interference during retrieval
than high-WMC individuals, and it has been argued [37] that one of the possi-
ble mechanisms affecting WMC is the search strategy followed by each individual
during the retrieval process.

The hypothesis is that low-WMC individuals take more time to recall items from
a list because they search through a larger set of items with respect to high-WMC
individuals. However, the possible cellular mechanisms underlying this effect are
still unknown, relatively unexplored, and quite difficult to test experimentally at
the physiological level in humans, given the rather invasive techniques that would
be required. To shed light on these mechanisms, we used a modeling approach to
reproduce a set of experimental data [37].

It is well known that the processes related to short-term memory encoding
and retrieval involve the temporal lobe and, in particular, the hippocampal region
[1,28,33]. In general, the expression of a higher brain function at a behavioral level
is the end result of a number of independent processes occurring at different levels,
from brain regions interaction, to network and circuit connectivity, to subcellular
biochemical pathways. At each level there can be mechanisms that are crucial for
the emergence of a specific higher brain function. In this paper we were interested in
exploring the processes occurring at the single cell level that may contribute to the
working memory capacity observed at the behavioral level. From this point of view,
the pyramidal neurons in the CA1 region are in a crucial position to participate in
these processes, because they represent the main output stage of the hippocampal
circuitry [18]. Their morphological and electrophysiological properties [27] suggest
that they are exquisitely tailored to modulate the processes underlying the short-
term memory.

Experimentally, it has been shown that individual neurons in the medial tem-
poral lobe are selectively activated by specific input items [5, 30, 31], and that
pyramidal cells are highly selective, with hippocampal pyramidal cells exhibiting
the highest degree of selectivity [17]. Computational models [25,29] have sug-
gested that the oblique dendrites of CA1 pyramidal neurons can effectively act as
independent units modulating the processes of object recognition [26].

In this work we thus used a biophysical model of CA1 neurons to investigate the
possible mechanisms that can affect short-term memory at the single neuron level.
We found that the number of oblique dendrites representing an item, correlated
with the level of background synaptic noise, can be associated to the main features
observed in the experimental findings. The results suggest a physiologically plau-
sible explanation for the observed individual differences in the cumulative latency
in delayed free recall experiments between high-WMC and low-WMC subjects.
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2. Materials and methods

All simulations were implemented using the NEURON simulation environment [15].
Most of the simulations and analyses were carried out on a parallel supercomputer
system (CINECA consortium, Bologna, Italy).

For all simulations we used cell ¢91662, originally downloaded from the public
archive neuromorpho.org [2]. The set of active and passive properties were iden-
tical to those in [26]. In the model, already validated against a number of different
experimental findings on electrophysiological and synaptic integration properties in
CA1 neurons [13,14,16,21,23,24], sodium and DR-type potassium channels were
uniformly distributed throughout the dendrites, whereas A-type potassium and Ih
channels were linearly increasing with distance from the soma. Model and simula-
tion files specifically used for this work will be available for public download under
the ModelDB section of the Senselab database http://senselab.med.yale.edu.

For the purpose of the paper, we considered the 26 oblique dendrites stemming
out from the main trunk of our model neuron. Random groups of n oblique den-
drites (n-tuple), with n ranging from 1 to 26, were stimulated with synaptic inputs
modeling the synchronous activation of a group of synapses.

Synaptic activation on each dendrite was modeled with a double exponential
conductance change (0.4 and 1 ms for raise and decay time, respectively), with
a peak conductance strong enough to ensure a local AP under all conditions of
synaptic background noise (80 ns).

To model dendritic background synaptic activity, we included the Destexhe et al
(2001) mechanism [9] in all compartments of the main apical trunk (as in [26]); the
excitatory and inhibitory conductance are described by a stochastic random-walk
similar to the Ornstein-Uhlenbeck process [35], and it has been shown that it can
successfully recreate the somatic background activity observed in vivo [9]. Different
Root Mean Square (RMS) levels of synaptic background activity were modeled
with different peak values and standard deviation of the fluctuating excitatory and
inhibitory conductance. In all cases, excitation and inhibition was balanced in such
a way to obtain an average somatic resting potential of —65 mV.

To simulate a set of cumulative recall curves, we used the number (n) of active
dendrites encoding an item and the level of random background synaptic activity
(noise) as simulation parameters. It should be noted that the number of active
dendrites used to encode objects (a list of words, in the experiments discussed
in this work) implies a different number of possible ways in which the activity
in a group of dendrites can be integrated in such a way to generate a somatic
action potential. For example, the particular CA1 pyramidal neuron morphology
we used for all simulations has 26 oblique dendrites. If words are coded using
17 obliques, for example corresponding to 17 different (and in general abstract)
features, this particular neuron can be involved in the encoding of up to (fg) =
3,124,550 different words. Using 22 features (and thus 22 dendrites), this number
would be reduced to (33) = 14,950. Assuming that during the recall phase stored
items are continuously presented to the involved neuron, this condition would take
less time to generate a somatic action potential (i.e. a recognition signal), because

only 14,950 items would be presented for eventual recognition instead of 3,124,550.
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A total of 520 simulations were carried out to test combinations of both pa-
rameters within a uniform range of 1-26 for n and 0.9-1.5 mV for the background
noise as explained in Section 3. To calculate average values, each simulation was
repeated 102 times, randomizing the dendritic location of the potentiated synapses
and the pattern of background activity; they were then used to form k different
ensembles of 6-, 9-, and 12-simulations (resulting in k = 17,11, and 8 values from
which the average recall time for 6-, 9-, and 12-words list, respectively, was calcu-
lated). A cumulative recall was calculated as the number of words recalled in the
time’s interval [0, ¢;].

3. Results

To test our model we reanalyzed and used data from a set of tests previously car-
ried out on 23 individuals with a high working memory capacity (HWMC) and 20
individuals with low working memory capacity (LWMC) [36]. Briefly, all individu-
als performed delayed free-recall tasks using list of words of different lengths (6, 9,
or 12 items), and the cumulative recall was recorded as a function of recall time.
Typical experimental findings are plotted in Fig. 1a for HWMC individuals tested
on lists of 12 items (Fig. la, blue) and LWMC individuals tested on lists of 6 items
(Fig. 1a, red).

It has already been shown [39] that the cumulative number of words recalled as
a function of time, WR(t), is well described by the following exponential cumulative
function

A=1—e?,

where A is the asymptotic number of words recalled and A is the rate of approach
A. In general, the different WMC of different individuals can be represented with
different values of A and A. Typical best fits and parameters’ value for three
individuals tested under different conditions are shown in Fig. 1b, and the complete
set of parameters fitting the performances of all individuals under all conditions
is plotted in Fig. 1c. As can be seen, for practically all testing conditions there
is a considerable overlap among the values of A and A for high- or low-WMC
individuals. In all cases, as shown in Fig. 1d for the typical example of HWMC
and LWMC individuals tested on lists of 9 words, the distribution of A and X values
obtained from the two population were not significantly different (Mann-Whitney
rank-sum test p = 1.0 and p = 0.836, respectively).

This suggests that there is a complex interaction among the different processes
used by different individuals in the recall task, which has so far precluded a deeper
understanding of the underlying physiological mechanisms.

In this work we were interested to test how the working memory capacity in
humans can depend, at least in part, on the synaptic integration process occurring
at the single neuron level. In our model the working memory task (to signal the
time of recall of a previously seen word) is assumed to be carried out by a small
group of neurons (6, 9, or 12, according to the word list size). We will also use the
simplifying assumption that individual objects (words, in this case) are encoded
by single neurons (rather than a small group of them). It should be stressed
that this framework is consistent with experimental findings [17,31] demonstrating
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Fig. 1 Individual differences in working memory capacity. a) Typical results ob-
tained for the number of words recalled as a function of time, in experiments with
indiwiduals with high (HWMC) or low (LWMC) working memory capacity using
a search set with 12 for HWMC (blue) or 6 for LWMC items (red); b) Typical
best fit of the results from 3 individuals with an exponential cumulative recall func-
tion; ¢) Values of fitting parameters obtained from all the experiments considered in
this work. Each individual with a low or high working memory capacity (HWMC,
LWMC) was tested with search sets of different size (6 W, 9W, 12W); d) Distri-
bution of X and A for lists of 9 words.

that object representation in the hippocampus is sparse (i.e. encoded by a small
number of neurons) and explicit (i.e. the presence of an object can, in principle,
be reliably decoded from a very small number of neurons). Since the recall process
can be expected to be modulated by the activity directly or indirectly generated
by sensory signals, we decided to explore the effects of two sets of inputs that could
represent them, i.e. 1) suprathreshold inputs eliciting local action potentials on
the oblique dendrites, and 2) subthreshold inputs generating random background
activity. The strong input on the oblique dendrites can be considered to represent
information directly related to the encoding and retrieval processes, whereas the
random background activity can be assumed to represent the concurrent internal
cortical dynamics generated by processes related to the overall sensory inputs [8].
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This relatively simple hypothesis cannot reveal all the possible interactions that are
probably in effect during a free recall process. For example, in this work we do not
expect to draw any powerful definitive inferences on the effects of cognitive loads,
attention, and brain regions interaction. However, we expect to obtain very specific
information on how a couple of fundamental cellular mechanisms can modulate the
overall process.

9"3:;” HOUSE APPLE HORSE GLASS
I
N
syn input . ; ¥/ = %
FIRE . L 71 L
Fi i { LYY - d_

Fig. 2 Schematic representation of how different CA1 neurons respond to the same
input. Neurons were assumed to encode different items (top) using different com-
binations of n = 5 oblique dendrites with potentiated synapses; a synaptic input
may (middle, red points) or may not (middle, black points) elicit a dendritic action
potential. Only when many of the n inputs generate a local action potential, the
overall signal will be strong enough to generate a somatic action potential (bottom).

The resulting processing is consistent with experimental evidence [20] suggest-
ing that inputs contribute directly to dendritic spikes, with output from multi-
ple branches summing in the axon. Following the experimental suggestion that
individual branches of CA1 pyramidal neurons might be used to store recent ex-
perience [22], we assumed that each oblique dendrite can be used to detect (i.e.
eliciting a local action potential that will not propagate to the soma) the presence
of a specific input feature (e.g. color, shape, or other qualities), as schematically
represented in Fig. 2. The learning process occurring during presentation of a list
of items will thus result, through synaptic plasticity mechanisms (not explicitly im-
plemented in this work), in a Long-Term Potentiation of synapses targeting oblique
dendrites coding for specific input features. The end result will be that different
neurons will be tuned to recognize (by means of a somatic action potential) the
simultaneous presence of n different features, as shown in Fig. 2. Activation of a
strong synaptic input will generate a local (dendritic) action potential. However a
somatic AP will be elicited only when an item, composed by a specific combina-
tion of n features, activates enough obliques of the same neuron. As schematically
represented in Fig. 2 for items encoded with n = 5 features, in the presence of the
input corresponding to “FIRE” only one neuron will have enough synaptic activity
to generate a somatic action potential (i.e. to recognize the word “FIRE”).
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Fig. 3 Schematic representation of a neuron response as a function of time. Differ-
ent synaptic inputs, representing different items (top) are sequentially activated on
different dendrites of a given neuron (middle); an action potential will be generated
only if and when many of the 5 potentiated synaptic inputs are activated (bottom,).

The model implementation used to reproduce the recall of words from a list
as a function of time is schematically illustrated in Fig. 3. During a simulation,
a different random n-tuple of synaptic inputs (corresponding to different input
words) was activated every 16 ms (corresponding to ~60 Hz, in the range of the
rhythm) in a set of 6, 9, or 12 replica of our model neuron (corresponding to the
lists length used in the experiments). Each simulation lasted for 45 sec (as in the
experiments), and the somatic spike times of each neuron marked the recall time
for each word.

The modeled recall curves (obtained as explained in Section 2)were compared
with experiments using x? values to find the curve that best matched each experi-
mental case. Three typical experimental cases for 12-word lists are compared with
the modeling results in Fig. 4, where we show the experimental curves obtained
from three individuals (Fig. 4a, black triangle), the simulation results (Fig. 4a,
red circle), and the best fit of the simulation data with an exponential cumulative
recall function (Fig. 4a, blue lines). Surprisingly, given the relative simple set of
parameters compared with the expected complexity of the overall recall process
in humans, in all cases we were able to quantitatively reproduce all experimental
findings (x? test p < 0.01). The data obtained from the simulations were in very
good agreement with those obtained from experiments, as shown in Fig. 4b and 4c
with the set of A and A obtained from the simulations statistically indistinguish-
able from those obtained experimentally (Mann-Whitney rank sum test, p values
are indicated in Fig. 4b—c). It is important to stress that both parameters (i.e. the
number of active dendrites encoding an item and the level of random background
synaptic activity) have a critical role to determine a good representation of the
experimental findings. As show in Fig. 4d—e the values of A and X obtained from
simulations using a constant noise level (1.35 mV, corresponding to the value with
the best overall x?) gave a significantly worse reproduction of the experimental
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Fig. 4 The synaptic background noise and the number of oblique dendrites used to
code different items can reproduce the experimental findings. a) Experimental data
from 8 individuals tested with 12-word lists (black triangles), simulation findings
(red circles) and the best fit of an exponential cumulative recall function for the
stmulation data (blue line); b) Values of A from the simulation vs those from the
experiments; ¢) Values of A from the simulation vs those from the experiments;
d) and e) comparison between experiments and simulations using a constant back-
ground noise. (p values refer to Mann-Withney rank sum test).
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data, especially for A (Mann-Whitney rank sum test, p = 0.19). These results sug-
gest that the number of oblique dendrites used in a neuron to code for an item and
the random background synaptic activity can be among the processes modulating
individual WMC.
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Fig. 5 The model is able to reproduce the full range of A and A values observed
experimentally. The contour plots show how a given combination of synaptic back-
ground noise and number of active dendrites coding for an item can modulate A
(a) and A (b) values in simulations of 9-word lists.

Using this approach, we were able to model the full range of A and A values
found experimentally (2-10, and 0-0.3, respectively, see Fig. 1c). In Fig. 5 we
show, for the case of 9-word lists, how the asymptotic number of items that could
be recalled, A, and the rate of recall, A\, depend on the way in which a neuron
represents an item (number of active dendrites) in the presence of a background
synaptic noise. Analogous results were found for the cases of 6- and 12-words lists
(not shown). More specifically, we found that both A and A tend to increase with
the number of obliques used to recognize an item (Fig. 5, X-axis), and to decrease
with the synaptic background noise (Fig. 5, Y-axis). These results suggest that
individuals with different WMC performances, as measured by different values of
A and A, can differ in the way they use to represent items at the single neuron
level. Moreover it has to be noted that a value of zero for lamda means no spike
was found.

The experimental data (see Fig. 1) show a considerable overlap between the cu-
mulative recall function of individuals with high and low WMC. A typical example
is shown in Fig. 6a for the case of 6-word lists; A and A values obtained from exper-
iments with HWMC and LWMC individuals showed a substantial overlap and did
not significantly differ from each other (Mann-Whitney rank sum test p = 0.488
and p = 0.21 for A and A, respectively).

This occurs because there are probably several different mechanisms that can
more or less affect the recall process. This condition results in a very large vari-
ability in the experimental values that may confuse the interpretation of the ex-
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Fig. 6 Individuals with High WMC tend to use a higher number of oblique den-
drites. a) Values for A and \ obtained from individuals tested with 6-word lists
with a low (blue) or high (red) working memory capacity; solid circles represent
the 10 best (red) and worst (blue) cases in terms of number of recalled words. the
empty circles represent the worst cases among individuals with H-WMC' (red) and
the best case among individuals with L-WMC (blu). b) Values of A and X from the
simulations associated with the experimental 10 best (red) and worst (blue) cases.
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Fig. 7 Representation of the physiological parameter’s space. Noise vs # of active
dendrites from simulations of the 10 best and worst cases for each experimental
protocol (LWMC and HWMC individuals tested for 6-, 9-, and 12-word lists).

perimental findings. In the attempt to limit this effect, we restricted the analysis
to the 10 best cases of HWMC and the worst 10 cases of LWMC (in terms of the
number of recalled words). We assume that, in this way, we can indirectly isolate
the effect of the most involved mechanisms. These cases are shown in Fig. 6a as
closed symbols, and the relative values found from the simulations are shown in
Fig. 6b. By carrying out the same analysis for the entire set of cases, we found that
the values of A obtained from HWMC and LWMC individuals were significantly
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different under all conditions (i.e. 6, 9, and 12 words list, Mann-Whitney rank-sum
test p = 0.017, p = 0.002, p < 0.001, respectively), whereas the difference between
A values was still not significant.

In Fig. 7 we present a summary of the model predictions for the 10 worst and
best cases, in terms of the underlying physiological mechanisms (number of involved
oblique dendrites and associated background noise) for each group of individuals
tested under different conditions. The model suggests that there is a strong cor-
relation between the number of oblique dendrites used to code an item and the
level of background synaptic noise (Pearson’s correlation coefficient p = 0.7). Fur-
thermore, as shown in Fig. 8, the model predicts that LWMC individuals use less
oblique dendrites to represent an item, with respect to the HWMC individuals.
Taken together, these results suggest that the different working memory capacity
among humans can be explained, at least in part, by the specific way in which
the hippocampal network of each individual has been wired, following (unknown)
developmental, environmental, or natural conditions, to use more or less dendrites
to encode and recall items.
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Fig. 8 The model predicts that LWMC individuals use less oblique dendrites than
HWMC ones. a) Average number of active dendrites for simulations of the 10
best (brown) and worst (green) individuals, tested under lists of different length; in
all cases, the difference in the average values was statistically significant (Mann-
Whitney Signed Rank Sum test, p indicated above bars). b) Average of noise in-
tensity for simulations of the 10 best (brown) and worst (green) individuals, tested
under lists of different length.

4. Discussion

In general, higher brain functions, such as working memory, are the end result of a
number of independent mechanisms occurring at different levels, from brain region
interactions to microscopic biochemical reactions. Here the focus was on those
mechanisms occurring at the single cell level. From this point of view, our model
suggests two main predictions: 1) the extent of the apical tree used to encode an
item, and the synaptic background noise, may be responsible for the cumulative
time of free recall observed in the experiments. The different memory capacity
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of humans can thus be qualitatively related to the basic mechanisms involved in
dendritic signal integration; 2) HWMC individuals may use a greater number of
oblique dendrites to encode words with respect to LWMC individuals. Assuming
that any given individual encode an object using more than half of a neuron’ oblique
dendrites, the binomial coefficient is strictly decreasing. This implies that HWMC
individuals will search for objects through a smaller set of possible combinations
(see Methods), and supports the hypothesis [37] that the lower performance of
LWMC individuals may be caused by a search through a larger set of items, which
requires more computational time (assuming a random search through the possible
objects). The conceptual framework we used in this work shares the idea of objects
represented as a set of features (Nairne, 1990), but does not take into account the
network dynamical reorganization and brain regions interaction that have been
proposed to describe, in more general terms, a context-driven working memory
system (O’Reilly and Frank, 2006). However, to the best of our knowledge, this is
the first time that a link between psychological experiments and specific cellular
mechanisms can be established. The results establish a proof of principle for the
hypothesis that the extent of the apical tree used to encode an item and the synaptic
background noise can play a major role in determining the overall number and rate
at which items are recalled.

It should be stressed that in our approach we are not referring to any kind of
grandmother cells. The fact that specific neurons explicitly code for specific ob-
jects is entirely dependent on the actual training session; this is consistent with the
basic operations carried out by the hippocampus, which is universally considered
as a working memory. Thus, the same neuron could very well be tuned through
synaptic plasticity to code (or be involved in the coding of) any other object, ac-
cording to whatever is presented in input during training. Our assumption of using
a single neuron to code for an object should thus be considered as a simplified re-
duction of the sparse ensemble involved in the real system. It builds upon the clear
experimental findings showing that firing of a single neuron can be a statistically
significant indication of a specific input [17,31].

It may also be argued that a single realistic neuron is not all that different
than a multilayer perceptron (MLP), which is proven to be able to approximate
any function. Thus, in principle, we could have simply implemented a multi-layer
artificial network to fit experimental data, a rather trivial process. However, the
fact that a realistic neuron can be equivalent to a MLP (e.g. [29]) does not mean
that a MLP built from scratch to fit experimental data can make experimentally
testable predictions on the mechanisms at cellular level. As matter of fact, such a
MLP would not (and cannot) give any clue on fundamental cellular processes such
as dendritic signal integration. What can be eventually done is to first implement
a biophysical model that takes into account the experimental data, and only then
build an equivalent MLP based on it. This requires a biophysical model to be
implemented first.

In principle, all psychological experiments analyzing the latency of delayed free
recall using an exponential cumulative function can be interpreted in the same way
as we have shown here. In spite of its simplicity, with our approach we were able
to quantitatively take into account a number of experimental findings obtained
under different conditions. A limitation of this approach is that it ignores the
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many additional processes that must be involved in the physiological differentiation
between HWMC and LWMC individuals. Taking into account these processes could
also explain the considerable overlap between of the experimental curves obtained
from High- and low-WMC individuals. However, this was outside the scope of this
work, which focused on the possible main cellular mechanisms.

The reason why the extent of the apical tree used to encode an item and the
synaptic background noise are able to modulate the cumulative time of free re-
call, can be understood by considering the special importance that hippocampal
neurons have been shown to have for the recognition processes (e.g. [5]). We have
previously shown [26] how synaptic inputs, eliciting local dendritic spikes on a spe-
cific combination of oblique dendrites of hippocampal CA1 pyramidal neurons, can
be one of the mechanisms leading to objects recognition. The random synaptic
background noise can have a quite strong impact on this process, considering that
it can be related to the internal activity elicited by evoked sensory responses [8].
Too low or too high levels of noise act in opposite ways to modulate the number of
combinations of active dendrites able to generate a somatic action potential (and
thus a recognition signal): low levels will make it easier for a neuron to fire an
AP, whereas high levels shunt too many combinations and result in a lower spike
probability. In the context investigated here, these effects can result in an object
(e.g. a specific word from a list) being recalled sooner or later during the free recall
process.

The number of active dendrites used to encode objects (a list of words, in the
experiments discussed in this work) implies a different number of possible ways
in which the activity in a group of dendrites can be integrated in such a way to
generate a somatic action potential. For example, the particular CA1 pyramidal
neuron morphology we used for all simulations has 26 oblique dendrites. If objects
are coded using 17 obliques (for example corresponding to 17 different features),
this particular neuron can be involved in the encoding of up to (?g) = 3,124,550
different objects. Using 22 obliques, this number would be reduced to (gg)
14, 950.

Our model predicts that HWMC individuals may use a greater number of
oblique dendrites to encode words with respect to LWMC individuals. Assum-
ing that any given individual encode an object using more than half of a neuron’
oblique dendrites, the binomial coefficient is strictly decreasing. This implies that
HWMC individuals will search for objects through a smaller set of possible com-
binations, and supports the hypothesis [37] that the lower performance of LWMC
individuals may be caused by a search through a larger set of items, which requires
more computational time (assuming a random search through the possible objects).
From a more general point of view, our study predicts that the differences between
High and Low WMC individuals could be in part explained with the same mech-
anism for any mammal, assuming that the search strategy is the same. Of course
this does not also imply that working memory tasks are carried out in the same
way. Higher brain functions require circuits and networks operations (which were
outside the scope of this work) with a role that cannot be overemphasized.

Two important next steps can be foreseen for this model: 1) a study of how
alterations in the balance between excitatory and inhibitory pathways can affect
signal integration, and thus memory capacity; this is an important mechanism that
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we have not investigated in this work; although most alterations lead to network
malfunctioning (reviewed in [10]), it could be speculated that moderate or transient
deviations can instead significantly affect the ability to encode and recall items; 2)
an investigation of the memory capacity degradation with the progression of brain
pathologies such as Alzheimer’s disease and the possible ways to ameliorate this
condition [3,6].

The overall picture emerging from this work is thus one in which individuals
with high WMC have implemented a strategy that, during the encoding phase,
allows them to store as many as possible features of the objects they are being
shown. During recall, this results in a search through a smaller set of possible ob-
jects. The model suggests that, in order for this strategy to be properly organized,
HWMC individuals generate an internal dynamics that results in a higher synap-
tic background activity from within the hippocampus itself or from other brain
regions.
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