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Abstract: The power quality in electrical energy systems is very important and
harmonic is the vital criterion. Traditionally Fast Fourier Transform (FFT) and
Discrete Fourier Transform (DFT) have been used for the harmonic distortion
analysis and in the literature harmonic estimations have been made using different
methods. As an alternative method, this paper suggested using Support Vector Ma-
chine (SVM) for harmonic estimation. The real power energy distribution system
has been examined and the estimation results have been compared with measured
real data. The proposed solution approach was comparatively evaluated with the
ANN and LR estimation methods. Comparison results show that THD estimation
values that were obtained by the SVM method are close to the THD estimation
values obtained from ANN (Artificial Neural Network) and LR (Linear regression)
methods. The numerical results clearly showed that the SVM method is valid for
THD estimation in the power system.
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Nomenclature: THDI – Total current harmonic distortion, IL – Load current,
Ii – i-th input pattern, Ij – j-th input pattern, x – Input space, z – Feature space
vector, yi – Target value, ξi – Slack variable, b – Bias, ε – Intensive loss function, L –
Lagrange function, f(I) – Estimation function, αi, α

∗
i , ni, n

∗
i – Lagrange multipliers,

C – Constant, w – Weight factor

1. Introduction

With the development of industry and technology, energy users now pay more at-
tention to the quality of power. Non-linear loads, such as television, computer, air
conditioning, UPS, speed control devices and welding machines, generate power
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system harmonics. These harmonics disrupt the ideal voltage and current wave-
forms, and cause problems with power quality [59]. At the same time, harmonics
lead to losses of transformers and power distribution systems, trenches, disruption
in communication systems, and sudden trips [55, 1]. Total Harmonic Distortion
(THD) is used as an indication of current and voltage distortion values. Harmonic
limitations are described in the IEEE 519 standard [15, 14]. In addition, reference
[12, 13] describe the harmonic distortion limit values in IEC standards.

In this study we proposed the SVM method for harmonic estimation. In the
literature, harmonic estimation has been made with different methods. We applied
the SVM method to a real energy distribution system for harmonic estimation.
DFT and FFT are commonly used for analyzing harmonics in power systems. Equa-
tions obtained from DFT and FFT are very complex, and solving these equations
can be very difficult. Applying SVM is a simple and useful method for estimations.
Once the system is modeled the THDI estimations can be easily made using SVM
methodology. In this study we demonstrate that SVM methodology is applicable
to harmonic estimations on power systems.

In the literature there are several methods for the harmonic identification and
estimation of power systems. ANN systems have been used in both the estima-
tion of nonlinear harmonic loads [59] and the analysis of harmonic distortion [26].
These systems also play an important role in the quick determination of harmonics
[24]. Harmonics amplitude and angle estimation have been obtained using the AN
estimation method [9]. In reference [33], it has been proposed for the current esti-
mate of nonlinear loads, which contain harmonic components. Wavelet Transform
(WT) and Hilbert-Huang Transform (HHT) have been applied to the harmonic
estimation of the nonlinear loads [6, 10, 63, 61]. The harmonic estimations were
made with very high accuracy using the Adaptive Wavelet Neural Network Based
method [19]. For the identification of harmonic components the fuzzy logic method
has been proposed [31]. Discrete Fourier Transform (DFT) and Fast Fourier Trans-
form (FFT) are used to identify harmonics. However, there are some disadvantages
to these methods. One of them is that DFT and FFT contain a large number of
calculations. On the other hand, although DFT and FFT give accurate results,
they have high complexity due to equations obtained as a result of the harmonic
analysis of DFT, and accordingly need more computation time [62]. Frequency
amplitudes and phases of each harmonic in the power system always change, so
that FFT performance fails in these conditions [22]. DFT and FFT have some
shortcomings for detecting harmonics [4, 29, 37] and they have wide applications,
but they have certain limitations in harmonic analysis [6].

Power system harmonic estimation is the most important issue for power qual-
ity. A great deal of research has been carried out on this topic and with ref-
erence to [16] Seasonal Short Term Load Forecasting has been carried out using
the Curve Fitting and Regression line method. [36] presents a new algorithm
that uses minimum variance criterion (MVC) and a sequential method for optimal
meters placement. [52] proposes a simple symmetrical interpolation FFT algo-
rithm, where the even terms are removed from the fitting polynomial based on
the triangular self-convolution windows. Many algorithms have been proposed for
harmonic estimation to improve the power quality performance but till today it
is still a challenge for accurate estimation. In this case [42] an adaptive filtering
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Özdemir S., Demirtaş M., Aydin S.: Harmonic estimation based. . .

algorithm called Fast Transverse Recursive Least Square (FT-RLS) is applied for
the first time for estimating harmonic parameters and [7] presents a novel method
for solving the estimation of the amplitudes and phases of different harmonic com-
ponents contained in a power electrical signal, based on Particle Swarm Optimizer
with Natural Selection (PSONS). Harmonic estimation and compensation are im-
portant tasks for improving power quality indexes in electric systems. In [58],
the feasibility of using the discrete Fourier square-wave transform (DFSWT) as a
fast processing engine, with low power consumption, for online harmonic compo-
nent estimation is assessed. [17] presents a fast and accurate approach for real-
time estimation of moderate time-varying harmonics of voltage/current signals.
The proposed method is based on estimation of signal parameters via rotational
invariance technique (ESPRIT)-assisted adaptive wavelet neural network (AWNN).
[18] is a technique based on an adaptive wavelet neural network that is the most
suitable for dominant low-order harmonic estimation is presented. [60] focuses on
the harmonic estimation procedure based on continuous wavelet transform (CWT)
when the stationary signal to be analyzed is corrupted by the non-Gaussian im-
pulsive noise. CWT of the harmonic signal and the impulsive noise are compared,
and it is proved that the parameters of the complex Morlet wavelet have significant
impacts on the CWT coefficients. A novel algorithm for harmonic estimation in
power distribution networks is presented in [48]. This algorithm is based on an
iterative observer to perform harmonic estimation in a measured signal. Harmon-
ics degrade the power quality of Power Systems. [46] proposed to implement the
HSE problem with suitable selection algorithms to intensify the performance.

The SVM method has been applied to different types of estimations in different
systems [5]. For example the estimations of the road friction constants [23], the
fingerprint and palm print orientation [53], the depth of shallow buried objects [41],
and alumina powder flow [28] have been conducted using this method. The specific
project parameters [45], density with high accuracy [20], and density function [57]
can be determined using the SVM method.

The application of the SVM method can also be seen in estimations of different
events such as ISP [8] and face shape [21]. Since harmonic and inter-harmonic
detection are good indicators of power quality, these detections are very important
in power systems and can obtained by the SVM method. This has been done [30].
The estimations of the rotor slip [64], steel consumption [32], and scattering of
electromagnetic waves [35] can also be considered as another applications of the
SVM method.

Although the SVM method has several applications in literature we note that it
has not been considered in the estimation of the harmonics for the power distribu-
tion systems. Therefore, SVM method has been proposed in harmonic estimation
of the power systems. In this study, the modeling and simulation of the power
system have been done and presented in Section 2 and in Section 3, respectively.

2. SVM – method for harmonic estimation

A lot of researchers have paid more attention to this method than the neural net-
work and mathematical programming community. SVM regression method is ap-
plicable to real world problems. For example, in [27], the feature selection methods
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for mass classification have been examined. In [25], the privacy violation problem
has been exploited. Post process the SVM classifier to transform it to a privacy-
preserving classifier with the proposed approach. [56] aims to explore whether we
can improve the accuracy of an SVM classifier for micro calcification (MC) detec-
tion by incorporating prior knowledge of MCs in mammograms. In [39] a novel
approach has been proposed to training noise-resilient concept detectors from click
through data collected by image search engines. The SVM-based models (Fixed-
SVM, PSO-SVM, GA-SVM) together with a BP neural network are employed to
forecast Chinese inflation rate [47]. In [2], decomposition methods for SVM clas-
sification functions are developed and discussed, using polynomial approximation
methods. In [54], in order to overcome the deficiency of the traditional SVM, a
positive mapping between price volatilities and sample periods of underlying finan-
cial time series has been assumed according to the theorems of behavioral finance.
Dissolved Gas Analysis (DGA) is an established method for detecting and predict-
ing faults contained in power transformers. Support Vector Machine (SVM) has
been actively applied to classify faults using historic DGA data [38]. Biometric
systems accurately recognize/authenticate an individual to access his confidential
data/accounts multiple biometric traits cannot be cloned simultaneously and hence
it is highly secured system. In [50] SVM based fusion of match scores for face and
fingerprint biometric trait is implemented. MRI is the most important technique,
in detecting the brain tumor. A new hybrid technique based on the support vec-
tor machine (SVM) and fuzzy c-means for brain tumor classification is proposed
in [34]. In [11] the parameters of SVM model are pretreated through genetic al-
gorithms to get the optimum parameter values, and these parameter values are
used in the SVM model and genetic algorithm-support vector machine (GA-SVM)
model is obtained, which will be used to make leakage forecasting for water supply
network. We therefore use this method in order to estimate harmonics in power
systems.

The regression problem has been investigated in a study carried out by S. K.
Shevade et al. [40]. A good overview of the solution to this regression problem
has been presented in a tutorial prepared by Smola and Schölkopf [43]. C. J. C.
Burges explains in their study what SVM and Support Vector Regression (SVR)
are. They differ from comparable approaches such as artificial neural networks:
SVM training continuously finds a global minimum, and their simple geometric
interpretation provides fertile ground for further investigation [4].

SVM are learning machines implementing the structural risk minimization in-
ductive principle to obtain good generalization on a limited number of learning
patterns. Traditional/statistical regression procedures are often stated as the pro-
cesses deriving a function f(x) that has the least deviation between the predicted
and experimentally observed responses for all training examples. One of the main
characteristics of SVR is that instead of minimizing the observed training error,
SVR attempts to minimize the generalized error bound so as to achieve generalized
performance. SVR is the most common application form of SVMs.

We will use I and z to denote the input and feature space which is related to
the vector of the SVM and z to denote the feature space vector which is related
to I by a transformation z = ∅ (I). Let the training set Iiyi consist of l data set
where Ii is the i-th input pattern and THDI is the corresponding target value. The
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goal of SVM regression is to estimate a function f (I) that is as ‘close’ as possible
to the target values THDI for every Ii and at the same time, is as ‘flat’ as possible
for good generalization. We will refer to αi as Lagrange multipliers. ξi denotes the
slack variable. C is the constant.

The function f is represented using a linear function as follows in Eq. (1) [43],
[44]:

f (I) = (w, Ii) + b, (1)

where b denotes the bias, w is the weight factor.
It is required to minimize ‖w‖2 in order to optimize the function f(I). This can

be performed by a convex optimization problem which can be solved by minimizing
1
2 ‖w‖

2

minimize
1

2
‖w‖

2

s.t.

{
THDI − 〈w, Ii〉 − b ≤ ε,
〈w, Ii〉+ b− THDI ≤ ε.

This inner-product kernel helps in taking the dot product of two vectors in
the feature space without constructing it explicitly. For SVM regression purposes,
Vapnik [49] suggested the use of ε insensitive loss function where the error is not
penalized as long as it is less than ε. It is assumed here that ε is known a priori. This
optimization problem is feasible. If there are slack variables (ξi), the optimization
expression can be written as follows:

1

2
‖w‖

2

+ C

l∑
i=1

(ξi + ξ∗i )

with

 THDI − 〈w, Ii〉 − b ≤ ε+ ξi,
〈w, Ii〉+ b− THDI ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0.

The intensive loss function |ξ|ε has been defined by

|ξ|ε =

{
0 if |ξ| < ε,

|ξ| − ε otherwise.

For the nonlinear functions in dualization method has been described as follows:

L =
1

2
‖w‖

2

+ C

l∑
i=1

(ξi + ξ∗i )−
l∑

i=1

αi(ε+ ξi − THDI + 〈w, Ii〉+ b)

−
∑l

i=1
α∗i (ε+ ξ∗i − THDI − 〈w, Ii〉 − b)−

∑l

i=1
(niξi+n

∗
i ξ
∗
i ).

The primal variables (w, b, ξi, ξ
∗
i ) have been vanished in order to obtain opti-

mality

∂L

∂B
=

l∑
i=1

(α
∗
i − αi) = 0,
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∂L

∂B
= w −

l∑
i=1

(α
∗
i − αi)Ii = 0,

where

w =

l∑
i=1

(αi−α∗i )Ii,

∂L

∂ξ∗i
= C − α∗i − n∗i = 0.

From these relations, the dual optimization problem can be solved by maximizing
the expression given below−1

2

l∑
i,j=1

(αi − α∗i )(αj − α∗j )〈I, Ij〉 − ε
l∑

i,j=1

(αi + α
∗
i )

l∑
i=1

THDI(αi − α∗i )

with the condition of
∑l

i=1 (αi−α∗i ) = 0 and αi, α
∗
i ∈ [0, C].

Support vector function can be written in terms of expansion given as follows:

f (I) =

l∑
i=1

(αi−α∗i )〈Ii, I〉+ b.

The primal current variables Ii can easily be determined and estimations for THDI

can be done when the current values obtained from energy system are used.

3. Problem definition

The harmonic for residential areas and industrial zones in Manisa have been mea-
sured and training data set have been considered. Then the dot products are
computed. Kernel function has been selected. After these steps dot products and
constant terms are added up. Finally the THDI values have been estimated with
SVM method. The load current (IL) values have been considered as input and
total current harmonic distortions THDI values have been considered as output in
the SVM model.

For residential areas, one phase has been investigated so that one input and one
output have been used in SVM model. For industrial zones three phases have been
investigated so that three inputs and three outputs have been used in SVM model.
The measured and estimated THDI values have been compared each other. The
results have been given in both numerical and graphically.

The load current (IL) values have been considered as input and total current
harmonic distortions THDI values have been considered as output in the SVM
model. The models are shown in Fig. 1 and Fig. 2.

Fig. 2 presents the three-phase model for three methods. Inputs and Outputs
are the load currents and THDI values that measured from the system, respectively.

The algorithm is developed for SVM to estimate THDI values. Computational
process of the SVR is shown in Fig. 3. as a flowchart [49].
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Özdemir S., Demirtaş M., Aydin S.: Harmonic estimation based. . .

 Fig. 1 The single-phase model for SVM, LR and ANN.

 

Fig. 2 The three-phase model for SVM, LR and ANN.

 

Fig. 3 Flowchart of computational process.

4. Results and discussions

In this study, harmonic measurements and estimations for residential areas and
industrial zones in Manisa have been investigated. For this purpose, in the first step
the real energy distribution system in Manisa has been modeled. The corresponding
single line diagram is obtained and given in Fig. 4. As seen from this figure,
transformers transform the voltage from 154 kV to 34.5 kV.
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Fig. 4 Single-line diagram for the energy distribution system.

As a second step, harmonic measurements for residential areas and industrial
zones have been taken from the real system. The single-line diagram of the en-
ergy distribution systems in these places has been presented in Fig. 3 and Fig. 4,
respectively. THDI measurements in single-line diagrams have been taken at the
34.5 kV. These measured THDI values have been used by SVM for training and
testing purposes.

 

 

  

Fig. 5 Single-line diagram of the energy distribution system in residential areas.

Data set have been divided into a training set and a test. Training data is the
data set that your model is derived from. Training set is implemented to build up
a model. Test data is the data set that you would like to evaluate the performance
of your model. The test data set have been used to validate the model.

The measuring points are shown on the Figs. 5 and 6.

As a third step, the load current (IL) and THDI measurements for residential
and industrial zones are performed. The load current and THDI are considered as
input and output in the SVM model, respectively. The measurement results are
depicted in Tab. I and Tab. II. Measured data have been used for training and
testing the SVM method. The data in Tab. I and Tab. II are different each other.
Both of the data are taken the same real system. The data used for the training
the SVM is given in Tab. I. The data used for testing the accuracy of the model is
presented in Tab. II.
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Fig. 6 Single-line diagram for the energy distribution system in industrial zone.

Measurement Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The load current IL 370 330 270 250 240 220 290 365 447 465 470 480 490 475 238
Measured THDI 8.4 8.7 11 12 13 18 12 8.8 7 6.8 6.6 6.7 6 5.8 14

Tab. I Measured Load Current IL and THDI values for training of the SVM model
in residential areas.

Measurement Number 1 2 3 4 5 6 7 8 9

The load current IL 425 440 477 448 410 360 260 300 380
Measured THDI 7 7.1 5.8 6.8 7.8 9 12 12 8.4

Tab. II Measured Load Current IL and THDI values for testing of the SVM model
in residential areas.

Measurement Number 1 2 3 4 5 6 7 8 9

Measured THDI 7 7.1 5.8 6.8 7.8 9 12.2 11.8 8.4
Estimated THDI 7.63 7.26 6.33 7.06 8.01 9.2 11.76 10.76 8.76
Percentage error 9 2.25 9.1 3.8 2.69 2.22 3.6 8.81 4

Tab. III Percentage error, measured THDI , estimated THDI values for SVM
model.

In the forth step. the measured and estimated THDI values and percentage
error in these values for residential areas have been presented in Tab. III. As seen
from Tab. III. it can be said that there is a little difference between measured and
estimated values and they are very close to each other.
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Fig. 7 The percentage error between measured THDI and estimated THDI values.

After this step, the percentage errors of THDI estimations, which have been
made by SVM estimation method, have been plotted in Fig. 7. The highest and
lowest error is found as 9.1% and 2.2%, respectively. The average error for resi-
dential areas is 5.05%. This indicates that the harmonic estimation has been done
with the accuracy 94.95%.

The corresponding measurements have been done for industrial zones, these
measurements have been taken in three phases and measurement results have been
presented in Tab. IV. In this table IL1, IL2, IL3,THDI1, THDI2 and THDI3
correspond to load current and THDI measurement values in phase1, phase2 and
phase3. Measured data between 1-15 and 16-23 have been used to train and test
the SVM model, respectively. The data used for the training the SVM is given
in Tab. IV. The data used for testing the accuracy of the model is presented in
Tab. V.

Measurement Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The load current IL1 215 202 211 223 207 199 203 192 242 251 250 253 234 232 237
The load current IL2 218 205 212 224 205 199 206 190 241 253 250 253 232 233 236
The load current IL3 220 206 216 227 210 201 208 192 245 255 253 257 236 235 235
Measured THDI1 8.2 8.4 8.8 7.9 9.7 9 8.3 9.5 7.2 6.5 5.9 7.3 5.9 6.3 6.4
Measured THDI2 7.6 8.4 8.8 7.7 10 9 8.3 9.4 7.1 6.4 5.9 7.3 5.8 6.1 6.2
Measured THDI3 7.9 8.1 8.6 7.8 9.5 8.5 7.8 8.8 7.9 6.4 5.7 7.7 5.6 6.1 6.3

Tab. IV Measured three-phase current IL and THDI values for training SVM
model in industrial zones.

The measured and estimated THDI values for three phases in industrial zone
and percentage error are given in Tab. VI. All THDI values in three phases have
been used in order to test the SVM method. From these values. it can be said that
THDI values estimated by SVM method for three phases are generally in good
agreement with the corresponding measured ones.

The percentage errors between the measured and estimated THDI values for
three phases given in Tab. VI have been shown in Figs. 6-8. The corresponding
percentage errors for THDI 1 are given in Fig. 6. As seen from Fig.8, the highest
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Measurement Number 16 17 18 19 20 21 22 23

The load current IL1 238 213 205 191 193 214 219 215
The load current IL2 237 213 205 189 197 216 219 215
The load current IL3 241 216 207 190 197 220 224 220
Measured THDI1 5.3 7.1 7.6 8.5 8.1 8.2 7.4 8.2
Measured THDI2 5.3 7 7.3 8.3 7.5 8.1 7.2 8
Measured THDI3 5.1 6.8 7.4 8.1 7.4 7.8 7.2 7.9

Tab. V Measured Load Current IL and THDI values for testing of the SVM model
in industrial zone.

Measurement Number 1 2 3 4 5 6 7 8

Measured THDI1 5.3 7.1 7.6 8.5 8.1 8.2 7.4 8.2
Estimated THDI1 7.1 8.28 8.65 9.36 9.24 8.23 7.99 8.21
Percentage error THDI1 34 16.6 13.8 10.1 14.1 0.37 7.97 0.12
Measured THDI2 5.3 7 7.3 8.3 7.5 8.1 7.2 8
Estimated THDI2 6.74 8.06 8.49 9.31 8.91 7.87 7.74 7.94
Percentage error THDI2 27.2 15.1 16.3 12.2 18.8 2.84 7.5 0.75
Measured THDI3 5.1 6.8 7.4 8.1 7.4 7.8 7.2 7.9
Estimated THDI3 6.92 7.86 8.22 8.85 8.6 7.72 7.57 7.71
Percentage error THDI3 35.7 15.6 11.1 9.26 16.2 1.026 5.14 2.405

Tab. VI Percentage error measured and estimated THDI , estimated THDI values
for industrial zone.

and the lowest estimation errors are 34% and 0.12%. The average of the estimation
error has been calculated as 12.13%. Accordingly, it can be said that the accuracy
in harmonic estimations for THDI1 is 87.87%.

 

Fig. 8 The percentage error between measured and estimated THDI1 values in
phase1.
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In Fig. 9, the percentage error in THDI2 values has been plotted against mea-
surement number. Calculation results give the average error for THDI2 as 12.5%,
and this corresponds to the accuracy of 87.5% in harmonic estimations for THDI2.
Moreover, the highest percentage error value in test data decreases while the low-
est error value is increasing as compared to the corresponding percentage errors in
THDI1.

 

Fig. 9 The percentage error between measured THDI2 and estimated THDI2 val-
ues.

The corresponding percentage errors for THDI3 have been calculated and the
calculation results have been given in Fig. 10. In case of phase 3, the SVM estima-
tion error in test data is larger than the cases of phase1 and phase2 (35.7%). The
lowest value for SVM estimation error continues to increase and it is 1.02%. The
average estimation error has been found as 12.05%. This value is equivalent to an
accuracy of 87.97% in harmonic estimations. The calculation results for percentage
errors in THDI value have shown that harmonic estimations for residential areas
and industrial zones have high accuracy.

 

Fig. 10 The Percentage error between measured THDI3 and estimated THDI3
values.

Finally, the comparisons of the measured and estimated THDI values for resi-
dential areas and industrial zones have been done in Figs. 9-12. The comparisons
for industrial zones have been given separately in each phase. As seen from Fig. 11,
the differences between the measured and estimated THDI values are very small,
but we see that this difference increases in the seventh and eighth measurements.
However, it can be said that the measured and estimated THDI values have become
very close to each other in the sixth measurements.
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Fig. 11 The measured THDI and estimated THDI values for residential areas.

 

Fig. 12 The measured THDI1 and estimated THDI1 values for industrial zones.

In Fig. 12, the corresponding comparisons for THDI1 in industrial zones have
been depicted. The results show that there is a large difference between the mea-
sured and estimated THDI1 values up to the sixth measurement. In the sixth and
eighth measurements, THDI1 values are almost same. In the seventh measurement,
the difference is not so much large.

The behaviors of the THDI2 and THDI3 values are given in Fig. 13 and Fig. 14.
Their behaviors are similar to THDI1 values shown in Fig. 9. The differences
between the measured and estimated THDI values are also seen more pronounced
in these figures.

 

Fig. 13 The measured THDI2 and estimated THDI2 values for industrial zones.
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Fig. 14 The measured THDI3 and estimated THDI3 values for industrial zones.

5. Discussion on the validity of the proposed
approach

ANN method has been applied to check the validity of the SVM estimation method.
The single-phase systems are generally used for residential areas. The three-phase
systems are used for industrial zones. Therefore, the estimations for THDI are
made for the two systems. The results have been given in following tables. The
estimated values of THDI for the single-phase obtained from the ANN model is
given in Tab. VII.

Measurement Number 1 2 3 4 5 6 7 8 9

Measured THDI 7 7.1 5.8 6.8 7.8 9 12.2 11.8 8.4
Estimated ANN THDI 7.01 6.99 5.53 6.99 8.08 8.2 11.44 11.42 7.7

Tab. VII Estimated THDI values for the single-phase obtained from the ANN
model.

The estimated values of THDI for the three-phases obtained from the ANN
model is presented in Tab. VIII.

Measurement Number 1 2 3 4 5 6 7 8

Measured THDI1 5.3 7.1 7.6 8.5 8.1 8.2 7.4 8.2
Estimated ANN THDI1 5.3 7.4 1.6 4.9 1.6 3.5 9.8 6.6
Measured THDI2 5.3 7 7.3 8.3 7.5 8.1 7.2 8
Estimated ANN THDI2 5.3 7.3 8.2 8.2 8.7 7.9 7.9 7.5
Measured THDI3 5.1 6.8 7.4 8.1 7.4 7.8 7.2 7.9
Estimated ANN THDI3 5.3 7.1 7.7 7.6 7.7 7.8 7.5 8.3

Tab. VIII Estimated values for the three-phase system obtained from the ANN
model.
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Additionally LR method has been applied to check the validity of the SVM
estimation method. The results have been given in following tables. The estimated
values of THDI for the industrial zone obtained from the ANN model is given in
Tab. IX.

Measurement Number 1 2 3 4 5 6 7 8 9

Measured THDI 7 7.1 5.8 6.8 7.8 9 12.2 11.8 8.4
Estimated LR THDI 7.53 7.14 6.2 6.94 7.91 9.1 11.7 10.7 8.68

Tab. IX Estimated THDI values for the single-phase obtained from the LR model.

The estimated values of THDI for the three-phases obtained from the ANN
model is presented in Tab. X.

Measurement Number 1 2 3 4 5 6 7 8

Measured THDI1 5.3 7.1 7.6 8.5 8.1 8.2 7.4 8.2
Estimated LR THDI1 6.89 8.2 8.6 9.4 9.27 8.14 7.88 8.1
Measured THDI2 5.3 7 7.3 8.3 7.5 8.1 7.2 8
Estimated LR THDI2 6.8 8.1 8.6 9.4 9.07 7.99 7.8 8.06
Measured THDI3 5.1 6.8 7.4 8.1 7.4 7.8 7.2 7.9
Estimated LR THDI3 6.72 7.85 8.3 9.06 8.7 7.6 7.5 7.6

Tab. X Estimated values for the three-phase system obtained from the LR model.

The proposed solution approach comparatively evaluated with the ANN and
LR estimation methods. Comparison results show that, THDI estimation values
that obtained by SVM method are close to THDI estimation values obtained ANN
and LR methods. Numerical results clearly show that the SVM method is valid for
THDI estimation in power system.

Fig. 15 illustrates the information about the measured THDI and estimated
THDI values for SVM, ANN and LR methods. As seen from the figure, estimated
THDI values with SVM, ANN and LR methods are very close to each other.

 

 

  
Fig. 15 The measured THDI and estimated THDI values for SVM, ANN and LR
methods.
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6. Conclusions

The applicability of the SVM method to harmonic estimations in energy distri-
bution systems has been studied. For this purpose, the THDI values have been
measured and estimated by using the SVM method for residential areas and the
industrial zones. The following conclusions can be drawn from the results obtained.

• Harmonic estimations in residential areas and the industrial zones have been
done with high accuracy by the SVM method. This shows that this method
has a good predictive power.

• On the other hand, it has been seen that the measured and estimated THDI

values for residential areas are very close to each other.

• From all comparisons of THDI values for industrial zones, it has been ob-
served that differences between the measured and estimated THDI values
occur up to sixth measurements while these values become very close to each
other in the sixth and eighth measurements.

• ANN and LR methods have been applied to same testing measurements
for comparing the harmonic estimations. Numerical results show that SVM
based estimation method is valid for harmonic estimations in power system.
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[33] OLESKOVİCZ M., LİMA A.A.M., BİASOTTO E., COURY D.V. Estimation of Harmonic
Currents Injected by Nonlinear Loads for a Distorted Power Supply Scenario Using Arti-
ficial Neural Networks. In: Proceedings of the 2012 IEEE 15th International Conference
on Harmonics and Quality of Power (ICHQP), Hong Kong. IEEE, 2012, pp. 457–462,
doi: 10.1109/ichqp.2012.6381192.

[34] PARVEEN, SINGH A. Detection of brain tumor in MRI images, using combination of fuzzy
c-means and SVM. In: Proceedings of the 2015 2nd International Conference on Signal
Processing and Integrated Networks (SPIN), Noida, India. IEEE, 2015, pp. 98–102, doi: 10.
1109/spin.2015.7095308.

[35] PASTORINO M., RANDAZZO A. The SVM-Based Smart Antenna for Estimation of the
Directions of Arrival of Electromagnetic Waves. IEEE Transactions on Instrumentation and
Measurement. 2006, 55(6), pp. 1918–1925, doi: 10.1109/tim.2006.884295.

[36] RAD M.S., MOKHTARI H., KARIMI H. A new algorithm for optimal measurement place-
ment, observability analysis and Harmonic State Estimation in power systems. In: Proceed-
ings of the 2013 4th Conference on Power Electronics, Drive Systems and Technologies
(PEDSTC), Tehran, Iran. IEEE, 2013, pp. 518–523, doi: 10.1109/pedstc.2013.6506762.

[37] RAMIREZ R.W. The FFT-Fundamental and Concepts, Prentice-Hall,1985

[38] SAHRI Z., YUSOF R. Fault diagnosis of power transformer using optimally selected DGA
features and SVM. In: Proceedings of the 2015 10th Asian Control Conference (ASCC),
Kota Kinabalu, Malaysia. IEEE, 2015, pp. 1–5, doi: 10.1109/ascc.2015.7360340.

[39] SARAFIS I., DIOU C., TSIKRIKA T., DELOPOULOS A. Weighted SVM from click through
data for image retrieval. In: Proceedings of the 2014 IEEE International Conference on
Image Processing (ICIP), Paris, France. IEEE, 2014, pp. 3013–3017, doi: 10.1109/icip.

2014.7025609.

[40] SHEVADE S.K., KEERTHI S.S., BHATTACHARYYA C., MURTHY K.R.K. Improvements
to the SMO Algorithm for SVM Regression. IEEE Transactions on Neural Networks. 2000,
11(5), pp. 1188–1193, doi: 10.1109/72.870050.

[41] SINGH D. An Efficient Electromagnetic Approach to Train the SVM for Depth Estimation of
Shallow Buried Objects with Microwave Remote Sensing Data. In: 2007 IEEE International
Geoscience and Remote Sensing Symposium, Barcelona, Spain. IEEE, 2007, pp. 4961–4964,
doi: 10.1109/igarss.2007.4423975.

[42] SINGH S.K., NATH A., CHAKRABORTY R., KALITA J. Fast transverse-RLS algorithm
based power system harmonic estimation. In: Proceedings of the 2014 International Con-
ference on Information Communication and Embedded Systems (ICICES), Chennai, India.
IEEE, 2014, pp. 1–5, doi: 10.1109/icices.2014.7034148.

[43] SMOLA A.J., SCHOLKOPF B. Learning with Kernels. MIT Press, 2002.

250

http://dx.doi.org/10.1109/icmtma.2009.236
http://dx.doi.org/10.1109/tdc.2005.1546850
http://dx.doi.org/10.1109/tdc.2005.1546850
http://dx.doi.org/10.1109/iecon.2007.4460109
http://dx.doi.org/10.1109/ihmsc.2013.34
http://dx.doi.org/10.1109/ihmsc.2013.34
http://dx.doi.org/10.1109/ichqp.2012.6381192
http://dx.doi.org/10.1109/spin.2015.7095308
http://dx.doi.org/10.1109/spin.2015.7095308
http://dx.doi.org/10.1109/tim.2006.884295
http://dx.doi.org/10.1109/pedstc.2013.6506762
http://dx.doi.org/10.1109/ascc.2015.7360340
http://dx.doi.org/10.1109/icip.2014.7025609
http://dx.doi.org/10.1109/icip.2014.7025609
http://dx.doi.org/10.1109/72.870050
http://dx.doi.org/10.1109/igarss.2007.4423975
http://dx.doi.org/10.1109/icices.2014.7034148
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