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Abstract: Accurate prediction of the Baltic index makes great difference to the
strategic decision and risk avoidance of the enterprise. For the multi-step Baltic
Supermax Index prediction, direct prediction and iterative prediction has its own
advantages. Therefore, in this paper, in combination with direct and iterative
prediction, based on Support Vector Machine (SVM), a hybrid multistep prediction
model is put forward. In hybrid model, the output from the iterative model is a
rough prediction and it need also be adjusted based on the output from the direct
model. And weekly BSI data from January 2011 to November 2014 are used to
test the model. The results show that the hybrid multistep prediction model based
on SVM has high accuracy, and is feasible in the BSI prediction.
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1. Introduction

Nowadays, more than 90% of international trade is done through shipping. As
an important component of international shipping market, the dry bulk shipping
market occupies the big half of the total global seaborne, and plays an important
role in the shipping market. Due to the influence of many factors such as political,
economic and natural conditions, the international dry bulk market fluctuates dra-
matic, which is called as one of the transportation markets that have the largest
risk. The dry bulk freight indexes represent the freight rate levels of dry bulk
shipping market. It not only reflects the volatility of dry bulk shipping market,
but also can reflect the development status of the global economy and the trend of
international trade. So it is called as the “barometer” of dry bulk shipping market.
It is because of this characteristic, many insiders and experts have tried to estimate
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the future trend of dry bulk shipping market through accurate forecast of the bulk
freight index to guide the enterprise strategic decision so as to avoid market risk.

So far, the research about freight index prediction at home and abroad mainly
includes the following contents. Kavussanos (1996) used GARCH models esent
volatility in shipping markets as a time-varying process [9]. In 1997, Berg-Andreas-
sen selected freight rates of 10 routes from April 1985 to December 1985, and used
Dickey-Fuller test methods to give a detailed analysis of the trend of Baltic dry
freight index. The results showed that the selected dry bulk freight rates all obey
random walk sequence [2]. Veenstra and Franses used econometric method to fore-
cast index. By means of index time series with the process of product and unit
root test method, they respectively established the first-order vector autoregressive
model (VAR) on the shipping freight index time series of different dry bulk ship
types and routes [17]. Cullinane, Mason and Cape accurately forecasted the spot
rate through ARMA model of simple single variable [3]. Li and Parsons predicted
oil tankers transport rate by neural network. Compared with the ARMA model,
it was proved that for a relatively long time series model, neural network model
has higher prediction accuracy [12]. British scholar Kavussanos and Alizadeh-M
created a seasonal autoregressive integral moving average model of single variable
and a vector autoregressive model (VAR) to study index and analyze the seasonal
characteristics of dry bulk shipping market, and seasonal fluctuation characteristics
of dry bulk shipping market is concluded [7]. VECM-GARCH model was used by
Kavussanos and Visvikis to investigate the lead-lag relationship in both return and
volatilities between spot and future markets [8]. Using a hybrid model of wavelets
and neural networks, Leonov and Nikolov studied fluctuations in the freight rates
of the Baltic Panamax route 2A and the Baltic Panamax route 3A. The wavelet
multiscale decomposition of time series reveals volatility dynamics across different
time frequencies and will uncover patterns that will be used by neural networks
for prediction [11]. Fan et al analyzed the statistical data of the Baltic Cape-
size Freight Index (BCI) and the daily return rate sequences to improve forecast
reliability of the international dry bulk shipping market [4]. Han et al adopted
wavelet transform to denoise the BDI data series and developed a combined model
of wavelet transform and support vector machine to forecast BDI [5]. Zeng et al
proposed a method based on empirical mode decomposition (EMD) and artificial
neural networks (ANN) is developed for Baltic Dry Index (BDI) forecasting [26].
Other papers about shipping index prediction can be seen in [6, 14, 1].

Recently, as a new machine learning method, SVM has attracted many re-
searchers’ attention. SVM was developed by Vapnik, which is characterized by
a specific type of machine learning methods [15, 16]. It has been successfully
applied to solving some classic problems, such as forecasting of financial market
[18], electricity price [13], forecasting of bus arrival time [21, 22, 23, 24, 25], rock
displacement surrounding a tunnel [19], Freeway Incident Detection [20]. Based
on collected statistics, SVM is available in small samples. Because SVM has a
strong capacity for learning, it is easy to make balance on data fitting and data
generalization.

However, only a few scholars use SVM to predict freight index by now. They
do not get the very ideal forecast effect, and the practicability and reliability are
poor. Besides, freight index prediction research mainly concentrates on the BFI
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(Baltic Freight index) or BDI (Baltic Dry Index), and the research on freight index
BPI (Baltic Panalnax index), BCI (Baltic Capesize index), BHI (Baltic Handysize
index), BSI (Baltic Supermax index) of single ship type is less. Therefore, this
paper uses the advantage of SVM to solve the complicated nonlinear problem on
shipping BSI prediction. This paper establishes the SVM hybrid multi-step predic-
tion model, combining with the single step prediction and direct prediction. The
efficiency and precision of the prediction of the model is successfully improved. This
paper is organized as follows. Section 2 introduces the basic principle of support
vector machine. Section 3 develops the prediction model, which includes direct
prediction model, iterative prediction model and hybrid model. In Section 4, the
prediction model is tested, and the performances of different model are compared
and analyzed. Finally, the conclusion about this paper is presented in Section 5.

2. Support Vector Machines for regression

2.1 The basic principle of Support Vector Machine

The basic idea to estimate the regression function using the SVM model is that,
through a nonlinear mapping Y , data x of input space is mapped to a high-
dimensional feature space, then the linear regression is done in the high-dimensional
space. In a given data set of points G = {(xi, xj)}ni=1, xi is the input vector, yi
is the expected value, n is the total number of data points. In SVM, the estimate
equation is used as follows:

f(x) = (w · Φ(x)) + b, (1)

where Φ(x) is the nonlinear mapping from input space to high dimension feature
space, and coefficients w and b are estimated by minimizing the Eq. (2):

Rreg(f) = C
1

n

n∑
i−1

Lε(yi,f(xi)) +
1

2
‖w‖2 , (2)

where Lε is the loss function. This defines a ε tube (Fig. 1) so that if the predicted
value is within the tube the loss is zero, while if the predicted point is outside the
tube, the loss is the magnitude of the difference between the predicted value and
radius ε of the tube. The expression of Lε is shown in Eq. (3).

Lε(yi, f(xi)) =

{
|y − f(x)| − ε |y − f(x)| ≥ ε,

0 |y − f(x)| < ε,
(3)

where the first part C 1
n

∑n
i−1 Lε(yi, f(xi)) is the empirical risk measured by the in-

sensitive loss function given by Eq. (3). The second part 1
2 ‖w‖

2
is regularization to

make the function much smooth, so as to improve the generalization ability of esti-
mation function. C is a punishment parameter, which decides the balance between
the empirical risk and the regularization part. Based on the insensitive loss func-
tion ε, Eq. (2) can be summed up in the following quadratic convex programming
problem under convex constraint conditions as
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Fig. 1 The parameters for the support vector regression.

min

{
1

2
‖w‖2 + C

n∑
i−1

(ξi + ξ∗i )

}
(4)

s.t. 
wΦ(xi) + b− yi ≤ ε+ ξ∗i ,
−wΦ(xi)− b+ yi ≤ ε+ ξi,

ξ∗i , ξi ≥ 0,
(i = 1, . . . , n),

(5)

where ξi and ξ∗i are the introduced slack variables. The duality theory is generally
adopted in solving process, which puts it into a quadratic programming problem.
Through the establishment of Lagrange equation, and making k(x, y) = Φ(x)·Φ(y),
the dual optimization problem can be got as

max

{
−1

2

n∑
i=1

(α∗i − αi)(α∗j − αj)K(xi, xj)− ε
n∑
i=1

(α∗i + αi) +

n∑
i=1

yi(αi − α∗i )

}
(6)

s.t.

n∑
i=1

(αi − α∗i ) = 0, αi, α
∗
i ∈ [0, C], (7)

where K(xi, xj) is the kernel function. The choice of kernel function should make
it as a dot product in the feature space, namely the existence k(x, y) = Φ(x) ·Φ(y).
It can be proved that symmetric function K(xi, xj) can meet the requirements of
the kernel function as long as it meets the Mercer [6] conditions. Commonly used
kernel functions are:

Polynomial kernel function is

K(xi,xj) = (γ(xi · xj) + r)d, γ > 0; (8)

RBF kernel function is

K(xi,xj) = exp(−γ ‖xi − xj‖2), γ > 0; (9)
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Sigmoid kernel function is

K(xi,xj) = tanh(γ(xi · xj) + r). (10)

According to the Karush Kuhn Tucker theorem, the finally regression function
expression is

f(x) =

n∑
i=1

(ai − a∗i )K(xi, x)+b. (11)

3. Model developments

For prediction of BSI, the data of the next two month is the most valuable, because
the accuracy prediction can provide strong support for decision making. Therefore,
based on the observed data of each week, this paper intends to predict the BSI in
the next two month.

Referring to multi-step prediction [10, 27], there may exist two ways of BSI
forecasting, iterative approaches and direct approaches. Regardless of iterative ap-
proaches or direct approaches, they are both based on basic SVM prediction model,
the structure of basic SVM prediction model can be seen in Fig. 2. As we can see in
it, the input vectors are the BSI of former n weeks, i.e. BSIk,BSIk−1, . . . ,BSIk−n+1,
where k is the number of the current week, while the output variable is the BSI of
target weeks, namely BSIk+t.

Fig. 2 Structure of basic SVM prediction model.

3.1 Direct prediction model

In direct prediction model, as we can see in Fig. 3, the prediction for BSI of different
target week is mutually independent. And in each sub prediction, the basic SVM
prediction model is used, adjusting the target week t from 1 to γ. Therefore, in
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each sub prediction, the SVM model is not the same. Clearly, the prediction model
can be concluded as follow:

SVM(1) : BSIk+1 = f(BSIk,BSIk−1 . . .BSIk−n+1), (12)

SVM(2) : BSIk+2 = g(BSIk,BSIk−1 . . .BSIk−n+1), (13)

. . .

SVM(γ) : BSIk+γ = h(BSIk,BSIk−1 . . .BSIk−n+1). (14)

And, one thing we should know clearly, before prediction, we need to build the
databases and train the SVM model. For each sub prediction, the database con-
struction is different. So if you want to prediction another BSI, it needs to construct
databases and train SVM model again. So, the expansibility of direct prediction is
not good and should be improved.

Fig. 3 Structure of direct prediction model.

3.2 Iterative prediction model

The iterative prediction can be decomposed into some sub prediction. In each sub
prediction, the basic prediction is used, and the parameter t is set as 1. In the
iterative prediction model, firstly, take the former n weeks BSI, i.e. BSIk,BSIk−1,
BSIk−n+1 as the input vectors to predict BSIk+1 by SVM(1). The second step is
to predict BSIk+2 using SVM(2). Before that, we should update the input vectors,
through joining BSIk+1 and eliminate BSIk−n+1, keeping the state vector number
n unchanged. Finally, through iterating as stated, we can predict BSI of target
week BSIk+γ . Clearly, in iterative prediction, the SVM model is unique, and the
input vectors are what changes. As Fig. 4 shows, the prediction model can be
concluded as follow:
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BSIk+1 = f(BSIk,BSIk−1 . . .BSIk−n+1), (15)

BSIk+2 = f(BSIk+1,BSIk . . .BSIk−n+2), (16)

. . .

BSIk+γ = f(BSIk+γ−1,BSIk+γ−2 . . .BSIk+γ−n). (17)

In addition, as we can see in Fig. 4, the prediction for BSIk+γ include multi
steps, among which the error will continued accumulated. Therefore, the prediction
accuracy is usually not satisfying.

Fig. 4 Structure of iterative prediction model.

3.3 BSI hybrid prediction model

For the BSI multi-step forecast, direct and iterative prediction has its own advan-
tages. Therefore, this paper combines direct prediction with iterative prediction,
and proposes a BSI multi-step hybrid prediction model. Direct prediction is a
single step prediction for BSI index of specified time, without iterative prediction
process, so the performance is more accurate and the error is smaller. Iterative
prediction model repeatedly use the single-step prediction model to directly pre-
dict the BSI index of the next week, which does not need to develop multiple SVM
prediction model, but the prediction error accumulating after repeated prediction
process. Therefore, by combining direct prediction model and iterative prediction
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model, the predictive values of the control points in direct prediction model can
be used to adjust the predictive value between the two control points in multi-step
prediction model.

As we can see in Fig. 5, assume that the first control point is the week k and the
second control point is the week k + γ. The prediction of BSI using either direct
or iterative prediction for only one step is considered accurate. So in Fig. 5, the
prediction of BSI of next week (k+1) and next control point, that is week (k+ γ),
are first considered to be accurate. Therefore, the adjustment operation is used
to improve the BSI value after the next week (k+1). The process can then be
represented as follows:

B̂SIk+l =
B̂SI

direct

k+γ × B̂SI
iterative

k+l

B̂SI
iterative

k+γ

γ > l > 1, (18)

where B̂SIk+l is the predicted BSI of week k + l using the hybrid model. B̂SI
direct

k+γ

is the predicted BSI of next control point using the direct approach. B̂SI
iterative

k+γ

is the predicted BSI of next control point using the iterative approach. Here we
adjust the BSI according to the proportion.

Fig. 5 Structure of hybrid prediction model.

4. Numerical test

4.1 Data collection and process

4.1.1 Data collection

We use weekly averaged BSI from January, 2011 and November, 2014 as simple
data. The sample size is 203. The mean of the BSI weekly data is 11007.79, the
standard deviation is 2733.44. The maximum and the minimum are 16820.2 and
6487.8, respectively. The BSI data distribution can be seen in Fig. 6.

4.2 Data process

To avoid the training error resulting from dimension in sample data or a large
dimension data value, the whole data should be normalized and processed before
the SVM training. The normalized equation is as follows:
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Si
′ = 2 · Si − Smin

Smax − Smin
− 1, (19)

where Si
′ is normalized value. Si is raw value. Smin is the minimum value in a

sequence of samples. Smax is the maximum value in a sequence of samples.
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Fig. 6 Historical data of weekly averaged BSI.

4.3 Database construction

Before train the SVM model, we need to construct the database which is used for
SVM to find the relationship between the history data and the predicted data. The
database should be constructed in the form of Tab. I, where m is the dimension
of input vectors. By setting different dimensions of input vector, we can construct
different training databases. And many research indicate that the predict effect
vary with the input dimension.

Input vector Output vector

BSI (1), BSI (2), BSI (3), . . . BSI (m), BSI (m+ 1),
BSI (1), BSI (2), BSI (3), . . . BSI (m+ 1), BSI (m+ 2),
BSI (1), BSI (2), BSI (3), . . . BSI (m+ 2), BSI (m+ 3),
BSI (4), BSI (5), BSI (6), . . . BSI (m+ 3), BSI (m+ 4),
BSI (5), BSI (6), BSI (7), . . . BSI (m+ 4), BSI (m+ 5),
BSI (6), BSI (7), BSI (8), . . . BSI (m+ 5), BSI (m+ 6),

. . .

Tab. I The constructed database of m dimension input vectors.

4.4 Model identification

Firstly, the parameter to be calibrated is the numbers of input vector, which will
determine how database is established. The SVM model is used to train and
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to predict the future BSI. This paper takes 70% of the data in the database as
training data, 20% as test data, and 10% as inspection data. Besides, MAPE is
used to compare the prediction effect under different support vector number cases.
Randomly select the sample of training, test and inspection in proportion for ten
times to predict, the average result can be seen in Fig. 7.

MAPE =
1

K

K∑
k=1

|BSIk − B̂SIk|
BSIk

× 100%, (20)

where K is the number of test samples. BSIk is the observed BSI value of week k.
B̂SIk is the predicted BSI value of week k using the prediction approaches.

Fig. 7 The performance of model with different dimensions of input vector.

To improve the accuracy of BSI of final week of months, we take next 4, 8 week
as control point, which could be predicted by one step. As can be seen from the
Fig. 7, we use the basic SVM model to predict the BSI of next 1-st week, next
4-th week, next 8-th week BSI value. In the term of next 1st week, MAPE is
4.35% when the input vector dimensions is 4, while the input dimension is 5 or
more than 5, MAPE remain at around 5.80%. In terms of predicting the following
fourth weeks, MAPE reaches 14.19% when the input dimension is 4, while the
input vector dimension increases from 5 to 8, MAPE correspondingly increases
from 9.15% to 10.39%. And, MAPE for the forecast of BSI of the next 8-th weeks
increase with the expansion of the input dimension. When the input dimension is
4 and 5, MAPE remains at around 12%. For comprehensive consideration, when
the input dimension is 5, MAPE is small and keep in the acceptable range, so this
article select 5 as input vector dimensions.

In addition, the selection of the kernel function is important when using SVM
model to predict BSI. The RBF kernel maps samples into a higher dimensional
space and, can handle the case when the relation between class labels and at-
tributes is nonlinear. Furthermore, the linear kernel is a special case of RBF as
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Keerthi and Lin showed: the linear kernel with a penalty parameter C had the
same performance as the RBF kernel with some parameters (C, ε, γ ). In addi-
tion, the number of hyperparameters of the RBF kernel is less than the polynomial
kernel, which means the RBF kernel has less numerical difficulties in contrast to
polynomial kernels whose values may go to infinity or zero. Moreover, it is noted
that the sigmoid kernel is not valid (i.e., not the inner product of two vectors) un-
der some parameters. Therefore, this paper uses the Radial-basis function (RBF)
kernel, which has three parameters: C, ε and γ. To properly selecting the three pa-
rameters, there are several methods developed to identify the best C and ε, among
which, grid-search is frequently used as the most reliable but a complex one. In
‘grid-search’, all pairs of (C, ε, γ ) are tried and the one with the best perfor-
mance is picked up. Therefore, in this paper, the grid-search algorithm is selected
to determine the parameters of SVM. In the direct prediction model, the three pa-
rameters are selected as (0.01,2−4, 1.56), while in iterative model, the parameters
are selected as (0.01, 2−4, 1.83).

4.5 Results

Using the multi-step hybrid prediction model, we can get the prediction result.
The weekly BSI value of October 13, 2014 to November 28, 2014, can be seen in
Fig. 8.
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Fig. 8 Predicted result of the testing data.

In order to evaluate the prediction effect of hybrid model, the history mean
prediction model (HMP), ARMA model and simple iterative prediction (IP) model
are compared.

The history mean prediction model is shown in Eq. (21):

BSIM =
1

n

n∑
i=1

BSIi, (21)

where BSIM is the BSI of week n, BSIi is the BSI of week i. The average BSI of
the previous n terms is to predict the current data.
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ARMA model is a commonly linear model of limited parameters describing
stationary time series, which is suitable for short-term prediction. The predictive
model can be seen in Eq. (22). The BSI of each model is obtained after taking the
related data into the model as

yt = yt−1 + · · ·+ φpyt−p + εt − θ1εt−1 − · · · − θqεt−q. (22)
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Fig. 9 Comparison of MAPEs of four methods.

From Fig. 9, we can see that the MAPE of all models is added with the increase
of week number. And the MAPE of HMP in most case is the largest, which means
the performance is the worst. It is because the HMP cannot accurately get the
influence of different observed data to predicted data. As for ARMA model, the
MAPE of it is less than HMP, while bigger than IP and hybrid prediction model.
The MAPE is around 15%, and the performance is not satisfactory. The MAPE of
IP model increase obviously with the prediction step increasing, which is the reason
why we propose multi-step hybrid prediction. As Fig. 9 shows, the MAPE of hybrid
model is least, and it is less than 15%, which means it has good performance. So,
the hybrid model is feasible in multi-step BSI prediction.

5. Conclusions

Considering the less reference about freight index of single ship type, this paper
intends to predict the BSI based on support vector machine. Predicting BSI value
of multi-weeks can provide strong support for company to make decision, which
usually can be solved by two methods: direct and iterative prediction. The direct
prediction is simple, and the performance is relatively better. However, it requires
building database and training the SVM again for predicting BSI of another week.
The iterative one can build database and train the SVM only once. However,
because of its multi-step prediction, the prediction error is bigger. Therefore, this
paper develops a multi-step hybrid prediction model, which combines the direct
and iterative model. To evaluate the performance of the hybrid model, we use the
weekly averaged BSI value from January, 2011 to November, 2014 as simple data,
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and the performance is compared with other prediction model, such as history
mean prediction model, ARMA model and simple iterative prediction model, the
result shows that the hybrid multistep prediction model based on SVM has high
accuracy, and is feasible in the BSI index prediction.
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