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Abstract: A novel image fusion algorithm based on nonsubsampled contourlet
transform (NSCT) and spiking cortical model (SCM) is proposed in this paper,
aiming at solving the fusion problem of multifocus images. The fusion rules of
subband coefficients of NSCT are discussed, and a new maximum selection rule
(MSR) is defined to fuse low frequency coefficients instead of using traditional MSR
directly. For the fusion rule of high frequency coefficients, spatial frequency (SF)
of each high frequency subband is considered as the gradient features of images to
motivate SCM networks and generate pulse of neurons, and then the time matrix of
SCM is set as criteria to select coefficients of high frequency subband. Experimental
results and visual evaluation demonstrate the effectiveness of the proposed fusion
method. Objective tests and analysis conducted under different noised source image
environments proved the robustness of the proposed fusion method.
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1. Introduction

Image fusion integrates the complementary information from two or more images
into a single composite image. The result provides a more informative and compre-
hensive description, and is more suitable for human visual perception. Fused image
benefits the image analysis in many fields, such as in remote sensing, intelligent
robot, machine vision, clinical medicine and molecular biology.

There are many kinds of image fusion methods. Along them, those methods that
based on multiscale decomposition (MSD) of source images become more popular
and important tools in recent years. MSD methods decompose source images into
high frequency and low frequency subbands. Detailed and coarse features remain
in the two types of subbands, respectively [28].
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In MSD domain, the discrete wavelet transform (DWT) becomes one of the most
popular methods since it has more advantages, such as localization and direction,
as compared with pyramid based methods. Though DWT is an optimal tool for
analyzing one dimensional (1D) piecewise smooth signal, it has limitations while
expressing special characteristics effectively [12, 26].

Thus, new MSD methods are introduced in image fusion, such as Curvelet [18],
Ridgelet [1], Contourlet, and Ripplet [14] etc, to overcome the limits of wavelet.
Contourlet was proposed by M.N.Do and M.Vetterli. It provides different and
flexible number of directions at each scale and can capture the intrinsic geometrical
structure [5, 6], but Contourlet lacks shift-invariance property and causes pseudo-
Gibbs phenomena around singularities since it needs downsampling and upsampling
operations [2].

In order to get rid of the frequency aliasing of the Contourlet and enhance
directional selectivity and shift-invariance, Cunha, Zhou, and M.N.Do proposed
nonsubsampled contourlet transform (NSCT) [2]. Thus, in this paper NSCT is
used as the MSD method.

Known as one of the third generation artificial neural networks, pulse coupled
neural network (PCNN) is a visual cortex-inspired network characterized by the
global coupling and pulse synchronization of neurons [10]. It has been observed that
PCNN based image fusion methods outperform the conventional fusion methods
[20, 21, 26].

However, Conventional PCNN model used for image fusion requires complex
calculations. In order to improve the performance of image fusion methods based
on traditional PCNN model, a series of modified and simplified PCNN models have
been proposed. Spiking cortical model (SCM) is one of the simplified PCNN models
that is deduced from primate visual cortex and mainly derived from Eckhorn’s
model, and has been proved an efficient image processing tool [27].

In recent years, researchers proposed several image fusion algorithms based
on transform domain and PCNN, but most of these methods suffer from various
problems. In [4] Deepika et al. proposed a combined method of multifocus image
fusion and edge deduction based on NSCT and PCNN, but it suffers from the
problems of unwanted image degradations. In [21] Wang, Z. et al. proposed a
fast multifocus image fusion scheme based on a multi-channel PCNN (m-PCNN)
model with easy extensibility capability, but also suffering from the problems of
losing image fine details. Qu, X. et al. proposed an image fusion algorithm based
on spatial frequency (SF) motivated PCNN in NSCT domain [22]. It works well for
both multifocus image fusion and multi-source image fusion, but it uses same fusion
rule for both high frequency coefficients and low frequency coefficients, which causes
contrast reduction and loss of image details. The image fusion technique proposed
by Xin, G. et al. based on dual-layer PCNN model with a negative feedback control
mechanism in the NSCT domain has shown promising results in multifocus image
fusion [23]. Literature [3] discussed fusion methods based on PCNN and NSCT
in multimodal medical image fusion field. However, in most of these PCNN and
NSCT based algorithms, the value of single pixel in spatial or MSD domain is used
to motivate one neuron. In fact, humans are often sensitive to edges, directional
features, etc. So, a pure use of single pixels is not enough. It is necessary to use
spatial frequency, which stands for gradient energy in NSCT domain, to motivate
SCM neurons [3, 22, 27].
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In this paper, we propose an image fusion method by using the shift-invariance,
multi-scale and multi-directional properties of NSCT along with human visual char-
acteristics of SCM in such a way that can capture the subtle differences and fine
details of source images, and finally result in fused images with high contrast and
clarity.

2. Methods

2.1 Nonsubsampled contourlet transform (NSCT)

Contourlet is proposed by M.N.Do to obtain a sparse expansion for smooth con-
tours, which overcomes the limitation of wavelet in representing contours by using
square-shaped brush strokes and many fine ”dots”. Contourlet employs Laplacian
pyramid (LP) for multi-scale decomposition, and the directional filter bank (DFB)
for directional decomposition. The number of direction decomposition at each level
can be different, which is much more flexible than the three directions in wavelet.
Unfortunately, in the original contourlet, downsamplers and upsamplers are pre-
sented in both LP and DFB. Thus, it is not shift-invariant and causes pseudo-Gibbs
phenomena around singularities. NSCT eliminates the downsamplers and upsam-
plers during the decomposition and reconstruction of image. Fig. 1(a) shows the
decomposition framework of NSCT. Nonsubsampled pyramid filter bank (NSPFB)
and nonsubsampled DFB (NSDFB) are used in NSCT. The NSPFB is achieved
by using two-channel nonsubsampled 2-D filter banks. The NSDFB is achieved by
switching off downsamplers and upsamplers in each two-channel filter bank in DFB
tree structure and upsampling filters accordingly [2, 6].

The NSCT not only retains the features of Contourlet, but also has the prop-
erties of shift-invariance. When it is introduced into image fusion, sizes of different
subbands are identical, which makes it easy to find the relationship among different
subbands. This is beneficial for designing fusion rules.

The common NSCT-based image fusion approach consists of the following steps:
Firstly, perform NSCT on source images to obtain lowpass subband coefficients
and bandpass directional subband coefficients at each scale and each direction.
Secondly, apply some fusion rules to select NSCT coefficients of the fused image.
Finally, employ inverse NSCT to the selected coefficients and obtain the fused
image. Fig. 2 shows the framework of NSCT-based fusion algorithm.

2.2 Spiking cortical model (SCM)

As one of the improved PCNN models, SCM can be used in image processing
fields, such as image denoising, image segmentation, edge extraction, and image
enhancement according to its robustness to geometrical changes. Two features of
SCM make SCM itself more suitable for image processing. Firstly, it is has been
proved that SCM accords with Weber–Fechner law, for SCM has high sensitivity
for low intensities of stimulus but low sensitivity for high intensities, and Weber–
Fechner law describes human visual characteristics and is a logarithmic rule relating
the level of subjective sense of intensity to the physical intensity of a stimulus.
Secondly, time matrix of SCM can be recognized as human subjective sense of

625



Neural Network World 6/15, 623–639

Fig. 1 Nonsubsampled Contourlet transform: (a) decomposition framework and (b)
idealized frequency partition.

Fig. 2 Schematic diagram of NSCT based fusion algorithm.

stimulus intensity. Thus SCM can describe human visual perception better, and
can achieve better effects in image processing field [27].

SCM is expressed as

Uij(n) = fUij(n− 1) + Sij

∑
kl

WijklYkl(n− 1) + Sij , (1)

Eij(n) = gEij(n− 1) + hYij(n− 1), (2)

Yij(n) =

{
1, 1/(1 + exp(−γ(Uij(n)− Eij(n)))) > 0.5
0, 1/(1 + exp(−γ(Uij(n)− Eij(n)))) ≤ 0.5

, (3)

where Uij(n) is internal activity, Sij is a stimulus, Yij(n) is output, Eij(n) is
dynamic threshold, Wijkl is synaptic weight matrix applied to the linking field, f
and g are decay constants, and h is threshold magnitude coefficient. As a typical
neuronal nonlinear transform function, the Sigmoid function [9] is applied in SCM
to improve performance, which helps make output reachable. γ is a parameter of
Sigmoid function. The nonlinearity of Sigmoid function can be used to generate
pulse. Sigmoid curve has an “S” shape, with its slope increasing as γ increases.
From (1), (2) and (3), we can find there are 2 leaky integrators and 1 convolution
item in SCM while the traditional PCNN functions include 3 leaky integrators and
2 convolution items. Thus SCM decreased computation complexity and is much
less time consuming than PCNN. The advantage of SCM for image fusion not only
lies in its human visual characteristics we mentioned above, but also lies in its light
computation compared with PCNN [27].
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The intersecting cortical model (ICM) proposed by Lindblad et al is a special
case of PCNN when there are no linking neurons [7, 11, 15]. SCM will be ICM if
linking strength of PCNN is set to zero. SCM possesses the advantages of both
PCNN and ICM [27]. The SCM neuron model is shown in Fig. 3.

Fig. 3 SCM model.

2.3 Proposed image fusion scheme

PCNN was first used in contourlet domain for visible and infrared image fusion in
literature [16], but the contourlet it applied is the original form and lacks shift-
invariance, the PCNN it used is also the traditional form and needs complex com-
putation. In additional, single coefficients is used to motivate PCNN directly. In
fact, human vision system is often sensitive to features, e.g. edges. So, using value
of single coefficient is not enough. In this paper, NSCT is used as the MSD method
to provide a better representation of the contourlet, SCM is used as the simplified
PCNN model to avoid heavy computation.

The notations used in this section are as follows: A,B,R represent two source
images and final fused image, respectively. C ∈ {A,B,R}. LFSC indicates the low
frequency subband (LFS) of image C. HFSCg,h indicates the high frequency subband
(HFS) of image C at scale g and direction h. (i, j) denotes spatial location, thus
LFSC(i, j), HFSCg,h(i, j) denote coefficients located at (i, j) of low frequency and
high frequency subband, respectively.

In NSCT, images can be decomposed into low frequency and high frequency
subbands. The former determines gradation of light and the later relates with
detail structure. They should be fused separately.

2.3.1 The fusion rule of low frequency coefficients

The coefficients in coarsest scale subband represent approximation component of
source image. In most fusion applications, maximum selection rule (MSR) [13]
was adopted to choose low frequency coefficients. According to this fusion rule, we
select the low frequency coefficients of LFSR from LFSA or LFSB . Here we define
a new maximum selection rule as follow:
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LFSR (i, j) =


LFSA (i, j) ,

∣∣LFSA (i, j)
∣∣− ∣∣LFSB (i, j)

∣∣ > θ

LFSA (i, j)×0.5+LFSB (i, j)×0.5,
∣∣∣∣LFSA (i, j)

∣∣−∣∣LFSA (i, j)
∣∣∣∣≤θ

LFSB (i, j) ,
∣∣LFSB (i, j)

∣∣− ∣∣LFSA (i, j)
∣∣ > θ

(4)
where threshold θ is an experimental value according to the resultant image.
Threshold θ is defined as follow:

θ=
1

2
×

M∑
i=1

N∑
j=1

(
LFSA (i, j) + LFSB (i, j)

)
M ×N

, (5)

where M,N means image size.

2.3.2 The fusion rule of high frequency coefficients

The coefficients of HFS of source images are fused using SCM. As human vision
system are sensitive to features such as edges, contours etc., so instead of using
SCM in high frequency subbands directly, spatial frequency (SF) is considered as
the gradient features of images to motivate SCM networks.

SF proposed by Eskicioglu et al. is calculated by row and column frequency [8].
It reflects the whole activity level of an image which means the larger the SF the
higher the image resolution.

The SF is defined as

Sg,h
i,j =

∑
i∈M,j∈N

(Ig,hi,j − Ig,hi−1,j)
2 + (Ig,hi,j − Ig,hi,j−1)

2, (6)

where Sg,h
i,j and Ig,hi,j denote the SF and the coefficients of the pixel that located at

(i, j) on scale g and direction h, respectively.
SF in each high frequency subbands are inputted to SCM to motivate neurons

and generate pulse of neurons as follow:

Ug,h
i,j (n) = fUg,h

i,j (n− 1) + Sg,h
i,j

∑
k,l

W g,h
i,j,k,lY

g,h
k,l (n− 1) + Sg,h

i,j , (7)

Eg,h
i,j (n) = gEg,h

i,j (n− 1) + hY g,h
i,j (n− 1), (8)

Y g,h
i,j (n) =

 1, 1/
(
1 + exp

(
−γUg,h

i,j (n)− Eg,h
i,j (n)

))
> 0.5

0, 1/
(
1 + exp

(
−γUg,h

i,j (n)− Eg,h
i,j (n)

))
≤ 0.5

, (9)

T g,h
i,j (n) = T g,h

i,j (n− 1) + Y g,h
i,j (n), (10)

where Sg,h
i,j is set as feeding input of SCM, Ug,h

i,j (n) is internal activity, n denotes

iteration times. If Y g,h
i,j (n) is equal to 1, it means the neuron will generate a pulse,

or we can say one firing occurs. The sum of Y g,h
i,j in n iteration (namely the

628



Wang N. et al.: Multifocus image fusion based on nonsubsampled contourlet. . .

firing times) is defined as T g,h
i,j (n) to represent the image information. Rather than

Y g,h
i,j (n), researchers often analyze T g,h

i,j (n), because neighboring coefficients with
similar features representing similar firing times in a given iteration times. In this
paper, we set firing times T g,h

i,j (n) as criteria to select coefficients of high frequency
subbands.

2.4 Fusion algorithm

Source images to be fused must be registered. The steps of the proposed image
fusion algorithm are described briefly as follows:

1) Decompose source images A and B by NSCT to get low frequency and high
frequency subbands coefficients of each image.

2) Select coefficients of LFSR by using formula (4).

3) Calculate SF as described in formula (6) by using overlapping window on
coefficients of HFS.

4) Input SF of each HFS into SCM to motivate the neural networks and generate
pulse of neurons with formula (7) ∼ (9). And then compute the firing times

T g,h
i,j (n) by formula (10).

5) Fuse coefficients of each HFS by the following rules

HFSRg,h (i, j) =

{
HFSAg,h (i, j) , T g,h,A

i,j (n) ≥ T g,h,B
i,j (n)

HFSBg,h (i, j) , T g,h,A
i,j (n) < T g,h,B

i,j (n)
(11)

6) Apply inverse NSCT on the fused LFS and HFS to get the final fused image.

The schematic diagram is shown in Fig. 4.
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Fig. 4 Proposed fusion method.

3. Results

Our experiments are conducted by MATLAB R2007b on a PC with Intel Core
(TM) 2 Duo T7500 2.2GHz. The decomposition parameter of NSCT is set as:
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levels = [1, 2, 4], pyramid filter and directional filter are set as ‘pyrexc’ and ‘yk’,
respectively.

In order to demonstrate effectiveness of the proposed fusion method, a large
number of experiments have been conducted. After a number of tests, we set the
parameters of SCM as follows: internal activity initialization is set to be 0’s and
dynamic threshold initialization is set to be 1’s; f, g, h and γ are set to be 0.2, 0.9,
20, and 1, respectively; k × l = 3× 3, the SCM is iterated 37 times, weight matrix
of linking field W is given by (12)

W =

 0.1091 0.1409 0.1091
0.1409 0 0.1409
0.1091 0.1409 0.1091

 . (12)

We choose 4 evaluation criteria as objective analysis indices: mutual information
(MI) [17], standard deviation (SD), energy of laplacian (EOL) and QAB/F [24].
MI can be used to measure amount of information transferred from source images
to final fused image. Fusion performance would be better and better with MI
increasing. SD indicates deviation degree between grey values of pixels and the
average one of the fused image. EOL is one of the useful indices to describe clarity
of image. QAB/F [24] is proposed by C.S.Xydeas et al. as an objective image fusion
performance measure. The above 4 indices are mathematically described as

MI =

∑L−1
i=0

∑L−1
k=0 PA,R(i, k) log((PA,R(i, k))/(PA(i)PR(k)))

IE A+ IE B
+

+

∑L−1
j=0

∑L−1
k=0 PB,R(j, k) log((PB,R(j, k))/(PB(j)PR(k)))

IE A+ IE B
, (13)

SD =

√√√√ 1

m× n

m∑
i=1

n∑
j=1

(f(i, j)− 1

m× n

m∑
i=1

n∑
j=1

f(i, j))2, (14)

EOL =
m−1∑
i=2

n−1∑
j=2

(−f(i− 1, j − 1)− 4f(i− 1, j)− f(i− 1, j + 1)− 4f(i, j − 1)+

+ 20f(i, j)−4f(i, j + 1)−f(i+ 1, j − 1)−4f(i+ 1, j)−f(i+ 1, j + 1))2,

(15)

QAB/F =

∑N
n=1

∑M
m=1 (Q

AF (n,m)ωA(n,m)+QBF (n,m)ωB(n,m))∑N
n=1

∑M
m=1 (ω

A(n,m)+ωB(n,m))
, (16)

where A and B are source images, R the final fused image, m × n the size of the
image that has L grey levels; f(i, j) denotes grey value of pixel (i, j), P (i) indicates
probability of pixels whose grey value amount to i; PA,R(i, k) and PB,R(i, k) are the
normalized grey histogram between A and R and the normalized grey histogram
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between B and R, respectively. IE A and IE B denote the information entropy
(IE) of image A and B. QAF (n,m) = QAF

g (n,m)QAF
α (n,m). QAF

g (n,m) and

QAF
α (n,m) are the edge strength and orientation preservation values, respectively.

QBF (n,m) is similarly computed. ωA(n,m) and ωB(n,m) reflect the importance
of QAF

g (n,m) and QAF
α (n,m), respectively. The dynamic range of QAB/F (n,m) is

[0, 1].

Fig. 5 shows three groups of source images: clock image group (A1, B1), logo
image group (A2, B2), book image group (A3, B3). A1, B1 are focused on right and
left, respectively. A2, B2 are focused on bottom half and upper half, respectively.
A3, B3 are focused on background and foreground, respectively.

In order to prove the validity of the proposed fusion technique, several experi-
ments are conducted. 5 other methods are adopted to compare with our proposed
one (M6), which are Averaging method (M1), discrete wavelet transform (DWT)
with DBSS (2, 2) (M2), Laplacian pyramid (M3), morphological pyramid (M4),
PCA method (M5). Parameters of these methods are set by: pyramid level = 4,
selection rules: high-pass = select max, lowpass = average [19].

Fig. 5 Three groups of source images clock image group (A1, B1) logo image group
(A2, B2) book image group (A3, B3) A1, B1, A3, B3 are all from website http: //
www. imagefusion. org/ ; A2, B2 are from our lab.

Fig. 6 and Fig. 7 show fusion results by using above mentioned 6 methods
conducted on clock images and logo images. Fig. 8 and Fig. 9 show magnified
details of different fusion results, respectively. In each figure, Mi (i = 1, 2, . . . , 6)
indicates different fusion methods. For the comparison result of different methods
conducted on book images, we only provide objective evaluation data in Section 4.2.
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Fig. 6 Fusion results of different methods conducted on clock images: (M1) Av-
eraging method; (M2) discrete wavelet transform (DWT) with DBSS (2, 2); (M3)
Laplacian pyramid; (M4) morphological pyramid; (M5) PCA method; (M6) our
method.

Fig. 7 Fusion results of different methods conducted on logo images.
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Fig. 8 Parts of the fused results of Fig. 6.

Fig. 9 Parts of the fused results of Fig. 7.

4. Discussion

4.1 Subjective evaluation and discussion

By carefully inspect the fused images obtained by 6 fusion methods in Fig. 6,
Fig. 7, and the magnified details shown in Fig. 8 and Fig. 9, we can find that our
proposed method possesses a satisfied visual effect compared to other 5 methods.
In Fig. 6 ∼ 9, M1 (Averaging method) as one of the easiest methods, eliminated too
much image details and blurred the fused images (particularly see M1 of Fig. 9),
M2 (discrete wavelet transform (DWT) with DBSS (2, 2)) produced noise around
edges, margins and lines, which resulted in a kind of glow effect. In addition, we can
see that Both M1 and M2 also reduced image contrast heavily. M4 (morphological
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pyramid) suffered from the problem of blocking effect and contained unwanted
image degradations in every source image group. M5 (PCA method) still brought
in noised and fake dot information around outlines and contours, but not as much
as M2 produced. As far as these six methods are concerned, the results of both
M3 (Laplacian pyramid) and M6 (our proposed one) obtained better visual effects.
Therefore, it is clear from the subjective visual evaluation that the proposed fusion
method is effective in multifocus image fusion.

4.2 Objective evaluation and discussion

Tab. I and Fig. 10 report objective evaluations of the above-mentioned 6 methods.
Experimental data shows that the differences of SD values of 6 fusion methods are
slight and tiny. Thus we pay more attention to the other three evaluation indices.
In the clock image group, the values of MI, EOL and QABF of our proposed M6
are the best. In the book image group, the values of MI and QABF of M6 are the
best. Though in the book image group the EOL values of M6 is not as good as M4,
it still outperformed the other 4 methods. In the logo image group, both MI and
EOL of M6 get the highest values, the value of QABF of M6 get the second high
value. From Fig. 10, it also can be seen that the evaluation results of Averaging
method (M1) and PCA method (M5) are not as good as the other four ones.

Fig. 10 Comparison of six fusion methods.
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Noise4 Noise5

MI SD EOL QABF MI SD EOL QABF
M1 2.765 10.646 2.071 0.247 M1 2.615 10.652 2.567 0.229
M2 1.925 10.623 6.712 0.214 M2 1.782 10.624 8.317 0.192
M3 2.059 10.634 6.611 0.220 M3 1.919 10.644 8.171 0.199
M4 2.167 10.559 5.216 0.228 M4 2.037 10.582 6.349 0.206
M5 2.765 10.627 2.072 0.248 M5 2.616 10.633 2.567 0.230
M6 2.076 10.660 5.811 0.211 M6 1.927 10.661 7.183 0.193

Tab. III Another group of quantitative results of robustness test. The standard
deviations of 2 different Gaussian noises Noise4 and Noise5 are set as δ4 = 0.008
and δ5 = 0.01, respectively.

Fig. 11 Visual display of robustness test
.

4.3 Robustness evaluation of fusion methods

In order to evaluate the performance of the proposed method in a noisy environ-
ment, a series of robustness test experiments are conducted. Here we choose the
two source clock images (A1 and B1 of Fig. 5) as robustness test images to illus-

636



Wang N. et al.: Multifocus image fusion based on nonsubsampled contourlet. . .

trate experimental results. Firstly, we add five different Gaussian noises to the two
source clock images and get five pair of noised source clock images. The Gaussian
noises we implanted are namely Noise1, Noise2, Noise3, Noise4 and Noise5. The
standard deviation of 5 noises are δ1 = 0.002, δ2 = 0.004, δ3 = 0.006, δ4 = 0.008
and δ5 = 0.01, respectively. Then the 6 fusion methods are applied to 5 groups of
noised source images, and we get a new image dataset with 30 noisy fused image
results. For these 5 groups of noisy fused images, we compare them to the corre-
sponding original un-noised fused images (images in Fig. 6). Tab. II and Tab. III
show experimental results of four evaluation indices. Fig. 11 clearly demonstrates
the robustness comparison of different fusion methods under different noisy envi-
ronments. From Tab. II, Tab. III and Fig. 11, we can see that 4 evaluation indices
change regularly as noise changes, which proved that our proposed fusion method
is also robust to Gaussian noises as the other 5 classic fusion methods do, and can
be used in noised image environment.

The quantitative objective evaluation and comparison we discussed above ver-
ified that the proposed method is an effective fusion method of multifocus image
both in noise-free and noisy environments.

5. Conclusions

NSCT is one of useful multiscale geometric analysis tools, which take full advan-
tage of geometric regularity of image intrinsic structures. SCM is an improved
PCNN model. It describes human visual perception better compared to tradi-
tional PCNN model. In this paper, we present a new multifocus image fusion
scheme based on NSCT and SCM. The flexible multi-resolution, anisotropy, and
directional expansion characteristics of NSCT are associated with global coupling
and pulse synchronization features of SCM. Experimental comparisons conducted
on different fusion methods prove the effectiveness of the proposed fusion method.
Robustness test experiments verify that our method can be used in noisy image
processing field.
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[24] XYDEAS C.S., PETROVIĆ V. Objective image fusion performance measure. Electronics
Letters. 2000, 36(4), pp. 308−309, doi: 10.1049/el:20000267.

[25] YANG S., WANG M., LU Y.X. Fusion of multiparametric SAR images based on SW-
nonsubsampled contourlet and PCNN. Signal Processing. 2009, 89(12), pp. 2596−2608,
doi: 10.1016/j.sigpro.2009.04.027.

[26] YONG Y., DONGSUN P., SHUYING H. Medical image fusion via an effective wavelet-based
approach. EURASIP Journal on Advances in Signal Processing. 2010, 2010(1): 579341, pp.
13, doi: 10.1155/2010/579341.

[27] ZHAN K., ZHANG H., MA Y. New spiking cortical model for invariant texture retrieval and
image processing. IEEE Transactions on Neural Networks. 2009, 20(12), pp. 1980−1986,
doi: 10.1109/tnn.2009.2030585.

[28] ZHANG Z., BLUM R.S. A categorization of multiscale-decomposition-based image fusion
schemes with a performance study for a digital camera application. Proceedings of the IEEE.
1999, 87(8), pp. 1315−1326, doi: 10.1109/5.775414.

639




