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Abstract: In IaaS (Infrastructure as a Service) cloud environment, users are pro-
visioned with virtual machines (VMs). However, the initialization and resource
allocation of virtual machines are not instantaneous and usually minutes of time
are needed. Therefore, to realize efficient resource provision, it is necessary to
know the accurate amount of resources needed to be allocated in advance. For
this purpose, this paper proposes a high-accuracy self-adaptive prediction method
using optimized neural network. The characters of users’ demands and prefer-
ences are analyzed firstly. To deal with the specific circumstances, a dynamic
self-adaptive prediction model is adopted. Some basic predictors are adopted for
resource requirements prediction of simple circumstances. BP neural network with
self-adjusting learning rate and momentum is adopted to optimize the prediction
results. High-accuracy self-adaptive prediction is realized by using the predic-
tion results of basic predictors with different weights as training data besides the
historical data. Feedback control is introduced to improve the whole operation
performance. Statistic validation of the method is conducted adopting multiple
evaluation criteria. The experiment results show that the method is promising for
effectively predicting resource requirements in the cloud environment.

Key words: IaaS cloud environment, user demand prediction, high-accuracy self-
adaptive prediction, BP neural network, self-adjusting learning rate
and momentum, statistic evaluation

Received: June 5, 2014 DOI: 10.14311/NNW.2015.25.026
Revised and accepted: January 6, 2015

1. Introduction

In cloud computing [12,10], high efficient resource provision is important for max-
imizing the utility. Especially in IaaS mode cloud computing, users are provided
with virtual machines that are composed of virtual hardware including virtual
CPU, virtual GPU, virtual memory, virtual storage, etc. These virtual hardware
resources are virtualized by hypervisor [23]. The virtual resources are dynamically
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assembled as a virtual machine. According to their requirements, users send re-
quests to the cloud center and try to obtain the resources. Cloud center allocates
resources in the form of VMs to users based on the received requests. However,
before provisioning these resources for users, some time is needed to prepare and
initialize the instances, i.e. the VMs. In the other hand, when the VM is run-
ning, resources dynamic adjusting is also needed to guarantee the QoS (Quality
of Service) of cloud computing. In some cases, resources have to be dynamically
rearranged based on customers’ demands [20]. However, the rearrangement of re-
sources cannot take effect instantly and leads to insufficient elastic management of
resources [19]. This severely influences the utility and the QoS of cloud computing.

It stands to reason that resource provisioning in the cloud environment is in-
fluenced directly by demands predictions [7]. In order to know how to allocate
resources beforehand, it is important to characterize workload fluctuations accu-
rately. The workload is related with user demands closely, as the load of the VM is
decided mainly by users’ tasks and demands. In addition, users’ preferences con-
tribute to workload variants. To make an accurate prediction, this paper analyses
the main factors that affect the prediction performance and proposes a prediction
method that proves to be more accurate and effective.

The main contributions of this paper are listed in the following:

1. We make a full analysis of the characteristics of resource requirements. Dif-
ferent resource requirement models based on time and degree of fluctuations
are analyzed.

2. We propose a high-accuracy self-adaptive prediction method based on BP
neural network. “Self-adaptive” means that the method is adaptive to any
kind of circumstances and the parameters of the neural network are self-
adaptive. We achieve “high-accuracy” by not only using historical data for
neural network training, but also the base predictors’ output results with
different weights are adopted as the training data.

3. BP Neural network is optimized with momentum and self-adjusting learning
rate, which improves the robustness and the accuracy performance.

4. To evaluate the prediction algorithm, some statistic indexes are introduced to
compare with other algorithms, including MSE (Mean Squared Error), MAE
(Mean Absolute Error), SSE (Sum Squared Error), etc.

The remainder of the paper is organized as follows. Section 2 compares some related
work and analyzes the merits and demerits. Section 3 introduces the main struc-
ture of the self-adaptive online prediction system. Some preparing work including
user preference data and different resource demands circumstances are analyzed.
The idea and method using optimized neural network to improve the prediction
performance are proposed in Section 4. Experiments are conducted in Section 5
and the results are analyzed. Section 6 concludes the paper and figures out the
future research emphasis.
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2. Related work

Researches on resource demand prediction are mainly focused on how to save energy
[16], improve performance [7,24], increase profit [20,14,18] and so on. To optimize
resource management and task scheduling, Fahimeh Ramezani et al. [13] introduce
a prediction method for predicting VM workload pattern and VM migration time
using fuzzy expert system. However, only a simple prediction model is depicted and
the details are not explicated. Xiangzhen Kong et al. [9] use type-1 and type-2 fuzzy
logic systems to model the uncertain workload and vague availability of virtualized
server nodes. By adopting fuzzy algorithm, the performance of prediction method
is more robust but the accuracy is decreased. This method needs to be combined
with other prediction methods to realize high performance.

There are also some methods predicting resource requirements according to the
lasting time. Guang Chen et al. [4] propose an approach for long-term trend
prediction using moving averages method. To control jitter in a small range, it fur-
ther improves the conventional moving averages method using standard deviations.
This method mainly aims at long-term prediction, but the short-term prediction is
not mentioned.

To balance the performance and the system cost, some researchers make efforts
to maximize the system utility. Zhen Xiao et al. [21] introduce fast up and slow
down algorithm to maximize the performance while maintain the stability. As
workload has an obvious nonlinear feature, many machine-learning algorithms have
also been used to support its prediction. Neural network is introduced for workload
prediction. Dayu Xu et al. [22] propose a genetic algorithm optimized wavelet
Elman neural network prediction model to predict the CPU load with current load
sequence. In order to improve the resource allocation efficiency, a neural network
model with learning algorithm is adopted to predict the workload of the cloud
server [3]. The algorithm prevents cloud center from the problem of inadequate
resources. To minimize energy consumption of the cloud systems while maintaining
performance levels, John J. Prevost et al. [11] propose stochastic and neural models
for predicting cloud data center network load. The results provide a framework
that can be utilized to allocate the resources in the way of maintaining both an
optimal power consumption level as well as all existing SLAs. Combining with
the typical predicting methods, such as sliding window method [8], auto regression
model [5], exponential smoothing model [2] and so on, neural network works well
in predicting the workload. However, the self-adaptive online prediction method is
not mentioned, real-time performance is hardly to achieve. Moreover, there is still
much room for improving the prediction accuracy.

As mentioned above, there have been many studies on the resource demand and
workload prediction. Unfortunately, those methods are hardly to adapt various
circumstances and provide accurate prediction results. The robustness and the
real-time performance also need to be improved. Thus, a dynamic and accurate
prediction algorithm is necessary to be researched.
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3. System overview and preparation for
prediction

3.1 System overview

Before the prediction of the demand and workload, we firstly analyze the user
requests, including the utilization data structure, content and amount of historical
resource. By analyzing the historical data, we may draw some conclusions such
as user preference and so on. To realize effective and accurate prediction, the
short-term and long-term prediction needs to be specified. The fluctuating period
and the flat period also need to be separately treated with. In addition, we define
fluctuation-threshold (tu) and flat-threshold (ta) to distinguish the flat period and
fluctuating period. In different periods, different basic prediction methods including
second moving average model (SMA), exponential moving method (EMA), auto
regression model (AR), trend seasonality model (TSM), etc are adopted according
to the characters. The output of the base predictors is sent to the BP neural
network. BP Neural network takes historical data and the base prediction value as
training data, which improves the accuracy of the results. Besides, self-adjusting
learning rate with momentum is introduced in the neural network. The output
of neural network is used to instruct the resource allocation in IaaS cloud center.
Prediction results and the actual resource demands are evaluated using statistic
analysis and different criteria are measured. The evaluation results are returned
to the historical database as feedback to improve the prediction performance. The
overview of resource demands prediction system is depicted in Fig. 1.

Fig. 1 The overview of the prediction system.
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3.2 User demands analysis and description

User demands prediction is the base of resource provisioning. In IaaS mode cloud
environment, users are provided with VMs that are composed of virtual CPU,
virtual GPU, etc. A user who has certain applications running on VMs usually
does specific operations more frequently, and more corresponding resources are
need. This circumstance can be defined as preference. In cloud center, if only
we can continuously monitor the resources utilization of users’ VMs and effectively
predict the resources demands, we will be able to dynamically schedule resources for
users in according with their preferences and realize high QoS of cloud computing.
Thus, we collect users’ VMs information in data center and we need not know
what kind of applications are running on their VMs exactly. The information data
is classified into fine-grained structure. The data structure of n different users’
resources requests is described as pi {CPU, MEMORY, GPU, NETWORK}, i =
1, 2, . . . For different element pij in the vector pi, to express different preference
degree of each element, corresponding weight wij is assigned to pij :

wij =
pij
n∑

i=1

pij∑
i

wij = 1

. (1)

3.3 Overall situations of user demands

As depicted in Fig. 1, there are some opposite circumstances needed to be con-
sidered, such as long-term demands and short-term demands, fluctuations and
non-fluctuations. Fluctuating period is an abnormally violent vibration on a cloud
resource over a period of time.

In long-term resource requirements, there are some characters, as we summarize
in the following: (1) the regularity is more obvious than short-term as the long-term
users may show some repetition regularity; (2) in the long running of the system,
there may be some fluctuating periods and some flat periods. While for short-term
requirements, the regularity may not be much obvious, but the fluctuating feature
is more noticeable. Therefore, long-term or short-term resource requirements are
not conflicted with fluctuating or flat periods. For long-term data, the regularity
can be summarized; the flat and fluctuant periods also need to be distinguished.
For short-term, the regularity is not easy to figure out and the fluctuating should
be processed. The prediction speed needs to be ensured as the short-term resource
provision gives first place to quick response than other performance. The difference
between short-term and long-term processing mainly lies in the fluctuating period
processing. Hereby we discuss the fluctuating period and flat period respectively.

1) Flat period procession

In most time, resource demands in IaaS cloud computing do not vary much
frequently. Take private cloud in a corporation as an example, workers use
the virtual machines that locate in cloud center to complete their daily tasks.
As the tasks do not change frequently, the resources used to process these
tasks will not change too quickly. The most time may be flat period. So
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is the education cloud in school. As the course arrangement of a school is
always fixed, the same virtual machine may mainly run the fixed tasks in one
class, and the resource demands will not change frequently and the period
could be considered as flat period.

Based on the characters of flat period, second moving average (SMA) [25]
algorithm is adopted, it can effectively reduce the lag deviation between pre-
diction value and actual value. In this method, we define a sliding window
whose input size is N , i.e. x = [xt, xt−1, . . . , xt−(N−1)] over the historical
time interval [t-(N -1), t]. Fig. 2 depicts the sliding window model with a
window size N .

Fig. 2 The model of sliding window.

The predicted output value xt+τ after a time interval τ is the dependent vari-
able of set x, where x = [x1, x2, · · · , xN ]. The relationship can be abstracted
as follows:

xt+τ = f(x, τ). (2)

The i-th user’s resource requirement at time t+τ can be expressed as follows:

xt+τ (i) = at(i) + τbt(i). (3)

In Eq. (3), xt+τ is the prediction value in time t+ τ , τ is the time sequence
number to be predicted. Variables at(i) and bt(i) satisfy the following con-
straint equations:

at(i) = 2M
(1)
t (i)−M

(2)
t (i), (4)

bt(i) =
2

N − 1
[M

(1)
t (i)−M

(2)
t (i)]. (5)

In Eq. (4) and Eq. (5), M
(1)
t (i) andM

(2)
t (i) represent the first moving average

value and the second moving average value of the i-th user requested resources

at the t-th time. In addition, M
(1)
t (i) and M

(2)
t (i) can be expressed as

M
(1)
t (i) =

xt(i) + xt−1(i) + · · ·+ xt−(N−1)(i)

N
, (6)

M
(2)
t (i) =

M
(1)
t (i) +M

(1)
t−1(i) + · · ·+M

(1)
t−1(i)

N
. (7)

Then the total amounts of the resources requested by all the m users are:

xt+τ =
m∑
i=1

xt+τ (i). (8)
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From the analysis above, we can see that the prediction value at time t+τ
is decided only by the values of the N periods’ values at the time t and the
total number of the users.

2) Fluctuating period procession

Although resource requirements in IaaS cloud computing do not change dra-
matically at most time, the fluctuating period deserves more attention as the
fluctuating period may cause resource shortage or other problems that affect
the QoS of cloud computing. Let us take education cloud in school as an
example as before. Resource demands will fluctuate between different classes
as these virtual machines could be used to process different tasks. For exam-
ple, from 9:00 to 10:00, the virtual machine may be used to do computing
tasks and the main resources demands are virtual CPU resources. However,
from 10:00 to 11:00, the same virtual machine may be used to play teaching
video and the main resources demands will be virtual GPU resources rather
than virtual CPU resources. Thus, it is important to process the demands
fluctuation period duly to guarantee the QoS of cloud computing.

Exponential moving average (EMA) algorithm is an effective method for
short-term prediction, and particularly suitable for time series prediction of
the non-seasonal effect owing to its quick responsiveness and weight decreases
with time passed. Predicted values are calculated using smoothing constant
α. The exponential moving average is expressed as follows:

xt+1 = αx(t,N) + (1− α)xt. (9)

In Eq. (9), x(t, N) is the moving average value between the past time t-(N -1)
and the current time t. The time interval is N . α is the smoothing constant
that can be calculated by α = 2

N+1 . We can see that confines to [0, 1].

The EMA method gives a higher weight to the latest measure value and lower
weight to the earlier measure value. So the EMA method is able to response
rather quickly to the fluctuations in a short-term demand and workload con-
ditions [15]. However, there will be some delay as the window size increases.
Based on Mauro Andreolini[1], in non-linear load trackers, the polynomial
orders should be properly selected. If the order is low (degree ≤ 2), then
the algorithm will not react quickly enough to load changes. If the order
is high (degree ≥ 4), the algorithm will be unnecessarily complex and some
undesirable sparks will be introduced in and the cost may be too expensive
for a run-time context.

3) The identification of flat period and fluctuating period

We give different prediction methods according to the fluctuation levels, how-
ever, it is difficult to know or identify the boundary of different fluctuation lev-
els in the overall situation. In this section, we define “fluctuation-threshold”
(tu) and “flat-threshold” (ta) to distinguish the fluctuating and flat periods.
Fluctuation-threshold is defined as the upper limit of the degree of vibra-
tion demand on cloud resource, while flat-threshold is the lower limit. In
the last n time intervals, if the difference dtof prediction value xt and xt−1
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in series
{
xt, xt−1, · · · , xt−(n−1)

}
is greater than a certain value du, then

tu is reached. If the difference of xt and xt−1 is less than a certain value
dl, then ta is reached. For resource type i, the demands are experiencing
a fluctuating period if the demand data in last k time interval satisfies the
condition gi ≥ tu, where gi means the fluctuating degree of the prediction
trend, tu is the upper limit value. Type i resource demands are experiencing
a flat period if the demand data in last k time interval satisfies condition
gi ≤ ta. If ta ≤ gi ≤ tu, the demands of resource i is intervenient flatness
and fluctuation.

The above procedure can be illustrated by the pseudo code:

for prediction value series
{
xt, xt−1, · · · , xt−(n−1)

}
do

calculate the differences dt, dt−1, · · · , dt−(n−1) of the adjacent value
end for
set du and dl as the threshold of fluctuation
for the differences dt, dt−1, · · · , dt−(n−1) do
compare them with benchmark du and dl
if they are greater than du then
tu is reached

else if they are less than dlthen
ta is reached

end if
end for
for each type resource i do
compare the fluctuating degree with tu and ta
if it is greater than tu then
resource demands are experiencing a fluctuating period

else if it is less than ta then
resource demands are experiencing a flat period

else
resource demands is intervenient flatness and fluctuation

end if
end for

4. Self-adaptive prediction using BP neural
network

In order to predict the resource demands accurately and effectively, a self-adaptive
prediction method with different base prediction models ensemble and BP neural
network is proposed in this section. By adopting different base prediction models,
various workload occasions can be estimated accordingly, and the most likely fu-
ture outcome can be predicted effectively. The introduction of BP neural network
guarantees the robustness of the prediction system and accuracy of prediction re-
sults. With the results of base predictors, the neural network will have a better
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predicting performance. The core of the self-adaptive prediction model adopts a
two-level structure, as shown in Fig. 3. The first level is an ensemble that contains
different base predictor models. The output of the first level is sent to the second
level– neural network level, which is responsible for optimizing the precision and
the robustness of the prediction results.

Fig. 3 Self-adaptive prediction model.

4.1 Base prediction models

As we know, diversity is necessary for the survival and evolution of species ensem-
ble model. So as to the performance of the prediction models, it is important to
introduce the diversity in to the prediction ensemble model. To guarantee the pre-
diction performance, the base prediction models should be firstly selected. Besides
the prediction models mentioned in Section 3, some other models are introduced.
The guideline of choosing is based on the capacity and overheads.

1) Auto regression model

Auto regression model (ARM) is one of the linear models used for estimating
the relationships between one dependent output variable y and one or more
independent variables xi. It shows how the dependent value changes along
with the independent variables. The fundamental of the method is to treat
the historical measurement data as a stochastic process which can be treated
as a white noise driven filter. It is proved effective for predicting host load.
The form of an AR model is:

y = α1xt−1 + α2xt−2 + · · ·αpxt−p + et, (10)

where et is a white noise that contains all the unpredictable information in
the past.
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2) Trend seasonality prediction model

Trend seasonality model (TSM) represents a regularity that repeats periodi-
cally, which can be modeled by low order polynomials. To measure how the
general cycle affects data value, we calculate a series of periodic indicators.
Seasonality indicator demonstrates the offset between certain period average
value and the overall average value. To get an accurate estimation of the indi-
cator, each periodic value is calculated and compared with the total average
value. The seasonal indicator di can be calculated by the equation:

di =
ai∑
i

ai
,

where ai is the average value of the ith period. The periodic data are gen-
erated by the cloud users’ resource requirements. Based on the indicators,
the future resource requirements are predicted by two steps: (1) compute
the future trend level by using a polynomial equation with order two; (2)
introduce the seasonal influence by multiplying the trend level by indicators.

3) Moving average method

By judging whether the monitored data crosses over the moving average,
moving averages (MA) method predicts the future trend is descending or as-
cending. mN is a moving average of monitoring data series Ri with length of

N , expressed as equation: mN =
i∑

i−(N−1)

Ri

N , s.t. N ≤ i. If the monitoring

data cross over the moving average upward, then it indicates that an ascend-
ing trend is coming. While if the monitoring data cross over the moving
average upward, it indicates that a descending trend is coming.

4.2 Neural network model

A neuron is capable of reflecting a simple nonlinear intrinsic attribute. By self-
organization of these basic units, the constructed neural network can reconstruct
any nonlinear functions [6]. The self-adaptive and anti-interference capacity im-
proves the prediction system robustness. We construct a three-layer neural network
as shown in Fig. 3. The input layer has n input neurons, which are abstracted as
vector x = [x1, x2, · · · , xn]. The output layer only has one output node o. The hid-
den layer is abstracted as h = [h1, h2, · · ·hm]. The number of nodes in the hidden
layer can be calculated by the equation m =

√
n+ 1 + a, where a is an adjusting

constant confined with [1, 9]. The main idea of prediction is concluded in Eq. (2).
The use of neural network is to fit function f . The connection between two neurons
in different layer is called a synapse. A synapse is correspondence with a weight
wij . The number i and j are the serial number of the two connected neurons in
different layers. The weight needs to be calculated in the training procedure.

1) The output and error of a neuron We introduce a time series based back-
propagation neural network model to predict the resource demands. In this
model, the network is trained by a series of historical data. In the training
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period, the synapses are assigned with random weights, and then the weights
are optimized by using the back propagation error. To explain the model
clearly, the data process procedure is figured out in Fig. 4. The input-output
relationship of a neuron is:

y = f(w · x+ b), (11)

where w is the weight vector and x is the input vector.

Fig. 4 The sketch map of data procession in a neuron.

Suppose the number of the nodes in the l−th layer is nl, y
(l)
k is the output of

the node k in level l. According to Eq. (11), the output y
(l)
k can be expressed

as follows:  ȳ
(l)
k =

nl−1∑
j=1

w
(l)
jk y

(l−1)
j

y
(l)
k = f(ȳ

(l)
k ), k = 1, 2, · · · , nl

, (12)

where w
(l)
jk is the weight of the synapsis that connects the nodes in the (l-

1)−th layer and the nodes in the l-th layer. Define the output error of the
k-th output node as

ek = yk − ŷk, (13)

where ŷk is the actual output of the k-th node. The instantaneous error
energy is:

E =
1

2
|yk − ŷk|2 =

1

2
e2k. (14)

As there is only one output node in the output layer, so E is also known as
the total instantaneous error energy. The goal of the network is to minimize
the error energy E by readjusting the weights.

2) Adjustment of the sigmoid function

In the error back propagation procedure, the steepest descend method is

adopted to adjust the network weights. The correction of weight w
(l)
k can be

calculated by

∆w
(l)
k = −η ∂E

∂w
(l)
k

= ηδ
(l)
k ȳ

(l)
k , (15)
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where η is the back propagation learning rate, local gradient δlk is the partial

derivative of error energy for the input ȳ
(l)
k :

δ
(l)
k =

∂E

∂ȳ
(l)
k

=
∂E

∂ek

∂ek
∂y

∂y

∂ȳ
(l)
k

= e
(l)
k f ′(ȳ

(l)
k ). (16)

Eq. (16) also indicates that the local gradient δlk is the product of error signal

e
(l)
k and the derivative of corresponding transfer function f ′(ȳ

(l)
k ). Therefore,

Eq. (15) can also be written as

∆w
(l)
k = ηe

(l)
k f ′(ȳ

(l)
k )y

(l−1)
k . (17)

According to Eq. (17), one of the key factors for the adjustment of weight

∆w
(l)
k is the error signal e

(l)
k . In addition, we need to consider different

occasions according to the different locations of neuron k. If the neuron is
in the output layer, the error can be calculated by Eq. (13) as each of the
output nodes provides the expected response signal. Then the local gradient
can be calculated as

δ
(l)
k = (yk − ŷk)f

′(ȳ
(l)
k ). (18)

If the neuron is in the hidden layer, the back propagation equation of local

gradient δ
(l)
k is:

δ
(l)
k =

nk+1∑
j=1

δ
(l+1)
j w

(l+1)
kj f ′(ȳ

(l)
k ). (19)

To predict the complex and sudden changes of the demand curve effectively,

the transfer function f(ȳ
(l)
k ) in Eq. (12) usually adopts the form of nonlinear

function:

f(ȳ
(l)
k ) =

1

1 + exp(−ȳ(l)k )
. (20)

From Eq. (20) we can see that the output of transfer function f confines to
[0,1]. The region that approaches to 0 or 1 is called a saturation region, the
region that apart from 0 and 1 is called an unsaturation region, as shown in
Fig. 5.

In the saturation region, the dependent variable is not sensitive to the inde-
pendent variables, which causes the connected weights unable to modulate
the neuron output effectively. If the current output is not the expected value
and the changes of the weights are small, then the output of the neuron is
hardly adjusted to the best, and the convergence rate is influenced. There-
fore, we modify the form of the transfer function as

fm(ȳ
(l)
k ) =

1

a+ b exp(−cȳ(l)k )
. (21)

In Eq. (21), variables a, b and c are the adaption parameters for changing
the saturation area of the sigmoid function and improving the convergence
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Fig. 5 The saturation and unsaturation region of the sigmoid function.

speed. Calculate the differential of Eq. (21):

f ′(ȳ
(l)
k ) =

bc exp(−cȳ(l)k )

(a+ b exp(−cȳ(l)k ))2
. (22)

According to Eq. (12), Eq. (21) and Eq. (22), f ′(ȳ
(l)
k ) is:

f ′(ȳ
(l)
k ) = cf(ȳ

(l)
k )(1− af(ȳ

(l)
k )) = cy

(l)
k (1− ay

(l)
k ). (23)

According to Eq. (18) and Eq. (23), if the neuron is in the output layer, the

local gradient δ
(l)
k is:

δ
(l)
k = c(yk − ŷk)ŷk(1− aŷk). (24)

According to Eq. (19) and Eq. (23), if the neuron is in the hidden layer, the

local gradient δ
(l)
k is:

δ
(l)
k =

nk+1∑
j=1

δ
(l+1)
j w

(l+1)
kj cŷk(1− aŷk). (25)

3) Self adjusting learning rate with momentum

As we can see from Eq. (15), the learning rate η determines the convergence
speed of the neuron network. If η is small, the changes of synapse weight
in the iterative computation procedure will be small and the weight space
becomes smooth. However, the learning rate is decreased. If η is too large,
the learning rate will improve but the network may become unstable and may
cause wobble of the weights. To optimize the convergence speed and stability
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of the neural network, a momentum term can be included in Eq. (15), and it
is represented as follows:

∆w
(l)
k = ηδ

(l)
k ȳ

(l)
k + λ∆w

(l−1)
k , (26)

where λ is the momentum constant. The using of the momentum constant
is a minor revise for refreshing the weight. However, it brings advantages for
the learning speed of the algorithm.

In addition, we introduce a “progressive-increase” and a “conservative-decrease”
method to adjust the learning rate η. If the error declines in the training pro-
cedure, we may draw the conclusion that the modification direction is right
and a larger adjusting variable k is used. If the error is becoming bigger,
we regard that the modification is excessive and the adjusting step needs
to be slow down and a smaller value is assigned to variable k. Meanwhile,
the former modification should also be abandoned. The method is shown as
follows:

η(i+ 1) =

{
kincη(i) E(i+ 1) < E(i)
kdecη(i) E(i+ 1) > E(i)

, (27)

where i means the learning steps, variables kinc and kdec are respectively the
increase factor and the decrease factor.

4.3 Validation criteria

To evaluate the performance of the prediction system, we use a series of metrics[8]

including MAE (Mean Absolute Error), MSE (Mean Squared Error), SSE(Sum
Squared Error), PRED(x), etc. MSE and SSE represent the energy of the error.

1) MAE

MAE is the criterion of measuring the mean deviation between the prediction
output and the actual output. MAE can be calculated by the following
equation:

eMAE =
1

n

n∑
i=1

|ŷi − yi|, (28)

where ŷi is the actual output, yi is the prediction value, n is the number
of the data series. The smaller the value of MAE is, the more accurate the
prediction method is.

2) Error energy

MSE represents the mean energy of error, while SSE represents the energy of
the total error. MSE and SSE can be calculated by the following equations
respectively: 

eMSE = 1
n

n∑
i=1

(ŷi − yi)
2

eSSE =
n∑

i=1

(ŷi − yi)
2

. (29)

532



Chen Z. et al.: A high-accuracy self-adaptive resource demands . . .

3) PRED(x)

PRED(x) is the proportion of the prediction data number whose relative
error falls within ±x × 100% to the whole data number. Take PRED(5) as
an example, according to formula (13), we define the relative error as

ẽi =
yi − ŷi

ŷi
,

where i = 1, 2, · · · , n represents the series number of the output data series.
The number of all the relative errors that meet the condition −5% ≤ ẽi ≤ 5%
is supposed as k(5). The whole number is n. Then PRED(5) is defined as

PRED(5) =
k(5)

n
. (30)

The measurement PRED(5) represents the fitness of the prediction model. If
the value is close to 1.0, it indicates a good fit of the prediction model.

4.4 Feedback control

To optimize the performance of the resource demands prediction system, we intro-
duce feedback control [17] into the system. In each prediction cycle, the feedback
controller sends the actual resource demands and prediction results to historical
database. The demands value is specified in fine-grained form, including the el-
ements in data structure vector pi. In addition, the validation indexes of MAE,
MSE, PRED(5), etc. are also processed in the controller. The feedback controller
sends corresponding value to the historical database.

5. Experimental evaluation

In this section, experiments are conducted to validate the proposed prediction
method. When we predict the fine-grained resource demands, the method of each
kind of resource is similar to others. Here we do not distinguish resource type.
We use 350 days traffic data as the test reference. The prediction results of the
self-adaptive real-time neural network (SRNN) this paper proposed are shown in
Fig. 6. In Fig. 6(a), the “+” line represents the prediction value and the “*” line
represents the actual value. The two curves fit with each other. In Fig. 6(b), we
can see that the overall effect is promising. The maximum error is controlled in
15% and most of the error falls in ±10%.

According to the main criteria we defined from Eq. (28) to Eq. (30), we test
some base prediction methods including SMA, EMA, AR, basic neural network
(BNN) and the self-adaptive real-time neural network (SRNN). The results are
shown in Fig. 7. In Fig. 7(a) we can see that both the mean average error in
regularity and the max error of the SRNN method are small. The performance of
EMA and SMA are close to SRNN. However, the basic neural network is not very
dedicated in prediction. So as to the MSE and SSE, the SRNN takes advantages
of the other predictors’ merits and realizes self-adaption and robustness. Finally,
Fig. 7(d) shows the number of error that falls in 5%. The total numbers are all
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Fig. 6 The prediction results and error of SRNN.

350. The black columniation represents the number that falls in 5%. The PRED(5)
performance of SRNN is optimized and is superior to other predicting algorithms.

As we can see in Fig. 7, the performance of basic neural network is not good.
There are some reasons: (1) the learning rate is not optimized and the expected
training error cannot be reached. (2) The contradiction between convergence and
learning rate is not well treated with. Therefore, we introduce the self-adjusting
learning rate BP neural network with momentum.

Fig. 8(a) depicts the performance of basic BP neural network. The curve shows
the training procedure. After 2000 training cycles, the performance Pa of basic
BP neural network is approximate 0.0087. Fig. 8(b) depicts the performance of
the self-adjusting learning rate with momentum BP neural network. After 2000
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(a) MAE (b) MSE

(c) SSE (d) PRED(5)

Fig. 7 Prediction error indexes comparison of different methods.

training cycles, the performance Pb reaches 0.0031. The ratio of Pa and Pb is:
r = Pa

Pb
= 0.0087

0.0031 = 2.8. The learning rate of the proposed method is better
than that of basic BP neural network. From above analysis, we can see that the
performance of self-adjusting learning rate with momentum BP neural network is
better than the performance of BP neural network.

In traditional training, the training data always adopts the historical actual
data of last n cycles. It is somehow conservative and the performance cannot reach
optimization. Here we add the processed prediction results of base prediction
algorithms such as EMA, AR and so on. For example, the traditional training
data is:

p(:, i) = [p0(i); p0(i+ 1); p0(i+ 2); p0(i+ 3)],

where p0 (i) is the historical actual data. We add the prediction data to the training
data vector:

p(:, i) = [p0(i); p0(i+ 1); p0(i+ 2); p0(i+ 3); v(i)],

where v(i) is the weighted average of the prediction results of the base predictors.
After the change of the training data structure, the training efficiency and per-
formance are optimized greatly, as shown in Fig. 9. Compared with Fig. 8(b),
only 1600 training cycles passed before reaching the goal, which is not reached in
basic BP neural network or the self-adjusting learning rate with momentum BP
neural network. The convergence speed is greatly improved after basic predictors
ensemble is introduced.
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(a) Training procedure of basic BP neural network.
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(b) Training procedure of self-adjusting learning rate
with momentum BP neural network.

Fig. 8 The comparison of the training performance of different learning algorithms.

To clearly understand the effect after adding the predictors’ outputs, we com-
pare the main statistic criteria of MAE, MSE, SSE and PRED(5), as shown in
Fig. 10. From Fig. 10, we can see that after the base predictors’ outputs are intro-
duced into the training data, the performance is improved. Fig. 10(a) shows the
performance of MAE. Although the absolute value only decreases 0.0031, the MAE
has improved 13.9%. Fig. 10(b) and (c) represent the mean error energy and total
error energy. The MSE is 0.001 versus 0.0012 and the max squared error is 0.011
versus 0.016. The SSE is 0.033 versus 0.042. The number that falls within ±5%
is 320 versus 302, and the total number is both 350. From the data comparison,
we can conclude that the introduction of the results of base predictors is helpful to
improve the performance of prediction.
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Fig. 9 The prediction performance with prediction results of base predictors.

(a) MAE (b) MSE

(c) SSE (d) PRED(5)

Fig. 10 Prediction error indexes comparison of different methods.
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6. Conclusions

To solve the problem of resource waste or shortage in resource provision procedure
effectively, a self-adaptive real-time resource demands prediction method called
SRNN has been presented this paper. The structure of the prediction system is
discussed. Users’ preferences are analyzed firstly to reduce the amount of calcula-
tion. Then the base prediction models and methods are introduced into the system.
The results are sent to the self-adjusting learning rate with momentum BP neural
network as the inputs. With the results of base predictors, the BP neural network
is able to improve the prediction performance. Statistic criteria including MAE,
MSE, SSE, PRED(5), etc are adopted to evaluate the method. The results show
that the proposed method can effectively improve the prediction accuracy.

Though the method this paper proposes is promising in improving the perfor-
mance, the system is complex. As we can see, there are two prediction layers.
The time delay may be increased. In future, the improvement of efficiency is the
main point of the research. We would also test the method using the real cloud
workloads for traffic analysis in the real cloud computing system in future.
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